
Ponnuki, FiveStones and GoloisStrasbourg: three
software to help Go teachers

Tristan Cazenave

Labo IA, Université Paris 8, 2 rue de la Liberté, 93526, St-Denis, France
cazenave@ai.univ-paris8.fr

Abstract. This paper describes three software that are used to teach beginners
the game of Go. Ponnuki plays the game of ponnuki-go which consists in cap-
turing first a stone on a small board. It can be used with different sizes for the
board and different configurations of play. FiveStones plays the game of captur-
ing five stones, it is an intermediate game between ponnuki-go and the real game
of Go. GoloisStrasbourg plays the game of Go on a 9x9 board. It counts the ter-
ritory with the strasbourgeoise rule which simply consists in counting the stones
present on the board at the end of the game. This rule is very easy to understand
even for beginners, and GoloisStrasbourg enables beginners to learn Go by them-
selves, possibly without assistance. For the three software, the paper describes the
methods used to implement them and some problems and solutions encountered
in using them in practice.

1 Introduction

In this paper, we present three programs that can be used to help teach the
game of Go. These three program are designed for teachers that use the
teaching method consisting first in teaching Ponnuki-Go, then in teach-
ing how to capture five stones, and eventually playing Go, counting the
number of stones of each player on the board at the end to determine the
winner [1].

The first section details computer programs for the game of Ponnuki-
Go. The second section is about programming the game of capturing
five stones, and the third section about GoloisStrasbourg, a program that
plays Go according to the strasbourgeoise rules.

2 Ponnuki

Ponnuki-Go consists in capturing first a stone of the opponent. It is easy
to teach as the basic aptitude needed to play the game is to count liberties.
Some programs have been written to solve the game on small boards. We
will describe them in the first subsection. The second subsection is about
our 9x9 Ponnuki-Go program.



2.1 Solving 6x6 Ponnuki-Go

I solved 6x6 Ponnuki-Go with a cross cut in the center in 2002 [2], and
Erik van der Werf [3] solved the version with an empty board in 2002
too.

Fig. 1. The solution to 6x6 Ponnuki-Go with a cross-cut found by
GTS(6,3,2,0).

Our program is based on an optimized Alpha-Beta. The optimiza-
tions include the use of transposition tables, containing the score and
the best move, the memorization and use of two killer moves after the
transposition move, the history heuristic with a weight of

���������
	
, and an

incremental evaluation function which computes the difference between
the number of liberties of the black string that has the least liberties and



the number of liberties of the white string that has the least liberties.
The number of liberties of strings are updated incrementally too. These
optimizations are similar to the optimizations used in [3] to solve 6x6
Ponnuki-Go with Alpha-Beta.

Using a new algorithm based on generalized threats [4], we were able
to reduce the time needed to solve 6x6 Ponnuki-Go with a cross-cut in
the center. The solution found by this algorithme is given in the figure 1.

While debugging our program, we found interesting positions, that
need some subtle play. An example is given in the figure 2.

2.2 Playing 9x9 Ponnuki-Go

My Ponnuki-Go program is based on an Alpha-Beta algorithm. The eval-
uation function is the same as for the 6x6 version: the difference between
the number of liberties of the computer string that has the least liber-
ties, and the number of liberties of the opponent string that has the least
liberties.

The optimizations of the Alpha-Beta are the same as the optimizations
used for the 6x6 version.

3 FiveStones

FiveStones is my program that plays the game of capturing five stones.
The algorithm used to play is an optimized Alpha-Beta. The evaluation
function consists in computing the difference between the number of
stones captured by the computer and the number of stones captured by
the opponent. The resulting number is multiplied by 100, and the differ-
ence between the number of liberties of the computer string that has the
least liberties, and the number of liberties of the opponent string that has
the least liberties is added to the evaluation.

4 GoloisStrasbourg

4.1 Golois

Golois is a search based Go program. It uses an optimized Alpha-Beta
and the Generalized Threats Search algorithm [4] to solve tactical prob-
lems.

In this section, we detail the architecture of Golois. We start with
defining the possible subgoals that can be used in the tactical part of



Fig. 2. An amusing 6x6 Ponnuki-Go problem.



Golois. Then we define the possible states resulting from tactical search.
We then show how groups are built using search results on connections.

4.2 Subgoals of the game of Go

In order to evaluate a position and choose a move, a Go program has to
solve many sub-problems. Examples of subgoals that can be solved are:

– capturing a string / saving a string.
– connecting two strings / disconnecting two strings.
– making an eye / killing an eye
– making a group live / killing a group
– deciding the status of a semeai

4.3 Possible states for search results

The evaluation of subgames in the game of Go returns integer values.
Some values are special like the Won and Lost values that are extremal.
They are next to the Won by ko and Lost by ko values, which are not
always terminal values but that can be terminal if no other option is bet-
ter (if a variation finds Won by ko, there is still some hope that another
move leads to a Won value). All other values strictly greater that Lost by
ko, and strictly lower than Won by ko account for an Unknown result.
An Unknown result means that further search can transform it to one of
the four terminal values. In the following, we will only consider three
different values as possible results for a tactical search: Lost, Unknown
and Won.

Most Go problems are associated with two search results. One result
is associated with the friend player playing first, and the other with the
enemy player playing first. This representation has links with the decom-
position approach of the game of Go and is used by most Go programs.
It is much more efficient than brute force search when problems are in-
dependent [5, 6].

We use a notation derived from Conway’s theory. A result is noted
with a left and a right part, separated by a ’ � ’ and enclosed in braces. For
example the status of a string that can be captured if the friend player
(Left) plays first, and which status is unknown if the opponent player
(Right) plays first is noted ���������
	��
����������� .

A ����� or an 	��
��������� result for Left is associated to a set of moves.
A ������� or an 	������������ result for Right is associated to a set of moves.



� ����� results for Left and ����� results for Right are not associated to
any move because Left is aiming at finding winning moves and Right is
aiming at finding moves that make Left lose.

Each game is associated to a color, which is the color of the Left
player. We define the function

� ��� �����	��
 that returns the color of the
game � . A game is also composed of a � ���
� , a ��������� � and a ��������� � . We
define � ���
���	��
 the goal associated to the game � , ��������� ������
 the next
threat to be tried for solving the game G, and ��������� ���	��
 the result of the
game which is noted ������� �� �� with �!�#"$�� in ��� �����%" 	��
���������&" ������� .

4.4 Tactic, groups and strategy

The high level reasoning of a Go program reasons on groups. Groups are
sets of connected strings. They have properties such as the number of
eyes, the enclosed territory, the influence, the list of friend groups they
can connect to, or the list of captured strings among other properties.
The evaluation of the strength of a group is performed using these prop-
erties. Groups are built according to the results of search on connections.
Some of the properties such as the list of captured strings, the eyes of the
group, or the life and death status are computed with dedicated search
algorithms.

In order to build groups, many tactical search have to be performed.
It is therefore usual in Go programs to separate reasoning in two phases:
the tactical phase and the strategic phase. The tactical phase computes
captures, connections, eyes and life and death. The strategic phase builds
the groups according to the tactical results and then evaluates the position
and chooses the relevant global moves [7, 8].

4.5 Features of a group

A key component of a Go program is the evaluation of the safety of
groups. The evaluation of the safety of a group is based on many proper-
ties. In this subsection, we give the properties computed for each group
in Golois:

– Value: the number of points in chinese rule the group makes if it is
alive with its current size, this takes into account the stones of the
group and the territory associated to the group.

– nth Liberties: the first order liberties are the union of the liberties of
all the strings of the group. The second order liberties are the union



of all the liberties of liberties, excluding the first order liberties. The
third order liberties are the liberties of second order liberties which
are not first nor second order liberties.

– Life: the group can either be alive, unsettled, dead, or have no life
property. The life property can be determined statically or by search.

– Capture: the group can be captured or capturable, this property is only
used for groups composed of only one string.

– Enclosed: A group can either be enclosed, enclosable, escapable or
escaped. These poperties are mainly based on the number of second
and third order liberties.

– Semeai: A group might be in semeai against another neighboring
group.

– Neighbors : The group can have neighboring groups, it can connect
to if they are friend, or that it can attack if they are opponent’s groups.

– Influence: For each stone which is nor dead on the board, an influence
is irradiated, the influence of a group consists in the empty intersec-
tions neighboring the group that are closer to a computer stone than
any opponent stone.

– Territory: the territory is the set of empty intersections neighboring
the group which have a shortest path to the group two steps lower than
their shortest path to any opponent stone. For example, the second
order liberties which have a shortest path to any opponent stone stritly
greater than three.

– Prisonners: the prisonners are the string neighboring the group that
are captured.

4.6 Evaluation of groups safety

The evaluation of groups safety is a multi-step process. There are two
evaluation functions for a group. The first one is a rough evaluation that
roughly evaluates if the group is alive, dead or in between. It consists in:

– computing the value of the group, as the maximum of the influence
and of the territory, plus the number of stones, plus the number of
prisonners.

– then to evaluate statically the life of the group
– then to set the strength of the group at one if the life evaluation is

Won, or if the influence is greater than twenty, or if the territory is
greater than twelve, or if the number of prisonners if greater than
eight.



– otherwise to set the strength at zero if the group is enclosed, and loses
the semeai to all its neighbors, or if the group is captured.

Once the properties and the rough evaluation function are computed
for each group, Golois joins groups that are neighboring dead groups. For
each of these groups it then computes an elaborate evaluation function
that takes into account the strength of neighboring groups. The process
of joining groups around dead groups, and of evaluating the groups with
an elaborate evaluation function is iterated until no new dead groups are
found. This iteration at the global level in order to stabilize the evaluation
function is similar to the behavior of the strategic level of Indigo [9].

The elaborate evaluation function computes all the features of the
rough one, and also:

– it sets the strength to zero if the group is either captured, evaluated as
dead or is enclosed with less than three influenced intersections.

– the group is considered hopeless when the maximum strength of neigh-
boring friend groups is zero, the minimum strength of opponent neigh-
boring group is one, the influence size is less than five, it is enclosed
and cannot live.

– the strength is set to 0.5 if it can live or live by ko, or if the maximum
strength of neighboring friend groups is one, or if it is possible to kill
a neighboring opponent group, or if it is escaped (enough second an
third order liberties), or if the influence size is greater than 6.

Performing a search to find if a group is alive or not, or if it can win
a semeai or not is expensive in CPU time. Therefore, this search is only
performed for enclosed group that have a strength 0.5. It eliminates many
useless search for groups that are clearly strong, but that may require a
deep search to make two eyes.

4.7 Evaluating influence

The irradiation of the influence of groups is based on the shortest path
from an empty intersection to the closer group which is not dead. For all
the non dead groups on the board, the liberties of the group are noted
as influenced by the group. If an intersection is a liberty of two groups
of opposite color, it is not counted as influenced by any color. For all
the influenced empty intersections, and for the two colors, all the empty
neighbors which have not already been seen in the process are marked as
influenced. Again an empty intersection has two shortest pathes of equal



length to two groups of opposite colors, it is marked as not influenced.
This process is repeated seven times. In the end it gives a reasonable eval-
uation of influence, even in the case of relatively large moyos. Especially
in this case of large moyos, it gives better results than the traditional way
of computing influence as an exponentially decreasing function.

4.8 Evaluating global moves

Choosing moves at the global level is currently performed using an ap-
proximation of the temperature of the moves. For each subgame in ��������� � � ��� �
or ��������� 	������������ � or � 	�������������� � � ��� � , two sets of moves are asso-
ciated, one for the friend player and one for the opponent player. Each of
these moves is played and the position is re-evaluated after each move.
Therefore, each move is associated to an evaluation that approximates the
difference in territory the moves makes. The final value of a friend move
is an approximation of its temperature. The temperature is approximated
by substracting the value of the opponent moves that are prevented by
the friend move to the difference in territory the friend moves makes.

I am currently investigating the use of threats values [10], and the use
of a global quiescence search for evaluating global moves.

4.9 Playing after the endgame is over

In order to play according to the Strasbourgeoise rule, some modifica-
tions to my playing engine have been made. Under the japanese and the
chinese rules, Golois stops playing as soon as no move has a value strictly
above zero. The scoring of moves is based on the chinese way of count-
ing. Therefore, moves on the neutral points, at the end of the game, have
a value of one point. I have modified the way the moves are played at the
end of the game in order to play according to the Strasbourgeoise rule.

A move can be played if its value is strictly greater than zero, or if the
intersection does not belong to the opponent. The move with the high-
est value is selected. In case two moves have the same value, the pro-
gram counts the number of opponent stones neighboring the intersection
of each move, as well as the number of empty neighbor intersections.
It chooses in priority the move that has the most neighboring opponent
stones. In case of equality, it chooses the move that has the most empty
neighbors.



5 Conclusion

I have described Ponnuki, FiveStone and GoloisStrasbourg. These three
software where written with the hope they will help Go teachers, and also
that they can be used by people to teach themselves to play Go alone.

References

1. Fenech, A.: Le Go un jeu d’enfant. Chiron (2003)
2. Cazenave, T.: La recherche abstraite graduelle de preuves. In: Proceedings of RFIA-02,

Angers, France (2002) 615–623
3. van der Werf, E., Uiterwijk, J., van den Herik, H.: Solving ponnuki-go on small boards. In

Uiterwijk, J., ed.: The 7th Computer Olympiad Computer-Games Workshop Proceedings,
Maastricht, The Netherlands, IKAT, Department of Computer Science, Universiteit Maas-
tricht (2002) 5–11

4. Cazenave, T.: A Generalized Threats Search Algorithm. In: Computers and Games 2002.
Lecture Notes in Computer Science, Edmonton, Alberta, Canada, Springer (2002)

5. Conway, J.H.: On Numbers and Games. Academic Press, London/New-York (1976)
6. Mueller, M.: Decomposition search: A combonatorial approach to game tree search, with ap-

plications to solving go endgames. In Dean, T., ed.: IJCAI 99. Morgan Kaufman, Stockholm,
Sweden (1999) 578–583

7. Bouzy, B., Cazenave, T.: Computer Go: An AI-Oriented Survey. Artificial Intelligence 132
(2001) 39–103

8. Mueller, M.: Computer go. Artificial Intelligence 134 (2002) 145–179
9. Bouzy, B.: Modélisation cognitive du joueur de go. Phd thesis, Université Paris 6 (1995)

10. Cazenave, T.: Comparative evaluation of strategies based on the value of direct threats. In:
Board Games in Academia V, Barcelona, Spain (2002)


