Iterative Widening

Tristan Cazenave!

Abstract. We propcse amethodto gradually expand the moves to consider at
the nodes of game seach trees. The dgorithm begins with an iterative deep-
ening seach using the minimal set of moves, and if the search daes nat suc-
ced, iteratively widens the set of possble moves, performing a complete it-
erative deepening search after ead widening. When designing carefully the
different sets of possble moves, the dgorithm can save some time in the
game of Go treeseach, as sown by experimental results.

Key words: Computer Go, Seach.

1 Introduction

We propose amethodto gradually expand the moves to consider at the nodes of
game seach trees. The dgorithm begins with an iterative degening seach using
the minimal set of moves, and if the seach daes not succed, iteratively widens the
set of passble moves, performing a cmmplete iterative degpening search after eath
widening. When designing carefully the different sets of possble moves, the dgo-
rithm can save some time in the game of Go tree search, as shown by experimental
results.

The second sedion describes the seach algorithm and compares it with related
exigting algorithms. The third sedion gves hints on hav to define and combine the
gradually expanding sets of moves and cefines me of these sets for the cature
game in the game of Go. The fourth sedion detail s experimental results and unaer-
li nes future work.

1 Laboratoire d'Intelli gence Artificielle, Département Informatique, Université Paris 8, 2
rue de la Liberté, 93526Saint Denis, France e-mail: cazenave@ai.univ-paris8.fr tel: 33 1 49
40 64 04fax: 33 1 49 40 64 00

2 The search algorithm

We use Abstrad Proadf Search [Cazenave 200Q to develop AND/OR prodf trees
for the game of Go. This is an iterative degpening Null Window Seach [Mardand
& Bjornson 2000, that uses sme game spedfic functions to efficiently prove
theorems abou goalsin games.

We define sets of abstrad possble moves, that can be tried at the node of the
seach tree & a given widening threshad. Sets are numbered, the following set a-
ways contains the previous st. Our algorithm uses the sets of moves in their number
order.

For example, if the sets of posgble moves to be tried at different widening
threshold are the sets S1, S2,...,Sn. We have S100S201...00Sn. The dgorithm begins
with an Abstrad Proof Seach, trying the moves in the set S1. If this ach fails, it
then makes another search with the S2 set. And so on uril all the passble searches
have fail ed, or the dlotted time is elapsed.

For eath gaal to compute, two searches have to be performed. The first one with
White playing first and the second ore with Bladk playing first. However, when the
goal can be readed by ore player and prevented by the other, depending onwho
plays firg, it is also very important to know all the moves that read (i.e. prevent)
the goal. It is more dficient to begin with a simple seach that stops as ©0on as the
goal isreaded o prevented, and then to ched if the goal can ill be readed o
prevented even if the opporent plays first. If so, it is uselessto find all the working
moves, as there is no reed to play them because the goal is readed/prevented even
if they are not played. On the oontrary, if reading the goal depends on who days
fird, it is necessary to know all the working moves. In this case only, the same
seach is performed again, except that it is not stopped after the first working move,
it continues urtil a predefined threshold .

First cdl the seach algorithm with the first move function that sends bad the
moves of the first set. If the seach deces nat succeal, continue with the following
sets until the search succeels or the time threshdd is finished, or the seach fails
with the ultimate set.

In ou experiments, the search are performed looking for all the working moves.
So at the roat, al the posdbly interesting moves are tried, whatever the widening
threshdd is.

When a seach fails at a given widening threshdd, the transposition table is re-
initialized and a new seach is performed with the next set if passble. This can be
improved by reusing the same transpasition table for all the searches.

After having designed the method, we found that it has links with lterative
Broadening [Ginsberg & Harvey 1993. This method is siccesful in constraint
satisfadion seach [Meseguer & Walsh 1998. However, Iterative broadening is not
the same dgorithm as ours because it sets an artificial breadth cutoff ¢, and back-
tradks at most ¢ times at any nock of the tree It iteratively increases ¢, and informa-
tion can be memorized for the next iteration. Experiments by Ginsberg and Harvey
in applying Iterative Broadening to Chess gave disappanting results because the
move ordering d current Chessprogram is already nea the optimum.

3 Designing the gradual sets of moves

It is quite important to carefully choose the sets of moves. The first set is better if
it contains the moves that have high chances to reach the goal. Typically, the last set
contains all the moves worth trying. We have separated the sets for the OR nodes
and the AND nodes of the tree, asthey have completely different properties.

We have defined two sets of moves at OR nodes: OR1 is constituted by the liber-
ties of the string to capture only. OR2 is congtituted by all the moves worth trying,
including the liberties of the string to capture, the liberties of the liberties of the
string to capture and, the liberties of the strings adjacent to the string to capture that
have less liberties than it.

Similarly, we have defined two sets of moves at AND nodes : AND1 is consti-
tuted by the ipl and ip2 moves, AND?2 is constituted by the ipl, ip2 and ip3 moves.
the ipn moves are the moves that prevent a string to be captured in n moves by the
opponent. For example, the ip1 moves are the moves that may prevent a string in
atari to be captured in one move (i. e. playing the liberty, or capturing an adjacent
string).

There are different orders in which the widening can be performed. Here are the
one we have tested:

- OR2-2AND2-2: Thisis the original non-widening, iterative deepening Null
Window Search algorithm. The OR2 set of moves is used at OR nodes, and
the AND2 set of movesisused at AND nodes.

- OR1-2AND2-2: The algorithm begins with the OR1 and AND2 sets of
moves, and if the search fails, it searches again with the OR2 and AND2 sets
of moves.

- OR2-2AND1-2: The algorithm begins with the OR2 and AND1 sets of
moves, and if the search fails, it searches again with the OR2 and AND2 sets
of moves.

- AND1-20R1-2: The algorithm begins with the OR1 and AND1 sets of
moves, and if the search fails, it searches again with the OR1 and AND2 sets
of moves. If the search fails again, it searches again with the OR2 and AND2
sets of moves.

- OR1-2AND1-2: The algorithm begins with the OR1 and AND1 sets of
moves, and if the search fails, it searches again with the OR2 and AND1 sets
of moves. If the search fails again, it searches again with the OR2 and AND2
sets of moves.

- ORAND1-2: The algorithm begins with the OR1 and AND1 sets of moves,
and if the search fails, it searches again with the OR2 and AND2 sets of
moves.

- OR1-2ANDOR1-2: The algorithm begins with the OR1 and AND1 sets of
moves, and if the search fails, it searches again with the OR2 and AND1 sets
of moves. If the search fails again, it searches again with the OR1 and AND2
sets of moves. If the search fails again, it eventually searches with the OR2
and AND2 sets of moves.

- ORAND1-2AND1-2: The agorithm begins with the OR1 and AND1 sets of
moves, and if the search fails, it searches again with the OR1 and AND2 sets
of moves. If the search fails again, it searches again with the OR2 and AND1
sets of moves. If the search fails again, it eventually searches with the OR2
and AND2 sets of moves.

4 Experimental results and future work

This section gives experimental results on a standard test set for capturing strings in
Go: we call them ggvl [Kano 1985a], ggv2 [Kano 1985b] and ggv3 [Kano 1987].
We have selected all the problems involving a capture of a string, including semeai
and some connection problems. There are 114 capture problems in ggvl, 144 in
ggv2 and 75 in ggv3. Experiments were performed on a Pentium 266 MHz micro-

processor.
Algorithm Total time | Number of nodes | % of problems

OR2-2AND2-2 18. 15 4809 99. 12%
OR1-2AND2-2 17. 67 2667 99. 12%
OR2-2AND1-2 12.81 4291 99. 12%
AND1-20R1-2 12. 26 2576 99. 12%
OR1-2AND1-2 12. 38 3044 99. 12%
ORAND1-2 12.11 2730 99. 12%
OR1-2ANDOR1-2 12. 31 2913 99. 12%
ORAND1-2AND1-2 12.13 2587 99. 12%

Table 1. Resultsfor ggvl

Algorithm Total time | Number of nodes | % of problems

OR2-2AND2-2 62. 96 30182 86. 81%
OR1-2AND2-2 47.99 19096 86. 11%
OR2-2AND1-2 32.62 28008 86. 81%
AND1-20R1-2 39.74 19721 86. 11%
OR1-2AND1-2 37.15 24244 87. 50%
ORAND1-2 39.57 19566 87. 50%
OR1-2ANDOR1-2 35.99 23450 87. 50%
ORAND1-2AND1-2 45. 85 19544 85. 42%

Table 2. Results for ggv2

Algorithm Total time | Number of nodes | % of problems

OR2-2AND2-2 41. 43 21226 78. 67%
OR1-2AND2-2 30. 03 15526 77.33%
OR2-2AND1-2 23.70 22647 81. 33%
AND1-20R1-2 23.78 15073 77.33%
OR1-2AND1-2 20. 68 16281 81. 33%
ORAND1-2 25.11 13206 78. 67%
OR1-2ANDOR1-2 21.85 18106 80. 00%
ORAND1-2AND1-2 32.74 13844 74. 67%

Table 3. Results for ggv3

Every combination of widening sets gives speed-ups compared to the original al-
gorithm. However, some combinations also decrease the percentage of solved prob-
lems. Luckily, some combinations both decrease the time to solve problems and
increase the percentage of solved problems. In particular, OR1-2AND1-2 seems to
be the combination of choice. It does not only reduce significantly the computation
time, it also solves more problem than the original non iterative widening algorithm
(OR2-2AND2-2).

In the original non iterative widening algorithm, the liberties of the string are
tried first, and the order of the moves at each node is the same as in the iterative
widening algorithm, therefore the observed speed-ups are due to the iterative wid-
ening, not to another factor such as move ordering.

In these experiments, the transposition table is completely initialized before each
widening. It would me more clever, to keep the same transposition table, and to put
a flag on the transpositions, memorizing the widening step of the transposed board.
Therefore reusing the information from the previous and less wide search in order to
save computation time.

5 Conclusion

Gradually widening the sets of moves in the game of Go search trees enables to
reduce the search time when performing an iterative deepening Null Window
Search. It also appears that some more problems can be solved by using this tech-
nique. However, one has to be careful when choosing the widening sets, only some
combinations of them give good results. Results could be even better by reusing
transposition table information from the previous and less wide search.

6 References

Cazenave T.: Abstract Proof Search. Submitted. 2000.

Ginsberg M. L., Harvey W. D. : Iterative Broadening. Artificial Intelligence 55 (2-3), pp.
367-383 1992

KanoY.: Graded Go Problems For Beginners. Volume One. The NihonKi-in. ISBN 4-8182
02282 C2376 1985

Kano Y.: Graded Go Problems For Beginners. Volume Two. The Nihon Ki-in. ISBN 4-
90657447-5. 1985

Kano Y.: Graded Go Problems For Beginners. Volume Three. The Nihon Ki-in. ISBN 4-
818202304. 1987.

Marsland T. A., Bjérnson Y.: From Minimax to Manhattan. Games in Al Reseach, pp. 5-

17. Edited by H.J. van den Herik and H. lida, Universiteit Maastricht. ISBN 90-621-6416
1. 200Q

Meseguer P., Walsh T. : Interleaved and Discrepancy Based Search. Procealings ECAI98
(ed. H. Prade). JohnWiley & Sons Ltd., Chichester, England. ISBN 0-471-984310. 1998

