A paraitre dans 'Logic Programmning and Soft Computing, livre &lité chez Research Sudies Press(JohnWiley & Sors).

L ear ning with Fuzzy Definitions of
Goals

Tristan Cazenave

LIP6
Université Pierre ¢ Marie Curie
4, place Jusseu
75252PARIS CEDEX 05

email: Tristan.Cazenave@laforia.ibp.fr

Abstract

This paper explains a method to learn from fuzz definitions of gods. This
method has been applied to learn strategic rules in the Game of Go and
decision rules for the management of a firm. The learning algorithm uses a
representation of knomedge mainly based on the predicate logic. The goal
of this paper is to extend this method of learning to systems using fuzz
logic. It is not useful to have gradud knomedge in order to learn tactical
knomedge, but it becomes necessary when learning drategic knoMedge.
Strategic knoMedge is knowedge about long term and dobd gods, it is
fuzzy by nature. | give a method to learn using explanations of how the
achievement of a gradud goal has been influenced by an action. This
method is suppated by an example of strategic learning in the game of Go.
I show how this method can be applied in complex domains.

1 INTRODUCTION

Logic Programming provides a nice and convenient way to represent knowledge.
An important goa of Logic Programming is dedarativity, it involves that a logic
progam gates what is to be computed, but not necessarily how it is to be
computed. In the terminology of Kowalski's equation algorithm = logic + control,
it involves dating the logic of an algorithm, but not necessarily the control. Giving
only thelogic of an algorithm is very convenient and enables to give easily a lot of
knowledge to a program, however it is very inefficient and dften leads to a
combinatorial explosion in the applicaion of the dgorithm. Introsped
[Cazenave 1996 is a system that is designed to observe its own problem solving
activity, to deted its own inefficiencies and to creae automatically control rules to
avoid them. Informally, it creates the mntrol of an algorithm given the logic and
some running o the algorithm on examples. This reseach is related to leaning
systems like Soar [Laird 1986, Prodigy [Minton 1989 or Theo [Cheng 1995
which lean to achieve their goals faster using some examples of problem solving,

it is also related to dedarative logic programming systems like Godd [Hill 1994
or systems based on metaknowledge like Maciste [Pitrat 199(.

Many learning systems have been applied to crisp goals, the goals of the
system are defined using a aisp definition: either the goal is achieved or not. This
article extends the leaning method to goals defined by a fuzzy measure of
achievement.

A fuzzy definition of goals is necessary in complex domains where it is
impossble to foreast predsaly, in al cases, if a goal can be achieved. This is
particularly true for the strategy in the game of Go. It is intractable to know the
status of a group wsing a crisp definition. So we ned to fuzzify the status of a
group. Introsped is a system which leans to improve its problem solving abilities
by observing its own problem solving activities. It leans by explaining to itself
how it has deduced interesting facts about its goals [Cazenave 1996]. It creates
new rulesthat enable itself to deduce how to achieve its goals faster. Introsped is a
general leaning and problem solving system based on an extension of predicae
logic, its most successful application is the leaning of rules to achieve goals in the
game of Go. Representing gradual knowledge is not necessary from atactical point
of view, but it becomes necessary on a drategic point of view. Fuzzy logic has
already been applied to seach, and espedally to Chess[Junghanns 1999, but it
has been used to control seach. My purpose is rather to automatically create fuzzy
knowledge bases of rules.

In a first part, | show why a fuzzy knowledge representation of goals is
adapted to represent the achievement of long term goals in complex domains, and
especialy to represent the strategic knowledge of Go players. In a second part, |
explain how this fuzzy knowledge @an be used by a sdlf fuzzy learning system to
develop itsdlf from a small set of initial rules. The following parts detail the
different steps of the leaning algorithm when applied to gradual goals | finish
with the description of the appli cations of my system to the game of Go and to the
management of a firm.

2 FUzzY DEFINITION OF GOALS

2.1 A simple example
The goal of my system is to foreast efficiently in the long term the mnsequences
of its actions on the achievement of its goals. In complex domains it is intractable
to calculate the long term consequences of the actions. So we nedl to expressthe
intractable goal in terms of

more tractable goals | will High 1

illudrate this usng a smple tower 05

example. suppose that the of red

system is conneded to a WS O St
roba arm in the aibe world.)

The goal of the system is to Number of empiled red cubes

build a high tower of red Fig 1- A fuzzy set representing the gradual
cubes. It only has ®merules achievement of the goal 'High tower of red

tha tell it the direa cubes

consequences of its action. It is tractable for the system to solve the problem of
taking ared cube in itsarm, but it is intractable to directly find all the moves that
will enable it to build a high tower of red cubes. Therefore, the system will be
given afuzzy definition of a high tower of red cubes, and will achieve its goals by
putting the red cubes one by one, achieving gradually the overall goal, by breaking
it into subgoals.

This fuzzy definition of a goal is directly expressed in a logic programming
language similar to Prolog. Thisis a typed language which has meta facilities and
which enables the use of integer and real numbers. In this article, variables are
represented by a single letter or by a letter followed by a number. It has built-in
functions that operate on integer and real numbers, such as add, sub, div, mult,
equal, greater_than. The fuzzy definition of a goal is directly written in this
language. The Fig 1 isrepresented with the following rule:

High_tower_of red _cubes(nf) :-Number_of empiled red cubes(nh)
equal (fldiv(h12))
equal (fmin(f11.0)).

In this rule, n is an integer which represents the number of actions required to
reach the state described. The fuzzy number associated to the achievement of the
goal isf, itis between 0.0 and 1.0.

2.2 Strategy in the game of Go
Strategic knowledge in games are about long term goals. In games such as Chess
and Go, the high number of possible moves makes it impossible to forecast in the
long term the consequences of the moves played. A solution to this problem is to
have a gradual achievement of long term goals. It enablesto know if a move makes
the goal easier or harder to achieve.

Thisis particularly true for the strategy in the game of Go. The ultimate goal
of a player is to make live the more stone on the board. However, in the middle
game, most of the groups of stones are in an uncertain gate, and the evolution of

this state cannot be precisdy foreseen. It is very

useful in such a case to have a fuzzy evaluation of

their states and of the evolution of this state when

playing different moves. @)——@)
C

Definition 1: A group of stones is a set of _@>
stones of the same color which cannot be N
disconnected. -

Stones of the same group have the same

number in Fig 2. —éf 2) (a)
Definition 2: A friend intersections of a group

is an empty intersection that can be connected to
the group whatever the opponent plays, moreover, Fig 2 - A Go board with
this empty intersection must not be connectabletoa groups marked with the
living opponent group. same numbers

In Fig 3, the white friend intersections are
filled with a smal white point. The black friend
intersections are filled with a small black point.
The intersections connectable both to a white
and a black group are filled with a small gray
point. Each group owns a set of friend
intersections of its own color.

The number of friend intersections of a
group isavery good heuristic to approximate the
degree of life of a group. For example, the group
marked with 2 in Fig 2 has more than twelve
friend intersections, it will therefore have no Fig 3 - Go board with empty
problems to live. Whereas the group marked friend intersections marked
with 3 in Fig 2 has only 7 friend intersections, it
is not completely alive and may have some problems. Its degree of life is around
0.5. Two rules define the degree of life of a group given its number of friend
intersections:

Degree of life(ngf):- Number_of friend intersections(ngh)
greater_than (h 3)
equal (fldiv(sub(h3)9))
equal (fmin(f11.0))

Degree of life(ngf):- Number_of friend intersections(ngh)
greater_than (4h)
equal (f0.0).

After these rules have been fired, one rule chooses the greatest of al the
degrees of life:

Degree of life(ngf) retract (Degree of life(ngf2)):-
Degree of life(ngf)
Degree of life(ngf2)
greater_than (f f2).

The fuzzy degree of life is given by the real number f, the group is represented
by the variable g, and the integer n is the number of moves to play to achieve this
degree of life.

1
The Fig 4 gives the graphical

representation of the fuzzy set defined by

therules above. >

Note that the system uses a forward 0123 4 5 6 7 8 9101112
chaining algorithm, and that when we set Number of friend intersections

the value of the degree of life, the system Fig 4 - The fuzzy set defining the

checks if this degree is greater than the gegree of life, given the number
previously established degree for the same f friend inter sections

group. Thisis due to the fact that there may be many rules that give a conclusion
on the degree of life of a group. The convention is to create fuzzy representations
of the achievement of a goal that never overestimate the degree of achievement.
Thus, if according to one criterion, the goal is poorly achieved, but that according
to another criterion the goal is amost achieved, the system will conclude that the
goal is aimost achieved. This is compatible with the digunctive normal form of
logic programs. This can be viewed as taking the max operator as the t-conorm
used to make the fuzzy union between two digunctive rules concluding on the
same predicate.

There are many attributes for a group. Table 1 gives a list of the predicates
used in my system to describe a i
group. Number_of_won_life_bases

Each of these attributes | Number_of unsettled_life bases
contributes to the final goal of the | Number_of_won_eyes
game which is to make the group | Number_of_unsettled eyes
live. These contributions are less | Number_of_friend intersections
or more graduals. They are |Number_of stones S
represented in Fig 4, 5 and 6. The [Number_of connections to living friends
vertical axis always represents the Table 1 - List of predicates used to
degree of life of the group, Measurethe degreeof lifeof agroup
between 0 and 1.

The system also uses crisp definitions of the
degree of life. The crisp value is aways 1 _
preferred to the fuzzy value, but the most
interesting strategic rules are the rules that use a

fuzzy definition. The Fig 5 represents the most 0 1—2'
simple of the crisp definition of the achievement
of the goal. Number of won life bases

The Fig 6 give some examples of some Fig 5 - Life can be given a
smple fuzzy definitions of the goa crisp definition. But this
"Degree of life", other definitions that combine definition cannot always be
the different predicates are aso used in the applied. That is why we need
sysem. But only the simple and easily fuzzy rules.
understandable rules are presented here.

l[l[

0 1 2 3 0 1 2 3
Number of unsettled life bases Number of won eyes
1 [1 [
o 1 2 3 0 1 2 3 4 5 ¢
Number of connectionsto living friends Number of unsettled eyes

Fig 6 - Some simple fuzzy sets defining the gradual achievement of the goal
Degree of life

Table 2 gives an evaluation of the attributes for the four groups of Fig 2.

Attributes\Groups
Number of won life bases
Number of unsettled life bases
Number of won eyes
Number of unsettled eyes
Number of friend intersections
Number of stones
Number of connectionsto living friends
Table2

Table 3 gives the degrees of life corresponding to each attribute for each group
and also gives the fina degree of life for the groups. This degrees of life were
calculated using only the fuzzy definition of achievement of the goal.

OQOW~NOOOOoO|Ww

NFRooools

CUWR Rk Ok
o~N~RNoooo|n

Attributes\Groups 1 2 |3 4
Number of won life bases 0 0 |0 0
Number of unsettled life bases 05 (0 (O 0
Number of won eyes 033 |0 (O 0
Number of unsettled eyes 016 |0 (O 0
Number of friend intersections 0 1 |044 |0.89
Number of connectionsto living friends 0 0 [0 1
Degree of live of the group 05 |1 (044 |1
Table3

The learning system will use the simple definition of a goal to learn to forecast
the consequences of its moves. It will create more complex rules that will conclude
on more long term results than the rules defining the current achievement of the
goal.

3 OVERVIEW OF THE LEARNING ALGORITHM

The learning agorithm is composed of six steps. The first step congstsin solving a
problem using a declarative logic program. After this problem solving episode, the
learning system explores its own problem solving performances so as to find
possible inefficiencies. This second phase is called introspection, it selects a goal
which have been inefficiently deduced by the logic program. The third phaseisthe
explanation of how this goal has been deduced, it finds the reasons why a goal can
be deduced. The

explanation results W Problem | I | ntrospection
in arule to deduce - Solving

directly the goal,
this rule contains — Y —
only constants. So Loglc@li—| Compilation H Generalization ‘
as to learn genera Fig 7 - Overview of the lear ning system

rules, the next
phase is generalization which consists in replacing some appropriates constants by

Explanation

v

variables. The result of generalization is a rule in predicate logic, this rule may
have a bad ordering of conditions, that is why it is compiled by a set of metarules
which reorder the conditions so as to match the rule much faster [Cazenave 19964].
The rules created by the system are used to learn other rules. The systems
bootstrapsitself using a small set of initial rules.

4 DEDUCTION

The goal of the deduction part of the learning system is to deduce the
degree of life of a group after a move. At the beginning of the deduction, the
system only has facts that describe the state of the groups at time t and a move at
timet. It usesits rules about the consequences of a move to deduce the state of the
groups at timet+1 after the move. For example, therule:

Number_of friend intersections(tgn) :-
Number_of friend_intersections(tl1gnl)
Move (ic)
Color (gc)
add_friend_intersections (t1ign2)
equal (tadd(t11))
equal (nadd (nl1n2)).

isingtanciated by the deduction process into therule:

Number_of friend_intersections(1 groupl 10) :-
Number_of friend_intersections (O groupl 3)
Move (intersection58 Black)
Color (groupl Black)
add_friend_intersections (O intersection58 groupl 7)
equal (ladd(01))
equal (10add (37)).

Thisrules gives the Number_of friend_intersections after the move at time 1,
using the Number_of friend intersections before the move at time 0. After
deducing all the predicates describing the state of the board after the move, the
system can deduce the state of achivement of its goals after the move. The rule
giving the Degree of life using the Number_of friend_intersections is fired and
itsinstanciation resultsin the following instanciated rule:

Degree of life(1groupl10.78) :-
Number_of friend_intersections(1 groupl 10)
greater_than (103)
equal (0.78div (sub(103)9))
equal (0.78min (0.781.0))

According to thisrule, the degree of life of the groupl after themove (at time 1) is
0.78. A lot of other rules are used to deduce the state of the board and the degrees
of life after the move, but we will mainly use this simple example to explain the
learning process.

5 INTROSPECTION

The introspection module is dedicated to find inefficiencies of the deduction
module. Introspection decides what is interesting to learn so as to repair observed
inefficiencies.

To sdlect interesting facts, the system compares the degree of achievement of
the goal to learn before the move and after the move. If the degree of achievement
after the move is greater than the one previously anticipated by the rules of the
current knowledge base, then the fact describing the greater degree of achievement
is interesting to explain so as to create a new rule which will enable to deduce it
directly, avoiding a possibly long deduction process.

Explain (Degree of life(ngf)):-
Anticipated_degree of life(ngfl)
Degree of life(ngf)
greater_than (ff1)

This (meta)rule tells the system to explain a deduced degree of life, if it is
greater than the previoudy anticipated degree of life.

6 EXPLANATION

The explanation consists in giving the reasons why a goal was deduced. The
explanation module goes back into the problem solving trace, replacing an
instanciated condition in an instanciated rule, by the conditions of the instanciated
rule that has been used to deduce the replaced condition.

Degree of life(1groupl10.78) :-
Number_of friend_intersections (0 groupl 3)
Move (intersection58 Black)
Color (groupl Black)
add_friend_intersections (O intersection58 groupl 7)
equal (ladd(01))
equal (10add (37)).
greater_than (103)
equal (0.78div (sub(103)9))
equal (0.78min (0.781.0))

In our example, theresult of the explanation is the rule above. To obtain it, the
modul e replaces the condition Number_of friend intersections (1 groupl 10) in
the last rule of section 4, by the conditions of the second rule of section 4.

Usually, the system replaces more than one condition, and conditions in the
replaced rules are themselves replaced by other lists of conditions. Sometimes,

there are many rules that conclude on the same condition. It leads to as many
different explanations, and as many branches in the explanation tree. The
explanation of the deduction of an interesting goal can lead to a lot of explanation
rules.

7 GENERALIZATION

When the explanation is done, we can generalize the resulting rules to alow them
to apply in many more case. The main mechanism of generalization is the
replacement of instanciated variables by constants. The generaized explanation of
our examplerule gives:

Degree of life(tgf):- Number_of friend intersections(tlgnl)
Move (ic)
Calor (gc)
add_friend_intersections (t1ign2)
equal (tadd(t11))
equal (nadd (nln2))
greater_than (n 3)
equal (fldiv(sub(n3)9))
equal (fmin(f11.0))

Replacing only instantiated variables and not constants is very important. It
allows to create better rules. In the example rule, it is very important to have the
variable n in the condition greater_than (n 3), but it is aso very important that 3
stays as a constant.

This generalized explanation gives a new strategic rule. This strategic rule is
very general and can be applied in many more boards than the example board on
which it was learned.

8 COMPILATION

8.1 Reordering premises

A good ordering of conditions can provide big speedups in production systems
[Ishida 1988]. To reorder conditions in our learned rules, we use a very simple and
efficient algorithm. It is based on the estimated number of following nodes the
firing of a condition will create in the semi-unification tree. Here are two metarules
used to reorder conditions of the learned rules:

Branching (r connect (vvlv2v3) 15):- Rule(r)
Condition (r Connect (vvlv2v3))
Not_instantiated (V)
Not_instantiated (v1)
Ingtantiated (v2)
Not_instantiated (v3)

Branching (r add_friend_intersections (v v1v2v3) 250) :-
Rule(r)
Condition (r add_friend_intersections (v v1v2v3))
Not_instantiated (v)
Not_instantiated (v1)
Not_instantiated (v2)
Not_instantiated (v3)

A metarule evaluates the branching factor of a condition based on the
estimated mean number of facts corresponding to the condition in the working
memory. Metarules are fired each time the system has to give a branching
estimation for all the conditions left to be ordered. When reordering a rule
containing N conditions, the metarule will be fired N times: the first time to choose
the condition to put at first in the rule, and at time number | to choose the condition
to put in the I™ place. The first condition Rule (r) instanciates in the variabler all
the rules of the set of learned rules to reorder. The second condition, Condition (r
Connect (v v1v2v3)), inganciates the metavariables v, v1, v2 and v3 on all the
rules which contain the condition Connect (v v1 v2 v3). The third condition
Not_instantiated (v), verifies if the variable contained in v has not aready been
instanciated in the previous conditions of the rule r. The instanciations of the
variables contained in v1 and v3 are a potential cause of branching. In conclusion,
the metarul e estimates the branching factor to be 1.5.

The branching factors of all the reordering conditions are compared and the
condition chosen is the one with the lowest branching factor. The agorithm is very
efficient, it orders rules better than humans do and it runs in less than one minute
even for rules containing more than 200 conditions.

The two following rules gives an example of the difference in the number of
instanciations and tests between a bad ordered and a well ordered rule. Each
condition is followed by the number of instanciations it has required. For big rules
(some of our learned rules for the game of Go contain more than 200 conditions),
the ordering of conditions can lead to 14.000 times less instanciations and tests
than for non ordered rules [Cazenave 1996a]. In our example, the bad ordered rule
has a cost (13570) 68 times higher than the cost (200) of rule ordered by the system
using the metarules of compilation.

Degree of life(tgf):- Color(glc) 10
add_friend_intersections (t1ign) 2500
Number_of friend_intersections(tlgnl) 2500
Number_of friend intersections(t1gln2) 2500

Color (glc) 1500
equal (tadd(t11)) 1500
equal (nadd (nladd (nn2))) 1500
greater_than (n 3) 1500
Connect (t1iggl) 20
equal (fldiv(sub(n3)9)) 20

equal (f min (f11.0)) 20

Degree of life(tgf):- Connect (t1iggl) 20

add_friend_intersections (t1ign) 20
Number_of friend_intersections(tlgnl) 20
Number_of _friend_intersections (t1gln2) 20
Move (ic) Color (gc) Calor(glc) 20
equal (tadd(t11)) 20
equal (nadd (nladd(nn2))) 20
greater_than (n 3) 20
equal (fldiv(sub(n3)9)) 20
equal (fmin(f11.0)) 20

8.2 Orderingrules.

The system always chooses the rule which concludes on the highest degree of
achievement. Therefore, we can order the firing of the rules so as to stop firing
rules as soon as a concluson has been deduced. The system begins with rules
concluding on the highest degree of achievement of the goal, and decrease until the
rule concluding on the lowest one.

9 APPLICATION TO THE GAME OF GO

This section describes the application of the Srategic learning system to the game
of Go. It explains why it is the most complex game. It briefly describes how are
made actual Go program and stresses the interest of the game of Go for machine
learning. The architecture of the Go playing system using fuzzy definitions of its
goalsisgiven.

9.1 Complexity of Go

Go was devel oped threeto four mill ennia ago in Ching; it is the oldest and one of
the most popular board game in the world. Like diess it is a determinigtic, perfed
information, zero-sum game of strategy between two players. The board includes
19 vertical lines and 19 horizontal lines which give 361 intersections. At the
beginning the board is empty. Each player (Black or White) adds in turn one stone
on an empty intersedion. Two adjacent stones of the same wlor are connected and
they are part of the same string. Empty adjacent intersedions of a string are the
liberties of the string. When a move fill s the last liberty of a string, this string is
removed from the board. Repetitions of positions are forbidden. According to the
posshility of being captured or not, the strings may be dead or alive. A player
controls an intersedion either when he has an alive stone on it, or when the
intersedion is empty but adjacent to ali ve stones. The aim of the gameisto control
more intersedions than the opponent. The game ends when bath players pass

@ game-tree complexity
O State-spacecomplexity

°
320
|Oglo of B o
complexity 160 ° o
i o o
80
i o ° °
wl® ® o o
° ° p
o . o o o
20 o
10 Lot o 1 1 1 1 1 1 1 1 1 1 |
nine awari checkers qub Chinese go-moku go
men's conned chess
morris four othello draughts chess renju

Fig 8 - Relative complexities of the games of the Olympic list [Allis 1994]

In spite of the amplicity of itsrules, playing the game of Go is a very complex
task. [Robson 1983 proved that Go generalized to NxN boards is exponential in
time. More cncretely, [Allis 1994 defines the whole game tree complexity A.
Considering the average length of actual games L and average branching factor B,

wehave A = BL. The state-space complexity of a game is defined as the number of
legal game positions reachable from theinitia position of the game. In Go, L=150
and B=250 hence the game tree omplexity A=10*®. Go state space mmplexity,
bounded by 3*'=10'", is far larger than that of any other perfed-information game
of the Olympic list. Fig 8 resumes the information on the estimated complexities
for the perfed information games of the Olympic list. A spedficity of Go is that
the end of a game is dedded by mutual agreement, there is no rule defining the end
of the game, knowing the game has ended requires expert knowledge. Moreover, a
position is very difficult to judge, on the @ntrary of chesswhere a good heuristic

for evaluating a position is the material balance. This makes Go the most complex
perfect information game.

The best Go playing program in the world is Handtalk. Itslevel may be the one
of a low-ranked Go club player, about 8 or 10 kyu. A complete novice is about 30
kyu, a beginner quickly reaches 20 kyu, a strong player is 1 kyu and then 1 dan
until 9 dan for the strongest players in the world.

9.2 Methods for programming Go

Asitisimpossible to search the entire tree for the game of Go, the best Go playing
programs rely on a knowledge intensive approach. They are generally divided in
two modules:

- atactical module that develops narrow and deep search trees. Each tree is

related to the achievement of a subgoal of the game of Go.

- astrategic module which chooses the move to play according to the results of

the tactical module.

A Go expert uses a great number of rules. Go programmers usualy try to enter
by hand these rulesin a Go program. Cresating this large number of rulesrequiresa
high level of expertise, a lot of time and a long process of trial and errors.
Moreover, even the people who are expert in Go and in programming find it
difficult to design these rules. This phenomenon can be explained by the high level
of specialization of these rules: once the expert has acquired them, they become
unconscious and it is hard and painful for the expert to explain why he has chosen
to consider a move rather than another one. Moreover, even when the work of
extracting some rules has been done, it results in thousands of specific expert rules.
Thus, it is difficult to describe them in a synthetic way.

9.3 Computer Go and Machine L ear ning can benefit from each other

The difficulty of encoding Go knowledge is the consequence of a well known
difficulty of expert system development: the knowledge engineering bottleneck.
The goal of machine learning is to avoid this bottleneck by replacing the
knowledge extraction process with an automated construction of knowledge based
on examples of problem solving. Machine learning techniques enable Go
programmers to get rid of the painful expert knowledge acquisition. Thus,
computer Go is an ideal domain to test the efficiency of the various machine
learning techniques.

9.4 Using the learned rulesin a Go program

Tactical ;
Board AND/OR Strategic
Tree Search (;;Te; Groups |~ Rlles _'
us

Fig 9 - Architectur e of the Go playing program

A4

v

The tactical part of the Go playing program develops AND/OR tree searches to
calculate the states of tactical games. Each tactical game corresponds to a simple
crisp subgoal of the game of Go. The tactical games status are used to create the

groups and to fill the predicates used by the strategic module. Our Go program
develops approximately 1000 proof tree searches on a position. These proof trees
contains between 2 and 600 nodes. Then the program fires the learned strategic
fuzzy rules that give it the degree of life of each group and its evolution after each
interesting move. Thisinformation is used to choose the best move. The best move
is chosen by evaluating the difference of the board value after and before each
move. The best move is the move that has the highest difference.

To evaluate the value of the board, the system hasto evaluate the degree of life
and the importance of each group. Theimportance of the example groups are given
in Table 3. Theimportance of a group is the evaluation of the difference of points
at the end of the game between the life of the group and its death. It is calculated
using the following rule:

Importance(gn) :- Number_of stone(gnl)
Number_of friend_intersections(gn2)
Number_of shared friend_intersections (gn3)
equal (nadd (add (add(n1nl)n2)n3))

Groups 1 2 3 4
Importance of the group 24 18| 32 | 31

When the importances and the degrees of life of the groups have been
computed, the system can evaluate a Go board:

Evaluation = 3 (Degreg * Importance) - > (Degreg * Importance)
I]
with i O Friends Groups and j O Opponent Groups.

In the example of Fig 2, if black is the friend color, the evaluation of the
position gives:

Evaluation=0.5* 23+0.44* 32-1.0* 80-1.0*31=-85.4

This evaluation means that black is probably
going to lose the game by 43 points. This anaysis @)_ _(2\
is compatible with the analysis of Go expert -
28
2

o
players. This evaluation function has been tested -2)
on numerous Go boards and it gives a good 2)
approximation of the evaluation of a position.

Nsg (7))
The two moves we are examining in the board > _@/

of Fig 10 are the black movesin i28 and i59. Table
4 gives the outcomes of the black move in i28 and

Table 5 gives the outcomes of the black move in 19 10 - The two best moves
i59. found by the system

/

Attributes\Groups 1 12 |3 |4
Number of won life bases +1 (0 |0 (O
Number of unsettled life bases -1 {0 |0 (O
Number of won eyes +1 (0 |0 (O
Number of unsettled eyes -1 {0 |0 (O
Number of friend intersections 0O (0 |0 (O
Number of connectionsto living friends 0O ([0 |0 (O
Table4
Attributes\Groups 1 12 |3 |4
Number of won life bases 0O (0 |0 (O
Number of unsettled life bases 0O (0 |0 (O
Number of won eyes 0O (0 |0 (O
Number of unsettled eyes 0O (0 |+1 {0
Number of friend intersections 0O (4|0 (1
Number of connectionsto living friends 0O [0 |0 [1

Table5
If the board is evaluated after the two black moves, thereis a variation of +12
points for the black move in i28 and avariation of +11 points for the black move in
i59. The system will choose the black move in i28.

9.5 Resultsin international competition

Our learning system has been trained using one hundred beginners problems. It has
learned 1000 genera rules on these problems. The resulting Go program plays a
move in 10 seconds on a Pentium 133 MHz, it is one of the fastest programs. It has
beaten the best Japanese program in the 1996 FOST cup (the 1997 FOST cup will
be held during 1JCAI97). It is in the group of programs following the best four
commercial programs. Moreover, it is the best symbolic learning Go program.

10 APPLICATION TO THE MANAGEMENT OF A FIRM
Thislearning method has been applied to the learning of the management of a firm
[Cazenave 1996b], using the formal analysis of
afirm given in [Alia 1992]. This mode has four
hierarchical levels represented in Fig 11. Each o o
leve is related to a goal. My system learns to I t

Physical level 7

achieve agoal for each level. Valorized levd

On the physical levd, it learnsto buy and to
produce according to the expected sales. | give Monetary level
below some rules of the domain theory of the
Physica level (MP stands for Manufactured
Products). The system learns to set the value of
the variables n and nl1 in the predicates
Quantity Products Bought (t n) and
Quantity Work (tnl).

Financial levd
Fig 11 - A simple hierarchical
model of the goals used to
manage a firm

Stock MP_Before Sale (t1n5) :- Stock MP_After_Sale(tn)

Stock Products(tnl)

Quantity Products Bought (tn2)
equal (n3sum (nln2))
Quantity Work (tn4)
greater_than (n3n4)

equal (n5sum ([nn3n4])
equal (tlsum(tl))

Stock MP_After_Sale(tn2):- Stock MP_Before Sale(tn)
Quantity Sold (tnl)
greater_than (nnl)
equal (n2sub(nnl))

On the valorized levd, it learns to calculate the price the product should be
sold. The system learnsto set the value of p in the predicate Sell_Price (tp).

On the monetary level, it learns
how to have a positive cash. Thisis a
crisp goal. 05

On the financia levd, it learns
how to have a good return on
investment. This is a fuzzy goal. It is
represented by the fuzzy set of Fig 12. Percentage of return on investment
Thisisthelevel whichisthe closest in Fig 12 - A fuzzy set describing the goal
spirit to the strategic level of the Go good return on investment.

program.

1

-5 0 5 10 15 20

11 CoNCLUSION

| have described a method to automatically create strategic fuzzy rules in the game
of Go and in the management of a firm. This method can be used to bootstrap a
large base of fuzzy rules beginning with asmall set of rules. It creates alarge set of
valid, useful and general rules using only the simple definition of the strategic
goals of the system. The system uses strategic fuzzy rules and plays the game of
Go to an internationa level [Pettersen 1994]. This learning algorithm can be
applied to other domains than the game of Go. An example of its application to the
learning of the management of a firm has been given. It is adapted to very complex
domains where the important goals are better represented usng gradud
knowledge. In domains where it is impossible to compute directly if a goal is
achievable because of the combinatorial explosion of the search.

References
[Alia 1992] - C. Alia. Conception et réalisation d'un modéle didactique

d’ enseignement de la gestion en milieu professonnel. Ph.D. Thesis, Montpellier 11
Universty, 1992,

[Allis1994] - L. V. Allis Searching for Solutions in Games and Artificial
Intelligence, Ph.D. Thesis, Vrije Universitat Amsterdam, Maastricht, September
1994

[Cazenave 1996 T. Cazenave, Automatic Ordering of Predicates by Metarules.
Procealings of the 5th International Workshop on Metareasonning and
Metaprogramming in Logic, Bonn, 199.

[Cazenave 19960 T. Cazenave, Learning to Manage a Firm. International
Conferenceon Industrial Engineeiing Applications and Practice, Houston, 19%.

[Cazenave 1996&] - T. Caznave. Systéme d'Apprentissage par Auto-Observation.
Application au Jeu de Go. Ph.D. Thesis, Université Pierre et Marie Curie, Paris 6,
1996

[Cheng 1995] - J. Cheng. Management of Speedup Mechansms in Learning
Architectures. Ph. D. Thesis, Carnegie Mdlon University, Pittsburgh, January
1995

[Hill 1994] - P. M. Hill, J. W. Lloyd. The Godel Programning Language. MIT
Press Cambridge, Mass, 1994.

[Ishida 1988] - T. Ishida. Optimizng Rules in Production System Programs.
AAAI-88, pp. 699-704, 1983.

[Junghanns 199%] - A. Junghanns. Search with Fuzzy Numbers. 4th |EEE
International Conference on Fuzzy Systems, Y okohama, Japan, 1995.

[Laird 1984 - J. Laird, P. Rosenbloom, A. Newdl. Chunking in SOAR : An
Anatomy of a General Learning Mechanism. Machine Leaning 1(1), 1986.

[Minton 1988] - S. Minton. Learning Search Control Knowledge - An Explanation
Based Approach. Kluwer Academic, Boston, 1988.

[Pettersen 1994)] - E. Pettersen E. The Computer Go Ladder. World Wide Web
page: http://cgl.ucsf.edu/go/ladder.html, 1994.

[Pitrat 199Q - J. Fitrat. Métaconnadssances. Hermes, France 1990.

[Robson 1983 - J. M. Rabson. The Complexity of Go - Procealings IFIP - pp. 413-
417-1983.

