
A paraître dans 'Logic Programming and Soft Computing', li vre édité chez Research Studies Press (John Wiley & Sons).

Learning with Fuzzy Definitions of
Goals

Tristan Cazenave

LIP6
Université Pierre et Marie Curie

4, place Jussieu
75252 PARIS CEDEX 05

email: Tristan.Cazenave@laforia.ibp.fr

Abstract
This paper explains a method to learn from fuzzy definitions of goals. This
method has been applied to learn strategic rules in the Game of Go and
decision rules for the management of a firm. The learning algorithm uses a
representation of knowledge mainly based on the predicate logic. The goal
of this paper is to extend this method of learning to systems using fuzzy
logic. It is not useful to have gradual knowledge in order to learn tactical
knowledge, but it becomes necessary when learning strategic knowledge.
Strategic knowledge is knowledge about long term and global goals, it is
fuzzy by nature. I give a method to learn using explanations of how the
achievement of a gradual goal has been influenced by an action. This
method is supported by an example of strategic learning in the game of Go.
I show how this method can be applied in complex domains.

1 INTRODUCTION
Logic Programming provides a nice and convenient way to represent knowledge.
An important goal of Logic Programming is declarativity, it involves that a logic
program states what is to be computed, but not necessarily how it is to be
computed. In the terminology of Kowalski's equation algorithm = logic + control,
it involves stating the logic of an algorithm, but not necessaril y the control. Giving
only the logic of an algorithm is very convenient and enables to give easil y a lot of
knowledge to a program, however it is very inefficient and often leads to a
combinatorial explosion in the application of the algorithm. Introspect
[Cazenave 1996c] is a system that is designed to observe its own problem solving
activity, to detect its own ineff iciencies and to create automatically control rules to
avoid them. Informally, it creates the control of an algorithm given the logic and
some running of the algorithm on examples. This research is related to learning
systems li ke Soar [Laird 1986], Prodigy [Minton 1989] or Theo [Cheng 1995]
which learn to achieve their goals faster using some examples of problem solving,

it is also related to declarative logic programming systems li ke Gödel [Hil l 1994]
or systems based on metaknowledge li ke Maciste [Pitrat 1990].

Many learning systems have been applied to crisp goals, the goals of the
system are defined using a crisp definition: either the goal is achieved or not. This
article extends the learning method to goals defined by a fuzzy measure of
achievement.

A fuzzy definition of goals is necessary in complex domains where it is
impossible to forecast precisely, in all cases, if a goal can be achieved. This is
particularly true for the strategy in the game of Go. It is intractable to know the
status of a group using a crisp definition. So we need to fuzzify the status of a
group. Introspect is a system which learns to improve its problem solving abil ities
by observing its own problem solving activities. It learns by explaining to itself
how it has deduced interesting facts about its goals [Cazenave 1996c]. It creates
new rules that enable itself to deduce how to achieve its goals faster. Introspect is a
general learning and problem solving system based on an extension of predicate
logic, its most successful application is the learning of rules to achieve goals in the
game of Go. Representing gradual knowledge is not necessary from a tactical point
of view, but it becomes necessary on a strategic point of view. Fuzzy logic has
already been applied to search, and especially to Chess [Junghanns 1995], but it
has been used to control search. My purpose is rather to automatically create fuzzy
knowledge bases of rules.

In a first part, I show why a fuzzy knowledge representation of goals is
adapted to represent the achievement of long term goals in complex domains, and
especiall y to represent the strategic knowledge of Go players. In a second part, I
explain how this fuzzy knowledge can be used by a self fuzzy learning system to
develop itself from a small set of initial rules. The following parts detail the
different steps of the learning algorithm when applied to gradual goals. I finish
with the description of the applications of my system to the game of Go and to the
management of a firm.

2 FUZZY DEFINI TION OF GOALS

2.1 A simple example
The goal of my system is to forecast efficiently in the long term the consequences
of its actions on the achievement of its goals. In complex domains it is intractable
to calculate the long term consequences of the actions. So we need to express the
intractable goal in terms of
more tractable goals. I wil l
ill ustrate this using a simple
example: suppose that the
system is connected to a
robot arm in the cube world.
The goal of the system is to
build a high tower of red
cubes. It only has some rules
that tell i t the direct

1

0
1 2

Number of empiled red cubes

3 7654 1098 11 12

0.5

0

High
tower
of red
cubes

Fig 1 - A fuzzy set representing the gradual
achievement of the goal 'High tower of red
cubes'

consequences of its action. It is tractable for the system to solve the problem of
taking a red cube in its arm, but it is intractable to directly find all the moves that
will enable it to build a high tower of red cubes. Therefore, the system will be
given a fuzzy definition of a high tower of red cubes, and will achieve its goals by
putting the red cubes one by one, achieving gradually the overall goal, by breaking
it into subgoals.

This fuzzy definition of a goal is directly expressed in a logic programming
language similar to Prolog. This is a typed language which has meta facilities and
which enables the use of integer and real numbers. In this article, variables are
represented by a single letter or by a letter followed by a number. It has built-in
functions that operate on integer and real numbers, such as add, sub, div, mult,
equal, greater_than. The fuzzy definition of a goal is directly written in this
language. The Fig 1 is represented with the following rule:

High_tower_of_red_cubes (n f) :-Number_of_empiled_red_cubes (n h)
equal (f1 div (h 12))
equal (f min (f1 1.0)).

In this rule, n is an integer which represents the number of actions required to
reach the state described. The fuzzy number associated to the achievement of the
goal is f, it is between 0.0 and 1.0.

2.2 Strategy in the game of Go
Strategic knowledge in games are about long term goals. In games such as Chess
and Go, the high number of possible moves makes it impossible to forecast in the
long term the consequences of the moves played. A solution to this problem is to
have a gradual achievement of long term goals. It enables to know if a move makes
the goal easier or harder to achieve.

This is particularly true for the strategy in the game of Go. The ultimate goal
of a player is to make live the more stone on the board. However, in the middle
game, most of the groups of stones are in an uncertain state, and the evolution of
this state cannot be precisely foreseen. It is very
useful in such a case to have a fuzzy evaluation of
their states and of the evolution of this state when
playing different moves.

Definition 1: A group of stones is a set of
stones of the same color which cannot be
disconnected.

Stones of the same group have the same
number in Fig 2.

Definition 2: A friend intersections of a group
is an empty intersection that can be connected to
the group whatever the opponent plays, moreover,
this empty intersection must not be connectable to a
living opponent group.

2

4

3

2

2222

2

222

1

11

1

1

3

3

Fig 2 - A Go board with
groups marked with the
same numbers

In Fig 3, the white friend intersections are
filled with a small white point. The black friend
intersections are filled with a small black point.
The intersections connectable both to a white
and a black group are filled with a small gray
point. Each group owns a set of friend
intersections of its own color.

The number of friend intersections of a
group is a very good heuristic to approximate the
degree of life of a group. For example, the group
marked with 2 in Fig 2 has more than twelve
friend intersections, it will therefore have no
problems to live. Whereas the group marked
with 3 in Fig 2 has only 7 friend intersections, it
is not completely alive and may have some problems. Its degree of life is around
0.5. Two rules define the degree of life of a group given its number of friend
intersections:

Degree_of_life (n g f) :- Number_of_friend_intersections (n g h)
greater_than (h 3)
equal (f1 div (sub (h 3) 9))
equal (f min (f1 1.0))

Degree_of_life (n g f) :- Number_of_friend_intersections (n g h)
greater_than (4 h)
equal (f 0.0).

After these rules have been fired, one rule chooses the greatest of all the
degrees of life:

Degree_of_life (n g f) retract (Degree_of_life (n g f2)) :-
Degree_of_life (n g f)
Degree_of_life (n g f2)
greater_than (f f2).

The fuzzy degree of life is given by the real number f, the group is represented
by the variable g, and the integer n is the number of moves to play to achieve this
degree of life.

The Fig 4 gives the graphical
representation of the fuzzy set defined by
the rules above.

Note that the system uses a forward
chaining algorithm, and that when we set
the value of the degree of life, the system
checks if this degree is greater than the
previously established degree for the same

Fig 3 - Go board with empty
friend intersections marked

1

0 1 2

Number of friend intersections

43 1098765 1211

Fig 4 - The fuzzy set defining the
degree of life, given the number
of friend intersections

group. This is due to the fact that there may be many rules that give a conclusion
on the degree of life of a group. The convention is to create fuzzy representations
of the achievement of a goal that never overestimate the degree of achievement.
Thus, if according to one criterion, the goal is poorly achieved, but that according
to another criterion the goal is almost achieved, the system will conclude that the
goal is almost achieved. This is compatible with the disjunctive normal form of
logic programs. This can be viewed as taking the max operator as the t-conorm
used to make the fuzzy union between two disjunctive rules concluding on the
same predicate.

There are many attributes for a group. Table 1 gives a list of the predicates
used in my system to describe a
group.

Each of these attributes
contributes to the final goal of the
game which is to make the group
live. These contributions are less
or more graduals. They are
represented in Fig 4, 5 and 6. The
vertical axis always represents the
degree of life of the group,
between 0 and 1.

The system also uses crisp definitions of the
degree of life. The crisp value is always
preferred to the fuzzy value, but the most
interesting strategic rules are the rules that use a
fuzzy definition. The Fig 5 represents the most
simple of the crisp definition of the achievement
of the goal.

The Fig 6 give some examples of some
simple fuzzy definitions of the goal
"Degree_of_life", other definitions that combine
the different predicates are also used in the
system. But only the simple and easily
understandable rules are presented here.

Number_of_won_life_bases
Number_of_unsettled_life_bases
Number_of_won_eyes
Number_of_unsettled_eyes
Number_of_friend_intersections
Number_of_stones
Number_of_connections_to_living_friends

Table 1 - List of predicates used to
measure the degree of life of a group

1

0 1 2

Number of won life bases

Fig 5 - Life can be given a
crisp definition. But this
definition cannot always be
applied. That is why we need
fuzzy rules.

1

0 1 2

Number of unsettled life bases

3

1

0 1 2

Number of won eyes

3

1

0 1 2

Number of connections to living friends

3

1

0 1 2

Number of unsettled eyes

3 54 6

Fig 6 - Some simple fuzzy sets defining the gradual achievement of the goal
Degree_of_life.

Table 2 gives an evaluation of the attributes for the four groups of Fig 2.

Attributes\Groups 1 2 3 4
Number of won life bases
Number of unsettled life bases
Number of won eyes
Number of unsettled eyes
Number of friend intersections
Number of stones
Number of connections to living friends

0
1
1
1
3
5
0

0
0
0
0

26
7
0

0
0
0
0
7
3
0

0
0
0
0

11
1
2

Table 2
Table 3 gives the degrees of life corresponding to each attribute for each group

and also gives the final degree of life for the groups. This degrees of life were
calculated using only the fuzzy definition of achievement of the goal.

Attributes\Groups 1 2 3 4
Number of won life bases
Number of unsettled life bases
Number of won eyes
Number of unsettled eyes
Number of friend intersections
Number of connections to living friends

0
0.5
0.33
0.16
0
0

0
0
0
0
1
0

0
0
0
0
0.44
0

0
0
0
0
0.89
1

Degree of live of the group 0.5 1 0.44 1
Table 3

The learning system will use the simple definition of a goal to learn to forecast
the consequences of its moves. It will create more complex rules that will conclude
on more long term results than the rules defining the current achievement of the
goal.

3 OVERVIEW OF THE LEARNING ALGORITHM
The learning algorithm is composed of six steps. The first step consists in solving a
problem using a declarative logic program. After this problem solving episode, the
learning system explores its own problem solving performances so as to find
possible inefficiencies. This second phase is called introspection, it selects a goal
which have been inefficiently deduced by the logic program. The third phase is the
explanation of how this goal has been deduced, it finds the reasons why a goal can
be deduced. The
explanation results
in a rule to deduce
directly the goal,
this rule contains
only constants. So
as to learn general
rules, the next
phase is generalization which consists in replacing some appropriates constants by

Problem
Solving

GeneralizationCompilationLogic rules

Problems Introspection Explanation

Fig 7 - Overview of the learning system

variables. The result of generalization is a rule in predicate logic, this rule may
have a bad ordering of conditions, that is why it is compiled by a set of metarules
which reorder the conditions so as to match the rule much faster [Cazenave 1996a].
The rules created by the system are used to learn other rules. The systems
bootstraps itself using a small set of initial rules.

4 DEDUCTION
The goal of the deduction part of the learning system is to deduce the
degree_of_life of a group after a move. At the beginning of the deduction, the
system only has facts that describe the state of the groups at time t and a move at
time t. It uses its rules about the consequences of a move to deduce the state of the
groups at time t+1 after the move. For example, the rule:

Number_of_friend_intersections (t g n) :-
Number_of_friend_intersections (t1 g n1)
Move (i c)
Color (g c)
add_friend_intersections (t1 i g n2)
equal (t add (t1 1))
equal (n add (n1 n2)).

is instanciated by the deduction process into the rule:

Number_of_friend_intersections (1 group1 10) :-
Number_of_friend_intersections (0 group1 3)
Move (intersection58 Black)
Color (group1 Black)
add_friend_intersections (0 intersection58 group1 7)
equal (1 add (0 1))
equal (10 add (3 7)).

This rules gives the Number_of_friend_intersections after the move at time 1,
using the Number_of_friend_intersections before the move at time 0. After
deducing all the predicates describing the state of the board after the move, the
system can deduce the state of achivement of its goals after the move. The rule
giving the Degree_of_life using the Number_of_friend_intersections is fired and
its instanciation results in the following instanciated rule:

Degree_of_life (1 group1 0.78) :-
Number_of_friend_intersections (1 group1 10)
greater_than (10 3)
equal (0.78 div (sub (10 3) 9))
equal (0.78 min (0.78 1.0))

According to this rule, the degree of life of the group1 after the move (at time 1) is
0.78. A lot of other rules are used to deduce the state of the board and the degrees
of life after the move, but we will mainly use this simple example to explain the
learning process.

5 INTROSPECTION
The introspection module is dedicated to find inefficiencies of the deduction
module. Introspection decides what is interesting to learn so as to repair observed
inefficiencies.

To select interesting facts, the system compares the degree of achievement of
the goal to learn before the move and after the move. If the degree of achievement
after the move is greater than the one previously anticipated by the rules of the
current knowledge base, then the fact describing the greater degree of achievement
is interesting to explain so as to create a new rule which will enable to deduce it
directly, avoiding a possibly long deduction process.

Explain (Degree_of_life (n g f)) :-
Anticipated_degree_of_life (n g f1)
Degree_of_life (n g f)
greater_than (f f1)

This (meta)rule tells the system to explain a deduced degree of life, if it is
greater than the previously anticipated degree of life.

6 EXPLANATION
The explanation consists in giving the reasons why a goal was deduced. The
explanation module goes back into the problem solving trace, replacing an
instanciated condition in an instanciated rule, by the conditions of the instanciated
rule that has been used to deduce the replaced condition.

Degree_of_life (1 group1 0.78) :-
Number_of_friend_intersections (0 group1 3)
Move (intersection58 Black)
Color (group1 Black)
add_friend_intersections (0 intersection58 group1 7)
equal (1 add (0 1))
equal (10 add (3 7)).
greater_than (10 3)
equal (0.78 div (sub (10 3) 9))
equal (0.78 min (0.78 1.0))

In our example, the result of the explanation is the rule above. To obtain it, the
module replaces the condition Number_of_friend_intersections (1 group1 10) in
the last rule of section 4, by the conditions of the second rule of section 4.

Usually, the system replaces more than one condition, and conditions in the
replaced rules are themselves replaced by other lists of conditions. Sometimes,

there are many rules that conclude on the same condition. It leads to as many
different explanations, and as many branches in the explanation tree. The
explanation of the deduction of an interesting goal can lead to a lot of explanation
rules.

7 GENERALIZATION
When the explanation is done, we can generalize the resulting rules to allow them
to apply in many more case. The main mechanism of generalization is the
replacement of instanciated variables by constants. The generalized explanation of
our example rule gives:

Degree_of_life (t g f) :- Number_of_friend_intersections (t1 g n1)
Move (i c)
Color (g c)
add_friend_intersections (t1 i g n2)
equal (t add (t1 1))
equal (n add (n1 n2))
greater_than (n 3)
equal (f1 div (sub (n 3) 9))
equal (f min (f1 1.0))

Replacing only instantiated variables and not constants is very important. It
allows to create better rules. In the example rule, it is very important to have the
variable n in the condition greater_than (n 3), but it is also very important that 3
stays as a constant.

This generalized explanation gives a new strategic rule. This strategic rule is
very general and can be applied in many more boards than the example board on
which it was learned.

8 COMPILATION

8.1 Reordering premises
A good ordering of conditions can provide big speedups in production systems
[Ishida 1988]. To reorder conditions in our learned rules, we use a very simple and
efficient algorithm. It is based on the estimated number of following nodes the
firing of a condition will create in the semi-unification tree. Here are two metarules
used to reorder conditions of the learned rules:

Branching (r connect (v v1 v2 v3) 1.5) :- Rule (r)
Condition (r Connect (v v1 v2 v3))
Not_instantiated (v)
Not_instantiated (v1)
Instantiated (v2)
Not_instantiated (v3)

Branching (r add_friend_intersections (v v1 v2 v3) 250) :-
Rule (r)
Condition (r add_friend_intersections (v v1 v2 v3))
Not_instantiated (v)
Not_instantiated (v1)
Not_instantiated (v2)
Not_instantiated (v3)

A metarule evaluates the branching factor of a condition based on the
estimated mean number of facts corresponding to the condition in the working
memory. Metarules are fired each time the system has to give a branching
estimation for all the conditions left to be ordered. When reordering a rule
containing N conditions, the metarule will be fired N times: the first time to choose
the condition to put at first in the rule, and at time number I to choose the condition
to put in the Ith place. The first condition Rule (r) instanciates in the variable r all
the rules of the set of learned rules to reorder. The second condition, Condition (r
Connect (v v1 v2 v3)), instanciates the metavariables v, v1, v2 and v3 on all the
rules which contain the condition Connect (v v1 v2 v3). The third condition
Not_instantiated (v), verifies if the variable contained in v has not already been
instanciated in the previous conditions of the rule r. The instanciations of the
variables contained in v1 and v3 are a potential cause of branching. In conclusion,
the metarule estimates the branching factor to be 1.5.

The branching factors of all the reordering conditions are compared and the
condition chosen is the one with the lowest branching factor. The algorithm is very
efficient, it orders rules better than humans do and it runs in less than one minute
even for rules containing more than 200 conditions.

The two following rules gives an example of the difference in the number of
instanciations and tests between a bad ordered and a well ordered rule. Each
condition is followed by the number of instanciations it has required. For big rules
(some of our learned rules for the game of Go contain more than 200 conditions),
the ordering of conditions can lead to 14.000 times less instanciations and tests
than for non ordered rules [Cazenave 1996a]. In our example, the bad ordered rule
has a cost (13570) 68 times higher than the cost (200) of rule ordered by the system
using the metarules of compilation.
Degree_of_life (t g f) :- Color (g1 c) 10

add_friend_intersections (t1 i g n) 2500
Number_of_friend_intersections (t1 g n1) 2500
Number_of_friend_intersections (t1 g1 n2) 2500
Color (g1 c) 1500
equal (t add (t1 1)) 1500
equal (n add (n1 add (n n2))) 1500
greater_than (n 3) 1500
Connect (t1 i g g1) 20
equal (f1 div (sub (n 3) 9)) 20
equal (f min (f1 1.0)) 20

Degree_of_life (t g f) :- Connect (t1 i g g1) 20
add_friend_intersections (t1 i g n) 20
Number_of_friend_intersections (t1 g n1) 20
Number_of_friend_intersections (t1 g1 n2) 20
Move (i c) Color (g c) Color (g1 c) 20
equal (t add (t1 1)) 20
equal (n add (n1 add (n n2))) 20
greater_than (n 3) 20
equal (f1 div (sub (n 3) 9)) 20
equal (f min (f1 1.0)) 20

8.2 Ordering rules.
The system always chooses the rule which concludes on the highest degree of
achievement. Therefore, we can order the firing of the rules so as to stop firing
rules as soon as a conclusion has been deduced. The system begins with rules
concluding on the highest degree of achievement of the goal, and decrease until the
rule concluding on the lowest one.

9 APPLICATION TO THE GAME OF GO
This section describes the application of the strategic learning system to the game
of Go. It explains why it is the most complex game. It briefly describes how are
made actual Go program and stresses the interest of the game of Go for machine
learning. The architecture of the Go playing system using fuzzy definitions of its
goals is given.

9.1 Complexity of Go
Go was developed three to four mill ennia ago in China; it is the oldest and one of
the most popular board game in the world. Like chess, it is a deterministic, perfect
information, zero-sum game of strategy between two players. The board includes
19 vertical lines and 19 horizontal lines which give 361 intersections. At the
beginning the board is empty. Each player (Black or White) adds in turn one stone
on an empty intersection. Two adjacent stones of the same color are connected and
they are part of the same string. Empty adjacent intersections of a string are the
liberties of the string. When a move fill s the last liberty of a string, this string is
removed from the board. Repetitions of positions are forbidden. According to the
possibili ty of being captured or not, the strings may be dead or alive. A player
controls an intersection either when he has an alive stone on it, or when the
intersection is empty but adjacent to ali ve stones. The aim of the game is to control
more intersections than the opponent. The game ends when both players pass.

In spite of the simplicity of its rules, playing the game of Go is a very complex
task. [Robson 1983] proved that Go generalized to NxN boards is exponential in
time. More concretely, [Allis 1994] defines the whole game tree complexity A.
Considering the average length of actual games L and average branching factor B,

we have A = BL. The state-space complexity of a game is defined as the number of
legal game positions reachable from the initial position of the game. In Go, L≈150
and B≈250 hence the game tree complexity A≈10360. Go state space complexity,
bounded by 3361≈10172, is far larger than that of any other perfect-information game
of the Olympic li st. Fig 8 resumes the information on the estimated complexities
for the perfect information games of the Olympic li st. A specificity of Go is that
the end of a game is decided by mutual agreement, there is no rule defining the end
of the game, knowing the game has ended requires expert knowledge. Moreover, a
position is very diff icult to judge, on the contrary of chess where a good heuristic

nine
men's
morris

awari

connect
-four

checkers

othello

qubi
c

chessdraughts

Chinese
chess

renju

go-moku go

320

160

80

40

20

10

log10 of
complexity

game-tree complexity

state-space complexity

Fig 8 - Relative complexities of the games of the Olympic list [Allis 1994]

for evaluating a position is the material balance. This makes Go the most complex
perfect information game.

The best Go playing program in the world is Handtalk. Its level may be the one
of a low-ranked Go club player, about 8 or 10 kyu. A complete novice is about 30
kyu, a beginner quickly reaches 20 kyu, a strong player is 1 kyu and then 1 dan
until 9 dan for the strongest players in the world.

9.2 Methods for programming Go
As it is impossible to search the entire tree for the game of Go, the best Go playing
programs rely on a knowledge intensive approach. They are generally divided in
two modules:

- a tactical module that develops narrow and deep search trees. Each tree is
related to the achievement of a subgoal of the game of Go.

- a strategic module which chooses the move to play according to the results of
the tactical module.

A Go expert uses a great number of rules. Go programmers usually try to enter
by hand these rules in a Go program. Creating this large number of rules requires a
high level of expertise, a lot of time and a long process of trial and errors.
Moreover, even the people who are expert in Go and in programming find it
difficult to design these rules. This phenomenon can be explained by the high level
of specialization of these rules: once the expert has acquired them, they become
unconscious and it is hard and painful for the expert to explain why he has chosen
to consider a move rather than another one. Moreover, even when the work of
extracting some rules has been done, it results in thousands of specific expert rules.
Thus, it is difficult to describe them in a synthetic way.

9.3 Computer Go and Machine Learning can benefit from each other
The difficulty of encoding Go knowledge is the consequence of a well known
difficulty of expert system development: the knowledge engineering bottleneck.
The goal of machine learning is to avoid this bottleneck by replacing the
knowledge extraction process with an automated construction of knowledge based
on examples of problem solving. Machine learning techniques enable Go
programmers to get rid of the painful expert knowledge acquisition. Thus,
computer Go is an ideal domain to test the efficiency of the various machine
learning techniques.

9.4 Using the learned rules in a Go program

The tactical part of the Go playing program develops AND/OR tree searches to
calculate the states of tactical games. Each tactical game corresponds to a simple
crisp subgoal of the game of Go. The tactical games status are used to create the

GroupsAND/OR
Tree Search Move

Tactical
Games
Status

Strategic
Rules

Board

Fig 9 - Architecture of the Go playing program

groups and to fill the predicates used by the strategic module. Our Go program
develops approximately 1000 proof tree searches on a position. These proof trees
contains between 2 and 600 nodes. Then the program fires the learned strategic
fuzzy rules that give it the degree of life of each group and its evolution after each
interesting move. This information is used to choose the best move. The best move
is chosen by evaluating the difference of the board value after and before each
move. The best move is the move that has the highest difference.

To evaluate the value of the board, the system has to evaluate the degree of life
and the importance of each group. The importance of the example groups are given
in Table 3. The importance of a group is the evaluation of the difference of points
at the end of the game between the life of the group and its death. It is calculated
using the following rule:

Importance (g n) :- Number_of_stone (g n1)
Number_of_friend_intersections (g n2)
Number_of_shared_friend_intersections (g n3)
equal (n add (add (add (n1 n1) n2) n3))

Groups 1 2 3 4
Importance of the group 24 80 32 31

When the importances and the degrees of life of the groups have been
computed, the system can evaluate a Go board:

Evaluation = ∑ (Degreei * Importancei) - ∑ (Degreej * Importancej)
 i j

with i ∈ Friends Groups and j ∈ Opponent Groups.

In the example of Fig 2, if black is the friend color, the evaluation of the
position gives:

Evaluation=0.5*23+0.44*32-1.0*80-1.0*31=-85.4

This evaluation means that black is probably
going to lose the game by 43 points. This analysis
is compatible with the analysis of Go expert
players. This evaluation function has been tested
on numerous Go boards and it gives a good
approximation of the evaluation of a position.

The two moves we are examining in the board
of Fig 10 are the black moves in i28 and i59. Table
4 gives the outcomes of the black move in i28 and
Table 5 gives the outcomes of the black move in
i59.

2

4

3

2

2222

2

222

1

11

1

1

3

3

28

59

Fig 10 - The two best moves
found by the system

Attributes\Groups 1 2 3 4
Number of won life bases
Number of unsettled life bases
Number of won eyes
Number of unsettled eyes
Number of friend intersections
Number of connections to living friends

+1
-1
+1
-1
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

Table 4

Attributes\Groups 1 2 3 4
Number of won life bases
Number of unsettled life bases
Number of won eyes
Number of unsettled eyes
Number of friend intersections
Number of connections to living friends

0
0
0
0
0
0

0
0
0
0
-4
0

0
0
0
+1
0
0

0
0
0
0
-1
-1

Table 5
If the board is evaluated after the two black moves, there is a variation of +12

points for the black move in i28 and a variation of +11 points for the black move in
i59. The system will choose the black move in i28.

9.5 Results in international competition
Our learning system has been trained using one hundred beginners problems. It has
learned 1000 general rules on these problems. The resulting Go program plays a
move in 10 seconds on a Pentium 133 MHz, it is one of the fastest programs. It has
beaten the best Japanese program in the 1996 FOST cup (the 1997 FOST cup will
be held during IJCAI97). It is in the group of programs following the best four
commercial programs. Moreover, it is the best symbolic learning Go program.

10 APPLICATION TO THE MANAGEMENT OF A FIRM
This learning method has been applied to the learning of the management of a firm
[Cazenave 1996b], using the formal analysis of
a firm given in [Alia 1992]. This model has four
hierarchical levels represented in Fig 11. Each
level is related to a goal. My system learns to
achieve a goal for each level.

On the physical level, it learns to buy and to
produce according to the expected sales. I give
below some rules of the domain theory of the
Physical level (MP stands for Manufactured
Products). The system learns to set the value of
the variables n and n1 in the predicates
Quantity_Products_Bought (t n) and
Quantity_Work (t n1).

Stock_MP_Before_Sale (t1 n5) :- Stock_MP_After_Sale (t n)

Physical level

Valorized level

Monetary level

Financial level
Fig 11 - A simple hierarchical
model of the goals used to
manage a firm

Stock_Products (t n1)
 Quantity_Products_Bought (t n2)
 equal (n3 sum (n1 n2))
 Quantity_Work (t n4)
 greater_than (n3 n4)
 equal (n5 sum ([n n3 n4])
 equal (t1 sum (t 1))

Stock_MP_After_Sale (t n2) :- Stock_MP_Before_Sale (t n)
Quantity_Sold (t n1)

 greater_than (n n1)
 equal (n2 sub (n n1))

On the valorized level, it learns to calculate the price the product should be
sold. The system learns to set the value of p in the predicate Sell_Price (t p).

On the monetary level, it learns
how to have a positive cash. This is a
crisp goal.

On the financial level, it learns
how to have a good return on
investment. This is a fuzzy goal. It is
represented by the fuzzy set of Fig 12.
This is the level which is the closest in
spirit to the strategic level of the Go
program.

11 CONCLUSION
I have described a method to automatically create strategic fuzzy rules in the game
of Go and in the management of a firm. This method can be used to bootstrap a
large base of fuzzy rules beginning with a small set of rules. It creates a large set of
valid, useful and general rules using only the simple definition of the strategic
goals of the system. The system uses strategic fuzzy rules and plays the game of
Go to an international level [Pettersen 1994]. This learning algorithm can be
applied to other domains than the game of Go. An example of its application to the
learning of the management of a firm has been given. It is adapted to very complex
domains where the important goals are better represented using gradual
knowledge. In domains where it is impossible to compute directly if a goal is
achievable because of the combinatorial explosion of the search.

References

[Alia 1992] - C. Alia. Conception et réali sation d’un modèle didactique
d’enseignement de la gestion en milieu professionnel. Ph.D. Thesis, Montpellier II
University, 1992.

1

0
-5

Percentage of return on investment

50 1510 20

0.5

-10

Fig 12 - A fuzzy set describing the goal
good return on investment.

[Alli s 1994] - L. V. Alli s. Searching for Solutions in Games and Artificial
Intelligence, Ph.D. Thesis, Vrije Universitat Amsterdam, Maastricht, September
1994.

[Cazenave 1996a] T. Cazenave, Automatic Ordering of Predicates by Metarules.
Proceedings of the 5th International Workshop on Metareasonning and
Metaprogramming in Logic, Bonn, 1996.

[Cazenave 1996b] T. Cazenave, Learning to Manage a Firm. International
Conference on Industrial Engineering Applications and Practice, Houston, 1996.

[Cazenave 1996c] - T. Cazenave. Système d'Apprentissage par Auto-Observation.
Application au Jeu de Go. Ph.D. Thesis, Université Pierre et Marie Curie, Paris 6,
1996.

[Cheng 1995] - J. Cheng. Management of Speedup Mechanisms in Learning
Architectures. Ph. D. Thesis, Carnegie Mellon University, Pittsburgh, January
1995.

[Hill 1994] - P. M. Hil l, J. W. Lloyd. The Gödel Programming Language. MIT
Press, Cambridge, Mass., 1994.

[Ishida 1988] - T. Ishida. Optimizing Rules in Production System Programs.
AAA I-88, pp. 699-704, 1988.

[Junghanns 1995] - A. Junghanns. Search with Fuzzy Numbers. 4th IEEE
International Conference on Fuzzy Systems, Yokohama, Japan, 1995.

[Laird 1986] - J. Laird, P. Rosenbloom, A. Newell . Chunking in SOAR : An
Anatomy of a General Learning Mechanism. Machine Learning 1 (1), 1986.

[Minton 1988] - S. Minton. Learning Search Control Knowledge - An Explanation
Based Approach. Kluwer Academic, Boston, 1988.

[Pettersen 1994] - E. Pettersen E. The Computer Go Ladder. World Wide Web
page: http://cgl.ucsf.edu/go/ladder.html, 1994.

[Pitrat 1990] - J. Pitrat. Métaconnaissances. Hermès, France, 1990.

[Robson 1983] - J. M. Robson. The Complexity of Go - Proceedings IFIP - pp. 413-
417 - 1983.

