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Abstract

I explain a method to learn to achieve goals in games. In very complex games, such as the game of
Go, a search intensive approach is intractable. A knowledge intensive approach is best suited. I
represent knowledge using the combinatorial game theory and first order logic. I give a method to
learn to predict the consequences of some moves. Each rule is learned using a single example, by
explaining the transformations involved by the move. This learning method has been implemented in
Gogol, a Go playing system. It learns to evaluate games representing the achievement of some
interesting goals of the game of Go. This method is presently applied to other games and to decision
making in the management of a firm.
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1 Introduction

When a domain theory exists, a learning method has been developed: Explanation
Based Learning (EBL) [Mitchell 1986] [Dejong 1986]. This learning method is
particularly useful in games as they have a strong domain theory. Many projects
involving EBL and games have been developed to learn plans [Minton 1984]
[Puget 1987] [Pell 1993]. The initial work of J. Pitrat on Chess [Pitrat 1976] has been
a precursor of such approaches to learning in games. Meanwhile, the knowledge
representation of these programs make them learn overly general knowledge. This
obliges them, either to partially verify their assertions, or to use their learned
knowledge as heuristics. This also the case in the work of [Tadepalli 1989] on lazy
EBL: his program learns overgeneral rules and refines them. Unlike these programs,
my approach is to learn only certain rules. In order to achieve this goal, I explicitly
represent uncertainty and separate clearly what is uncertain from what is certain. I



do not want to verify the predictions made by the learned rules. My learning
algorithm does not learn overgeneral rules. It only learns correct rules.

My approach also differs from project as Prodigy [Minton 1988], in which EBL is
used to learn search control knowledge. Our goal is to replace the problem solving
activity by the efficient matching of a large base of rules.

In a first part, I show how I manage to represent clearly uncertainty using an
adapted combinatorial theory of games. This representation allows to regress goals
easily. In a second part, I show the limits of the knowledge representation used in
previous works, and I propose a solution to overcome these limits. In a third part, I
show how to use my algorithm to learn to achieve goals in the game of Go. The
learning algorithm described in this paper can be used in many other domains. It is
presently applied to other games (Chess and Abalone) and to decision making in the
management of a firm.

2 Introducing Uncertainty in Combinatorial Game Theory

Combinatorial Game Theory is a mathematical theory which has been developed by
J. H. Conway [Conway 1976], and adapted to many games by Berlekamp, Conway
and Guy [Berlekamp 1982].

Definition : A combinatorial game x = {G|D} is composed of two sets G and D of
combinatorial games. Every combinatorial game is constructed this way.

A combinatorial game defines a tree of possible positions. Each position can be
assigned two values. The first value will be either Won for Left (WL) or Lost for Left
(LL). The second value will be either Won for Right (WR) or Lost for Right (LR). For
each node, we can therefore have four possibilities :

LL WL

LR
The player who begins loses,

the game is
NULL (0)

The left player always wins,
the game is

POSITIVE (+)

WR
The right player always wins,

the game is
NEGATIVE (-)

The player who begins wins,
the game is
FUZZY (||)

Table I

This theory is very efficient in simple games such as the game of Nim. It has been
applied with success to the endgame of Go [Wolfe 1991]. But this theory requires
the subgames of a same position to be independent, it also requires to be able to
forecast all the possible moves until the end of the game. These assumptions do not
apply in complex games such as Go and Chess. I show in this article that the
introduction and the management of uncertainty in Combinatorial Game Theory
permits to use it in complex games.

In this section, I describe the introduction of uncertainty in Combinatorial Game
Theory. It is necessary in complex games to represent what is unknown because it



is impossible in such games to forecast all the positions, only a small subset of the
positions can be forecasted. Representing uncertainty in Combinatorial Game
Theory permits to extend this theory to complex games, and to represent the partial
deduction a system can make about a position. It also allows to take strategic
decisions on the way to handle what is not predictable in a reasonable time.

Theoretically, a game has only two possible values : Won (G) or Lost (P). However,
in practice it is often very costly and most of the time intractable to find the value of a
game [Allis 1994]. Therefore, we introduce the Unknown (I) value which accounts for
the fact that we do not have enough time to compute the value of a particular game.
Let J = {G,I,P} be the set of all possible states for a game.
The dynamic definition of a game consists in defining the states of the game after
the best friend move and after the best opponent move. If x,y ∈ J : xy defines the
game for which the best state the friend player can achieve if he plays first is x,
whereas the best state the opponent player can achieve if he plays first is y. We
define J1 = {xy / x,y ∈ J} and Jn = {xy / x,y ∈ Jn-1}. Computing an element of the set Jn

is twice the cost of computing an element of the set Jn-1, therefore we limit ourselves
to the elements of J2.
In practice J1 et J2 are sufficient to represent the kind of knowledge used in games,
the most common games used by players are :

- GG represents a Won game.
- GP represents an unsettled game.
- PP represents a lost game.
- PG represents a Zugswang in Chess or a Seki in Go. The first player to

move loses.
- GIII represents a threat for the friend player. After the first move of the

friend player, the game is GI. After the second move of the friend
player, the game is G (Won).

3 A Declarative Knowledge Representation

The declarativity of knowledge presents many aspects. The first one is the explicit
representation of knowledge, it allows the program to manipulate the knowledge it
uses. This aspect is typical of logic programming techniques, as in Prolog programs
or in expert systems. The second constraint that declarativity imposes on knowledge
representation is that the instructions of a program must be given without the order
to execute them. A declarative program is both explicit and given without a defined
order [Pitrat 1990]. This second aspect is very important because it facilitates
explanations and learning. As we will see, it also allows to learn using incomplete
domain theories. I have chosen to represent knowledge using Horn clauses. I use
the metapredicate ‘exist’ which verifies that a fact exists in the working memory, and
the metapredicate ‘append’ which append a fact in the working memory. I do not use
the metapredicates ‘absent’ and ‘remove’. I am explaining this choice in four parts. I
begin, in a first part, with showing the limits of existing representations, in a second
part I expose my solution to overcome these limits. In a third part I give the type of
knowledge needed so as to learn in games, and the last part gives an example of a
representation of a position in the game of Go.



3.1 Limits of existing representations

Figure 1 Figure 2 Figure 3

Figure 1 gives an example of a skewer in a chess position, traditional EBL systems
create the rule of Figure 2 with the conclusion that the Black Queen can be taken.
This rule is a generalization of Figure 1 using an explanation of why the Black
Queen can be taken using a Chess domain theory, it appears in [Minton 1984].
However, as [Puget 1987] noticed, the method used by Minton and more generally
the method given in [Mitchell 1986] can result in an overgeneralization of examples.
Figure 3 gives a position in which the rule in Figure 2 reveals false, it is a too general
rule. This overgeneralization of EBL is due to the use of the metapredicates ‘absent’
in the body of a rule or ‘remove’ in the conclusion of a rule. When such a rule exists
in the domain theory, it may not fire on the learning example but it may fire later on
another similar example on which the learned rule also applies. The rule containing
a ‘remove’ metapredicate in its conclusion may remove one of the necessary
conditions of the learned rule, in this case the learned rule applies but may lead to a
false result. A solution would be to explain why a rule containing a ‘remove’
conclusion removing one of the conditions of the learned rule cannot apply. But
negative explanation in first order logic leads to combinatorial explosion. We should
not use the metapredicate ‘absent’ in the body of a rule for similar reasons : if we
use it, we have to explain why a fact is not present in the working memory. There is
a difference between a fact missing because it has not yet been deduced and a fact
missing because it cannot be deduced. If we use a declarative representation
without order between the firing of the rules, we cannot know whether a fact is
missing because it has not yet been deduced or because it is not deductible. We
have to use predicates which explicitly tell that a fact is not deductible, and we must
not use negation as failure.

3.2 A solution

When not using the metapredicates ‘absent’ and ‘remove’, there is a problem for
representing the change of the world after an action. Some facts are true before a
move and false after. The solution I have chosen is the explicit representation of the
evolution of the facts in time. For each fact which can change, I use a predicate
which gives its value before the move and another which gives its value after the
move. For example, in the game of Go, I have different predicates for the color of an
intersection before and after a move.



Explicitly representing the evolution of facts over time avoids overgeneralization
because it allows to have independent rules in the domain theory. The rules can be
fired in any order, the result will be the same.

The metapredicate ‘absent’ is used, but only in metarules which tell the rules to fire.
It is not used in the body of the rules of the domain theory.

3.3 Which knowledge to represent in this formalism

Knowledge on the topological configuration of the board cannot vary during a game,
the corresponding facts are represented using only one predicate. Table II gives
examples of some rules of the domain theory for the game of Go. The words
beginning by a ‘?’ represent variables. The friend color is represented by a ‘@’, the
enemy color by a ‘O’, and an empty intersection by a ‘+’. The rule
Rule_evaluation_game_1 evaluates the game associated with taking the enemy
stone on intersection ?i2. This game is Won if the friend player plays on the
intersection ?i1 and if all the conditions in the body of the rule are fulfilled. The rule
Rule_legal_move_5 gives sufficient conditions for a friend move on intersection ?i to
be a legal move. The rules Rule_intersection_5 and Rule_block_1 are rules of
transition between the position before the move and the position after the move.

Rule_evaluation_game_1 :
If ( exist ( Color_intersection_after ( ?i O ) )
      exist ( Number_of_liberties_after ( ?i 1 ) )
      exist ( Same_block_after ( ?i ?i1 ) )
      exist ( Neighbour ( ?i1 ?i2 ) )
      exist ( Legal_move_after ( @ ?i2 ) )
    )
Then ( append ( Move_after ( @ ?i2 Take ?i1 GI ) ) )

Rule_legal_move_5 :
If ( exist ( Color_intersection_before ( ?i + ) )
      exist ( Neighbour ( ?i ?i1 ) )
      exist ( Color_intersection_before ( ?i1 + ) )
    )
Then ( append ( Legal_move_before ( @ ?i ) ) )

Rule_intersection_5 :
If ( exist ( Move ( @ ?i ) )
      exist ( Legal_move_before ( @ ?i ) )
      exist ( Neighbour ( ?i ?i1 ) )
      exist ( Color_intersection_before ( ?i1 + ) )
    )
Then ( append ( Color_intersection_after ( ?i @ ) ) )

Rule_block_1 :
If ( exist ( Number_of_liberties_before ( ?i ?n ) )
      greater ( ?n 1 )
      exist ( Same_block_before ( ?i ?i1 ) )
    )
Then ( append ( Same_block_after ( ?i ?i1 ) ) )

Table II

3.4 Representation of a position in the game of Go

To save room, I give in Table III the working memory corresponding to the 5x1
board1 of Figure 4:

Figure 4

                                               

1 Usually, the game of Go is played on 9x9, 13x13 or 19x19 boards.



The friend color is Black, the enemy color is White.

Color ( @ )
Color ( O )
Opposite_colors ( O @ )
Opposite_colors ( @ O )
Neighbour ( i1 i2 )
Number_of_Neighbours ( i1 1 )
Color_intersection_before ( i1 + )
Neighbour ( i2 i1 )
Neighbour ( i2 i3 )
Number_of_Neighbours ( i2 2 )
Color_intersection_before ( i2 + )
Neighbour ( i3 i2 )
Neighbour ( i3 i4 )

Number_of_Neighbours ( i3 2 )
Color_intersection_before ( i3 O )
Number_of_liberties_before ( i3 2 )
Number_of_stones_before ( i3 1 )
Same_block_before ( i3 i3 )
Neighbour ( i4 i3 )
Neighbour ( i4 i5 )
Number_of_Neighbours ( i4 2 )
Color_intersection_before ( i4 + )
Neighbour ( i5 i4 )
Number_of_Neighbours ( i5 1 )
Color_intersection_before ( i5 + )

Table III

4 Learning

 =>
Figure 5

To illustrate the way learning works, I will use the position in Figure 5. The initial
position is the one described in Table III and Black plays a move on intersection i4.
The program deduces the transformations in the working memory due to the Black
move. It selects a fact concluding on the games after the move, explains the
deduction of this fact using only facts existing before the Black move. It regresses
the rule created this way and generalizes it. Learning can be split in four parts :
problem solving and regression, explanation, generalization. I give examples of the
four parts of the learning of a new rule using the left part of Figure 5 which is
logically equivalent to Table III.

4.1 Problem Solving

Problem solving is the deductive step which consists in firing rules until no new fact
can be deduced. The facts deduced during problem solving are the facts created by
the move. Table IV gives the facts deduced using our Go domain theory and the
working memory in Table III.

Legal_move_before ( @ i1 )
Color_intersection_after ( i1 + )
Legal_move_after ( @ i1 )
Legal_move_before ( @ i2 )
Color_intersection_after ( i2 + )
Legal_move_after ( @ i2 )
Color_intersection_after ( i3 O )
Number_of_liberties_after ( i3 1 )
Number_of_stones_after ( i3 1 )
Same_block_after ( i3 i3 )
Move ( @ i4 )

Legal_move_before ( @ i4 )
Color_intersection_after ( i4 @ )
Number_of_liberties_after ( i4 1 )
Number_of_stones_after ( i4 1 )
Same_block_after ( i4 i4 )
Legal_move_before ( @ i1 )
Color_intersection_after ( i5 + )
Legal_move_after ( @ i5 )
Move_after ( @ i2 Take i3 GI )
Move_before ( @ i4 Take i3 GIII )

Table IV



In Table IV, the interesting fact is the fact ‘Move_before ( @ i4 Take i3 GIII )’. It is a
fact that was not deduced before, but that has been deduced after the problem
solving step. This fact has been deduced using a regression rule representing
knowledge about the uncertain combinatorial game theory. The Table V gives some
examples of regression rules.

Rule_regression_1:
If ( exist ( Color ( ?c ) )
      exist ( Move ( ?c ?i2 ) )
      exist ( Move_after ( ?c ?i2 Take ?i1 GI ) )
   )
Then ( append ( Move_before ( ?c ?i2 Take ?i1 GIII ) ) )

Rule_regression_2:
If ( exist ( Color ( ?c ) )
      exist ( Opposite_colors ( ?c ?c1 ) )
      exist ( Move ( ?c ?i2 ) )
      exist ( Color_intersection_before ( ?i1 c1 ) )
      exist ( Color_intersection_after ( ?i1 + ) )
   )
Then ( append ( Move_before ( ?c ?i2 Take ?i1 GI ) ) )

Table V

4.2 Explanation

The explanation module finds the facts related to a game before the move. Its goal
is to create a rule explaining why this fact is present using only facts that are present
before the move and the fact representing the move itself. To do this, it goes back
through the rules fired during problem solving, replacing facts representing the
position after the move by facts representing the position before the move. In our
example, it selects the fact ‘Move_before ( @ i4 Take i3 GIII )’ and finds the
explanation given in Table VI:

Color_intersection_before ( i1 + )
Neighbour ( i2 i1 )
Neighbour ( i2 i3 )
Color_intersection_before ( i2 + )
Neighbour ( i3 i2 )
Neighbour ( i3 i4 )
Color_intersection_before ( i3 O )

Same_block_before ( i3 i3 )
Number_of_liberties_before ( i3 2 )
Neighbour ( i4 i3 )
Color_intersection_before ( i4 + )
Neighbour ( i4 i5 )
Color_intersection_before ( i5 + )
Move ( @ i4 )

Table VI

4.3 Generalization

The generalization step consists in transforming the rule which specifically applies
on the example, and which contains only constants, in a more general rule which will
match on many more examples and which contains variables. A constant is replaced
by a variable only in some special cases, we must avoid to be too general in
replacing constants by variables. We only generalize the constants that are
instanciations of variables, not the 'true' constants that are also constants in the fired
rules. The new general rule is given in Table VII.

If  ( exist ( Color_intersection_before ( ?i1 + ) )
      exist ( Neighbour ( ?i2 ?i1 ) )
      exist ( Neighbour ( ?i2 ?i3 ) )
      exist ( Color_intersection_before ( ?i2 + ) )
      exist ( Neighbour ( ?i3 ?i2 ) )
      exist ( Neighbour ( ?i3 ?i4 ) )
      exist ( Color_intersection_before ( ?i3 O ) )
      exist ( Same_block_before ( ?i3 ?i3 ) )

      exist ( Number_of_liberties_before ( ?i3 2 ) )
      exist ( Neighbour ( ?i4 ?i3 ) )
      exist ( Color_intersection_before ( ?i4 + ) )
      exist ( Neighbour ( ?i4 ?i5 ) )
      exist ( Color_intersection_before ( ?i5 + ) )
     )
Then
 ( append ( Move_before ( @ ?i4 Take ?i3 GIII ) ) )

Table VII



4.4 Conclusion on the learning method

It has been claimed that EBL is equivalent to a well known logic compilation
technique : Partial Evaluation (PE) [van Harmelen 1988]. The advantage of EBL on
Partial Evaluation (PE) is that EBL only creates knowledge that can be used in at
least one position. However PE creates useless rules which make the matching
process slower. Moreover, PE needs a lot of memory. The advantage of PE is that
we do not need a training process to compile logic programs.

Another objection made to EBL is the reported negative effect of learning due to the
utility problem [Minton 1988]. This effect does not appear when using our technique
as we unify multiple searches in one matching process which conclusions have not
to be verified after. Our rules are compiled using metaknowledge about the
probability of the facts in the working memory. What can be easily done in the
matching process is the sharing of conditions between rules, therefore what would
have been done many times during the search process, is only done once during the
matching process. Moreover, during the matching process, we do not have to
evaluate all the intermediate predicates evaluated during the search process. The
matching of the discovered rules is far more efficient than using a search algorithm
(like alpha-beta).

This method has been tested using Go problems from books. On a set of 100
problems, it has discovered, generalized and transformed into rules all the solutions
to each problem. On the set of problems used for learning, our method discovers
and generalize the solutions of all the problems. Given a test set of another 100
problems, the rules created when solving the first 100 problems gives the correct
answer 80% of the time on the test set, they do not find the solution 20% of the time.
Discovered rules never give a wrong answer, they simply fail to give an answer 20%
of the time on new problems of the same complexity.

5 Application to the learning of the management of a firm

This learning method has been applied to the learning of the management of a firm,
using the formal analysis of a firm given in [Alia 1992]. This model has four
hierarchical levels represented in Figure 6. Each level is related to a goal. My
system learns to achieve this goal for each level.

Physical level

Valorized level

Monetary level

Financial level

Figure 6

On the physical level, it learns to buy and to produce according to the expected
sales. On the valorized level, it learns to calculate the price the product should be



sold. On the monetary level, it learns how to have a positive cash. On the financial
level, it learns how to have a good return on investment. As in the Go domain theory,
it is important to explicitly represent the evolution of facts over time.

6 Conclusion

I have described a method to create tactical rules in games using the combinatorial
game theory and a restrictive knowledge representation, avoiding side effects and
facilitating explanations and learning. I have given an example of the application of
this method to the game of Go. This method works for incomplete domain theories,
our Go domain theory is not complete and our theory creates reliable rules. The
rules created with my method are general but not overgeneral. My system plays an
entire game of Go. It is ranked 5th out of 12 in the Internet Computer Go Ladder
[Pettersen 1994]. It is better than some professional hand coded Go programs. All
the tactical knowledge it uses has been learned by the method presented in this
paper. I am presently applying my system to other games (Chess and Abalone). I
also apply it to decision making in the management of a firm.
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