
Score Bounded Monte-Carlo Tree Search

Tristan Cazenave and Abdallah Saffidine

LAMSADE
Université Paris-Dauphine

Paris, France
cazenave@lamsade.dauphine.fr
Abdallah.Saffidine@gmail.com

Abstract. Monte-Carlo Tree Search (MCTS) is a successful algorithm used in
many state of the art game engines. We propose to improve a MCTS solverwhen
a game has more than two outcomes. It is for example the case in games that can
end in draw positions. In this case it improves significantly a MCTS solver to
take into account bounds on the possible scores of a node in order to select the
nodes to explore. We apply our algorithm to solving Seki in the game of Go and
to Connect Four.

1 Introduction

Monte-Carlo Tree Search algorithms have been very successfully applied to the game
of Go [7, 11]. They have also been used in state of the art programs for General Game
Playing [9], for games with incomplete information such as Phantom Go [3], or for
puzzles [4, 17, 5].

MCTS has also been used with an evaluation function instead of random playouts,
in games such as Amazons [15] and Lines of Action [18].

In Lines of Action, MCTS has been successfully combined withexact results in a
MCTS solver [19]. We propose to further extend this combination to games that have
more than two outcomes. Example of such a game is playing a Seki in the game of Go:
the game can be either lost, won or draw (i.e. Seki). Improving MCTS for Seki and
Semeai is important for Monte-Carlo Go since this is one of the main weaknesses of
current Monte-Carlo Go programs. We also address the application of our algorithm to
Connect Four that can also end in a draw.

The second section deals with the state of the art in MCTS solver, the third section
details our algorithm that takes bounds into account in a MCTS solver, the fourth section
explains why Seki and Semeai are difficult for Monte-Carlo Goprograms, the fifth
section gives experimental results.

2 Monte-Carlo tree search solver

As the name suggests, MCTS builds a game tree in which each node is associated to
a player, eitherMax or Min, and accordingly to valuesQmax andQmin. As the tree
grows and more information is available,Qmax andQmin are updated. The node value



function is usually based on a combination of the mean of Monte Carlo playouts that
went through the node [7, 13], and various heuristics such asAll moves as first [10], or
move urgencies [8, 6]. It can also involve an evaluation function as in [15, 18].

Monte-Carlo Tree Search is composed of four steps. First it descends a tree choos-
ing at each noden the child ofn maximizing the value for the player inn. When it
reaches a nodes with that has unexplored children, it adds a new leaf to the tree. Then
the corresponding position is scored through the result of an evaluation function or a
random playout. The score is backpropagated to the nodes that have been traversed
during the descent of the tree.

MCTS is able to converge to the optimal play given infinite time, however it is not
able to prove the value of a position if it is not associated toa solver. MCTS is not good
at finding narrow lines of tactical play. The association to asolver enables MCTS to
alleviate this weakness and to find some of them.

Combining exact values with MCTS has been addressed by Winands et al. in their
MCTS solver [19]. Two special values can be assigned to nodes: +∞ and−∞. When a
node is associated to a solved position (for example a terminal position) it is associated
to +∞ for a won position and to−∞ for a lost position. When a max node has a won
child, the node is solved and the node value is set to+∞. When a max node has all
its children equal to−∞ it is lost and set to−∞. The descent of the tree is stopped
as soon as a solved node is reached, in this case no simulationtakes place and 1.0 is
backpropagated for won positions, whereas -1.0 is backpropagated for lost ones.

Combining such a solver to MCTS improved a Lines Of Action (LOA) program,
winning 65% of the time against the MCTS version without a solver. Winands et al. did
not try to prove draws since draws are exceptional in LOA.

3 Integration of score bounds in MCTS

We assume the outcomes of the game belong to an interval[minscore,maxscore] of
IR, the playerMax is trying to maximize the outcome while the playerMin is trying to
minimize the outcome.

In the following we are supposing that the tree is a minimax tree. It can be a partial
tree of a sequential perfect information deterministic zero-sum game in which each
node is either amax-nodewhen the playerMax is to play in the associated position
or amin-nodeotherwise. Note that we do not require the child of amax-nodeto be a
min-node, so a step-based approach to MCTS (for instance in Arimaa [14]) is possible.
It can also be a partial tree of a perfect information deterministic one player puzzle. In
this latter case, each node is a max-node andMax is the only player considered.

We assume that there are legal moves in a game position if and only if the game
position is non terminal. Nodes corresponding to terminal game positions are called
terminal nodes. Other nodes are calledinternal nodes.

Our algorithm adds score bounds to nodes in the MCTS tree. It needs slight modi-
fications of the backpropagation and descent steps. We first define the bounds that we
consider and express a few desired properties. Then we show how bounds can be ini-
tially set and then incrementally adapted as the available information grows. We then



show how such knowledge can be used to safely prune nodes and subtrees and how the
bounds can be used to heuristically bias the descent of the tree.

3.1 Pessimistic and optimistic bounds

For each noden, we attach a pessimistic (notedpess(n)) and an optimistic (noted
opti(n)) bound ton. Note that optimistic and pessimistic bounds in the contextof
game tree search were first introduced by Hans Berliner in hisB* algorithm [2]. The
names of the bounds are defined afterMax’s point of view, for instance in both max-
and min-nodes, the pessimistic bound is a lower bound of the best achievable outcome
for Max (assuming rational play fromMin). For a fixed noden, the boundpess(n) is
increasing (resp.opti(n) is decreasing) as more and more information is available. This
evolution is such that no false assumption is made on the expectation ofn : the outcome
of optimal play from noden on, notedreal(n), is always betweenpess(n) andopti(n).
That ispess(n) ≤ real(n) ≤ opti(n). If there is enough time allocated to informa-
tion discovering inn, pess(n) andopti(n) will converge towardsreal(n). A position
corresponding to a noden is solved if and only ifpess(n) = real(n) = opti(n).

If the noden is terminal then the pessimistic and the optimistic values correspond to
the score of the terminal positionpess(n) = opti(n) = score(n). Initial bounds for in-
ternal nodes can either be set to the lowest and highest scorespess(n) = minscore and
opti(n) = maxscore, or to some values given by an appropriate admissible heuristic
[12]. At a given time, the optimistic value of an internal node is the best possible out-
come thatMaxcan hope for, taking into account the information present inthe tree and
assuming rational play for both player. Conversely the pessimistic value of an internal
node is the worst possible outcome thatMaxcan fear, with the same hypothesis. There-
fore it is sensible to update bounds of internal nodes in the following way.

If n is an internal max-node then
pess(n) := maxs∈children(n) pess(s)
opti(n) := maxs∈children(n) opti(s)

If n is an internal min-node then
pess(n) := mins∈children(n) pess(s)
opti(n) := mins∈children(n) opti(s)

3.2 Updating the tree

Knowledge about bounds appears at terminal nodes, for the pessimistic and optimistic
values of a terminal node match its real value. This knowledge is then recursively up-
wards propagated as long as it adds information to some node.Using a fast incremental
algorithm enables not to slow down the MCTS procedure.

Let s be a recently updated node whose parent is a max-noden. If pess(s) has just
been increased, then we might want to increasepess(n) as well. It happens when the
new pessimistic bound fors is greater than the pessimistic bound forn : pess(n) :=
max(pess(n),pess(s)). If opti(s) has just been decreased, then we might want to de-
creaseopti(n) as well. It happens when the old optimistic bound fors was the greatest
among the optimistic bounds of all children ofn. opti(n) := maxs∈children(n) opti(s).
The converse update process takes place whens is the child of a min-node.

Whenn is not fully expanded, that is when some children ofn have not been created
yet, a dummy childd such thatpess(d) = minscore andopti(d) = maxscore can be
added ton to be able to compute conservative bounds forn despite bounds for some
children being unavailable.



Algorithm 1 Pseudo-code for propagating pessimistic bounds
procedure prop-pess
arguments nodes

if s is not the root nodethen
Let n be the parent ofs
Let old_pess := pess(n)
if old_pess < pess(s) then

if n is aMax nodethen
pess(n) := pess(s)
prop-pess(n)

else
pess(n) := min

s
′∈children(n) pess(s′)

if old_pess > pess(n) then
prop-pess(n)

end if
end if

end if
end if

Algorithm 2 Pseudo-code for propagating optimistic bounds
procedure prop-opti
arguments nodes

if s is not the root nodethen
Let n be the parent ofs
Let old_opti := opti(n)
if old_opti > opti(s) then

if n is aMax nodethen
opti(n) := max

s
′∈children(n) opti(s′)

if old_opti > opti(n) then
prop-opti(n)

end if
else

opti(n) := opti(s)
prop-opti(n)

end if
end if

end if



3.3 Pruning nodes with alpha-beta style cuts

Once pessimistic and optimistic bounds are available, it ispossible to prune subtrees
using simple rules. Given a max-node (resp. min-node)n and a childs of n, the subtree
starting ats can safely be pruned ifopti(s) ≤ pess(n) (resp.pess(s) ≥ opti(n)).

To prove that the rules are safe, let’s supposen is an unsolved max-node ands is a
child of n such thatopti(s) ≤ pess(n). We want to prove it is not useful to explore the
child s. On the one hand,n has at least one child left unpruned. That is, there is at least
a child ofn, s+, such thatopti(s′) > pess(n). This comes directly from the fact that
asn is unsolved,opti(n) > pess(n), or equivalentlymaxs+∈children(n) opti(s+) >

pess(n). s+ is not solved. On the other hand, let us show that there existsat least one
other child ofn better worth choosing thans. By definition of the pessimistic bound
of n, there is at least a child ofn, s′, such thatpess(s′) = pess(n). The optimistic
outcome ins is smaller than the pessimistic outcome ins′ : real(s) ≤ opti(s) ≤

pess(s′) ≤ real(s′). Now eithers 6= s′ ands′ can be explored instead ofs with no loss,
or s = s′ ands is solved and does not need to be explored any further, in the latter case
s+ could be explored instead ofs.

An example of a cut node is given in Figure 1. In this figure, themin-noded has a
solved child (f ) with a 0.5 score, therefore the bestMax can hope for this node is 0.5.
Nodea has also a solved child (c) that scores 0.5. This makes noded useless to explore
since it cannot improve uponc.

a
pess = 0.5
opti = 1.0

c
pess = 0.5
opti = 0.5

b
pess = 0.0
opti = 1.0

e
pess = 0.0
opti = 1.0

d
pess = 0.0
opti = 0.5

f
pess = 0.5
opti = 0.5

Fig. 1. Example of a cut. Thed node is cut because its optimistic value is smaller or equal to the
pessimistic value of its father.



3.4 Bounds based node value bias

The pessimistic and optimistic bounds of nodes can also be used to influence the choice
among uncut children in a complementary heuristic manner. In a max-noden, the cho-
sen node is the one maximizing a value functionQmax.

In the following example, we assume the outcomes to be reals from [0, 1] and for
sake of simplicity theQ function is assumed to be the mean of random playouts. Figure
2 shows an artificial tree with given bounds and given resultsof Monte-Carlo evalua-
tions. The nodea has two childrenb andc. Random simulations seem to indicate that
the position corresponding to nodec is less favorable toMax than the position corre-
sponding tob. However the lower and upper bounds of the outcome inc andb seem to
mitigate this estimation.

a
µ = 0.58
n = 500

pess = 0.5
opti = 1.0

c
µ = 0.55
n = 200

pess = 0.5
opti = 1.0

b
µ = 0.6
n = 300

pess = 0.0
opti = 0.7

Fig. 2. Artificial tree in which the bounds could be useful to guide the selection.

This example intuitively shows that taking bounds into account could improve the
node selection process. It is possible to add bound induced bias to the node values of a
sons of n by setting two bias termsγ andδ, and rather using adaptedQ′ node values
defined asQ′

max(s) = Qmax(s) + γ pess(s) + δ opti(s) andQ′

min(s) = Qmin(s) −
γ opti(s) − δ pess(s).

4 Why Seki and Semeai are hard for MCTS

The figure 3 shows two Semeai. The first one is unsettled, the first player wins. In this
position, random playouts give a probability of 0.5 for Black to win the Semeai if he
plays the first move of the playout. However if Black plays perfectly he always wins the
Semeai.

The second Semeai of figure 3 is won for Black even if White playsfirst. The prob-
ability for White to win the Semeai in a random game starting with a White move is
0.45. The true value with perfect play should be 0.0.

We have written a dynamic programming program to compute theexact probabili-
ties of winning the Semeai for Black if he plays first. A probability p of playing in the



Fig. 3. An unsettled Semeai and Semeai lost for White.

Semeai is used to model what would happen on a 19x19 board where the Semeai is only
a part of the board. In this case playing moves outside of the Semeai during the playout
has to be modeled.

The table 1 gives the probabilities of winning the Semeai forBlack if he plays first
according to the number of liberties of Black (the rows) and the number of liberties of
White (the column). The table was computed with the dynamic programming algorithm
and with a probabilityp = 0.0 of playing outside the Semeai. We can now confirm,
looking at row 9, column 9 that the probability for Black to win the first Semeai of
figure 3 is 0.50.

Own liberties Opponent liberties

1 2 3 4 5 6 7 8 9

1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.00 0.50 0.30 0.20 0.14 0.11 0.08 0.07 0.05
3 1.00 0.70 0.50 0.37 0.29 0.23 0.18 0.15 0.13
4 1.00 0.80 0.63 0.50 0.40 0.33 0.28 0.24 0.20
5 1.00 0.86 0.71 0.60 0.50 0.42 0.36 0.31 0.27
6 1.00 0.89 0.77 0.67 0.58 0.50 0.44 0.38 0.34
7 1.00 0.92 0.82 0.72 0.64 0.56 0.50 0.45 0.40
8 1.00 0.93 0.85 0.76 0.69 0.62 0.55 0.50 0.45
9 1.00 0.95 0.87 0.80 0.73 0.66 0.60 0.55 0.50

Table 1. Proportion of wins for random play on the liberties when always playing in the Semeai



In this table, when the strings have six liberties or more, the values for lost positions
are close to the values for won positions, so MCTS is not well guided by the mean of
the playouts.

5 Experimental Results

In order to apply the score bounded MCTS algorithm, we have chosen games that can
often finish as draws. Such two games are playing a Seki in the game of Go and Connect
Four. The first subsection details the application to Seki, the second subsection is about
Connect Four.

5.1 Seki problems

We have tested Monte-Carlo with bounds on Seki problems since there are three possi-
ble exact values for a Seki: Won, Lost or Draw. Monte-Carlo with bounds can only cut
nodes when there are exact values, and if the values are only Won and Lost the nodes
are directly cut without any need for bounds.

Solving Seki problems has been addressed in [16]. We use moresimple and easy
to define problems than in [16]. Our aim is to show that Monte-Carlo with bounds can
improve on Monte-Carlo without bounds as used in [19].

We used Seki problems with liberties for the players rangingfrom one to six lib-
erties. The number of shared liberties is always two. TheMax player (usually Black)
plays first. The figure 4 shows the problem that has three liberties for Max (Black),
four liberties forMin (White) and two shared liberties. The other problems of the test
suite are very similar except for the number of liberties of Black and White. The results
of these Seki problems are given in table 2. We can see that when Max has the same
number of liberties thanMin or one liberty less, the result is Draw.

Min liberties Max liberties

1 2 3 4 5 6

1 Draw Won Won Won Won Won
2 Draw Draw Won Won Won Won
3 Lost Draw Draw Won Won Won
4 Lost Lost Draw Draw Won Won
5 Lost Lost Lost Draw Draw Won
6 Lost Lost Lost Lost Draw Draw

Table 2. Results for Sekis with two shared liberties

The first algorithm we have tested is simply to use a solver that cuts nodes when
a child is won for the color to play as in [19]. The search was limited to 1 000 000
playouts. Each problem is solved thirty times and the results in the tables are the average



Fig. 4. A test seki with two shared liberties, three liberties for theMax player (Black) and four
liberties for theMin player (White).

number of playouts required to solve a problem. An optimizedMonte-Carlo tree search
algorithm using the Rave heuristic is used. The results are given in table 3. The result
corresponding to the problem of figure 4 is at row labeled4 min lib and at column
labeled3 max lib, it is not solved in 1 000 000 playouts.

Min liberties Max liberties

1 2 3 4 5 6

1 359 479 1535 2059 10 566 25 670
2 1389 11 047 12 627 68 718 98 155 28 9324
3 7219 60 755 541 065 283 782 516 514 79 1945
4 41 385 422 975 >1 000 000 >1 000 000 >989 407 >999 395
5 275 670 >1 000 000 >1 000 000 >1 000 000 >1 000 000 >1 000 000
6 >1 000 000 >1 000 000 >1 000 000 >1 000 000 >1 000 000 >1 000 000

Table 3. Number of playouts for solving Sekis with two shared liberties

The next algorithm uses bounds on score, node pruning and no bias on move se-
lection (i.e.γ = 0 and δ = 0). Its results are given in table 4. Table 4 shows that
Monte-Carlo with bounds and node pruning works better than aMonte-Carlo solver
without bounds.



Comparing table 4 to table 3 we can also observe that Monte-Carlo with bounds and
node pruning is up to five time faster than a simple Monte-Carlo solver. The problem
with threeMin liberties and threeMax liberties is solved in 107 353 playouts when it is
solved in 541 065 playouts by a plain Monte-Carlo solver.

Min liberties Max liberties

1 2 3 4 5 6

1 192 421 864 2000 4605 14521
2 786 3665 3427 17 902 40 364 116 749
3 4232 22 021 107 353 94 844 263 485 588 912
4 21 581 177 693 >964 871 >1 000 000 878 072 >1 000 000
5 125 793 >1 000 000 >1 000 000 >1 000 000 >1 000 000 >1 000 000
6 825 760 >1 000 000 >1 000 000 >1 000 000 >1 000 000 >1 000 000

Table 4. Number of playouts for solving Sekis with two shared liberties, bounds on score, node
pruning, no bias

The third algorithm uses bounds on score, node pruning and biases move selection
with δ = 10000. The results are given in table 5. We can see in this table thatthe
number of playouts is divided by up to ten. For example the problem with threeMax
lib and threeMin lib is now solved in 9208 playouts (it was 107 353 playouts without
biasing move selection and 541 065 playouts without bounds). We can see that eight
more problems can be solved within the 1 000 000 playouts limit.

Min liberties Max liberties

1 2 3 4 5 6

1 137 259 391 1135 2808 7164
2 501 1098 1525 3284 13 034 29 182
3 1026 5118 9208 19 523 31 584 141 440
4 2269 10 094 58 397 102 314 224 109 412 043
5 6907 27 947 127 588 737 774 >999 587 >1 000 000
6 16 461 85 542 372 366 >1 000 000 >1 000 000 >1 000 000

Table 5. Number of playouts for solving Sekis with two shared liberties, bounds on score, node
pruning, biasing withγ = 0 andδ = 10000

5.2 Connect Four

Connect Four was solved for the standard size 7x6 by L. V. Allis in 1988 [1]. We tested
a plain MCTS Solver as described in [19] (plain), a score bounded MCTS with alpha-



beta style cuts but no selection guidance that is withγ = 0 andδ = 0 (cuts) and a score
bounded MCTS with cuts and selection guidance withγ = 0 andδ = −0.1 (guided
cuts). We tried multiple values forγ andδ and we observed that the value ofγ does not
matter much and that the best value forδ was consistentlyδ = −0.1. We solved various
small sizes of Connect Four. We recorded the average over thirty runs of the number of
playouts needed to solve each size. The results are given in table 6.

Size

3× 3 3× 4 4× 3 4× 4

plain MCTS Solver 2700.9 26 042.7 227 617.6 >5 000 000
MCTS Solver with cuts 2529.2 12 496.7 31 772.9 386 324.3
MCTS Solver with guided cuts 1607.1 9792.7 24 340.2 351 320.3

Table 6. Comparison of solvers for various sizes of Connect Four

Concerning 7x6 Connect Four we did a 200 games match between aMonte-Carlo
with alpha-beta style cuts on bounds and a Monte-Carlo without it. Each program
played 10 000 playouts before choosing each move. The resultwas that the program
with cuts scored 114.5 out of 200 against the program withoutcuts (a win scores 1, a
draw scores 0.5 and a loss scores 0).

6 Conclusion and Future Works

We have presented an algorithm that takes into account bounds on the possible values
of a node to select nodes to explore in a MCTS solver. For gamesthat have more than
two outcomes, the algorithm improves significantly on a MCTSsolver that does not use
bounds.

In our solver we avoided solved nodes during the descent of the MCTS tree. As [19]
points out, it may be problematic for a heuristic program to avoid solved nodes as it can
lead MCTS to overestimate a node.

It could be interesting to makeγ andδ vary with the number of playout of a node
as in RAVE. We may also investigate alternative ways to let score bounds influence the
child selection process, possibly taking into account the bounds of the father.

We currently backpropagate the real score of a playout, it could be interesting to
adjust the propagated score to keep it consistent with the bounds of each node during
the backpropagation.

Acknowledgments

This work has been supported by French National Research Agency (ANR) through
COSINUS program (project EXPLO-RA ANR-08-COSI-004)



References

1. L. Victor Allis. A knowledge-based approach of connect-four the game is solved: White
wins. Masters thesis, Vrije Universitat Amsterdam, Amsterdam, The Netherlands, October
1988.

2. Hans J. Berliner. The B* tree search algorithm: A best-first proof procedure.Artif. Intell.,
12(1):23–40, 1979.

3. Tristan Cazenave. A Phantom-Go program. InAdvances in Computer Games 2005, volume
4250 ofLecture Notes in Computer Science, pages 120–125. Springer, 2006.

4. Tristan Cazenave. Reflexive monte-carlo search. InComputer Games Workshop, pages 165–
173, Amsterdam, The Netherlands, 2007.

5. Tristan Cazenave. Nested monte-carlo search. InIJCAI, pages 456–461, 2009.
6. Guillaume Chaslot, L. Chatriot, C. Fiter, Sylvain Gelly, Jean-Baptiste Hoock, J. Perez, Arpad

Rimmel, and Olivier Teytaud. Combiner connaissances expertes, hors-ligne, transientes et
en ligne pour l’exploration Monte-Carlo. Apprentissage et MC.Revue d’Intelligence Artifi-
cielle, 23(2-3):203–220, 2009.

7. Rémi Coulom. Efficient selectivity and back-up operators in monte-carlo tree search. In
Computers and Games 2006, Volume 4630 of LNCS, pages 72–83, Torino, Italy, 2006.
Springer.

8. Rémi Coulom. Computing Elo ratings of move patterns in the game of Go.ICGA Journal,
30(4):198–208, December 2007.

9. Hilmar Finnsson and Yngvi Björnsson. Simulation-based approach togeneral game playing.
In AAAI, pages 259–264, 2008.

10. Sylvain Gelly and David Silver. Combining online and offline knowledge inUCT. In ICML,
pages 273–280, 2007.

11. Sylvain Gelly and David Silver. Achieving master level play in 9 x 9 computer go. InAAAI,
pages 1537–1540, 2008.

12. P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristicdetermination of mini-
mum cost paths.IEEE Trans. Syst. Sci. Cybernet., 4(2):100–107, 1968.

13. L. Kocsis and C. Szepesvàri. Bandit based monte-carlo planning.In ECML, volume 4212 of
Lecture Notes in Computer Science, pages 282–293. Springer, 2006.

14. Tomáš Kozelek. Methods of MCTS and the game Arimaa. Master’s thesis, Charles Univer-
sity in Prague, 2009.

15. Richard J. Lorentz. Amazons discover monte-carlo. InComputers and Games, pages 13–24,
2008.

16. Xiaozhen Niu, Akihiro Kishimoto, and Martin Müller. Recognizing seki incomputer go. In
ACG, pages 88–103, 2006.

17. Maarten P. D. Schadd, Mark H. M. Winands, H. Jaap van den Herik, Guillaume Chaslot, and
Jos W. H. M. Uiterwijk. Single-player monte-carlo tree search. InComputers and Games,
pages 1–12, 2008.

18. Mark H. M. Winands and Yngvi Björnsson. Evaluation function based Monte-Carlo LOA.
In Advances in Computer Games, 2009.

19. Mark H. M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito.Monte-carlo tree search
solver. InComputers and Games, pages 25–36, 2008.


