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Abstract. Multiplayer Go is Go played with more than two colors. Monte-Carlo
tree search is an adequate algorithm to program the game of Go with two players.
We address the application of Monte-Carlo tree search to multiplayer Go.

1 Introduction

The usual algorithm for multiplayer games is maxn [11, 13]. We propose alternative
UCT (UCT stands for Upper Confidence bounds applied to Trees) based algorithms for
multiplayer games, and we test them on multiplayer Go.

Two-player Go is already a complex game which is difficult to program [1], however
recent progress in Monte-Carlo tree search makes it easier and gives better results than
previous algorithms. Going from two-player Go to multiplayer Go makes the game even
more complex. However the simplicity and the strength of Monte-Carlo tree search
algorithms help manage multiplayer Go, and result in effective programs for this game.

The second section presents recent research on Monte-Carlo tree search. The third
section explain some subtleties of multiplayer Go. The fourth section details the differ-
ent algorithms that can be used to play multiplayer Go. The fifth section gives experi-
mental results.

2 Monte-Carlo tree search

This section gives an overview of Monte-Carlo Go and its recent improvements. We
start with Monte-Carlo tree search and the UCT algorithm then we briefly explain the
RAVE algorithm.

2.1 Search and Monte-Carlo Go

Monte-Carlo Go started as a simulated annealing on the list of possible moves [2].
A more simple sampling method consisting in playing random playouts replaced it.
Programs that develop a tree before the playouts have then replaced simple sampling
[5, 8]. MOGO [6, 7] and CRAZY STONE [5] are good examples of the success of these
methods. The UCT algorithm [8] is now the standard algorithm used for Monte-Carlo
Go programs.



2.2 RAVE

The RAVE (Rapid Action Value Estimation) algorithm [7] improves on UCT by using
a rapid estimation of the value of moves when the number of playouts of a node is
low. It uses a constant k and a parameter β that progressively switches from the rapid
estimation heuristic to the normal UCT value. The parameter β is computed using the
formula: β =

√
k

3×games+k . β is then used to bias the evaluation of a move in the tree
with the formula: vali = β×heuristic+(1.0−β)×UCT . Experiments with MOGO
have found that k = 1,000 gives good results.

The rapid estimation consists in computing statistics on all possible moves at every
node of the UCT tree. After each playout, every move in the playout, which has the
same color in the node and in the playout is updated with the result of the playout. For
example, the last move of a playout is used to update the statistics of the corresponding
move in the nodes of the UCT tree that start the playout. The value of the heuristic is
the mean value of the move computed using these statistics. It corresponds to the mean
result of the playouts where the move has been played.

3 Multiplayer Go

Multiplayer Go is sometimes played for fun at Go tournaments or at Go clubs.
In this section we explain some subtleties that are specific to multiplayer Go. We use

three colors, Black, White and Red, who play in that order. In the figures, Red stones
are the stones marked with squares.

black is alive implicit coalition

Fig. 1. Some particularities of multiplayer Go

The first board of figure 1 shows a particular way to live in three-player Go. The
black stones are alive, provided Black does not play at H8. White cannot play at H8,



and if Red plays at H8 and captures the White stone, Black immediately recaptures the
Red stone and gets two eyes.

The second board shows an implicit coalition. It is White to play. In normal two-
player Go, the semeai between Black and Red in the upper left corner is won by Black.
However, here it is profitable to White to kill Black as it will enable him to expand
its territory, and it is of course also profitable to Red to kill Black as it will give him
chances to live. So in this situation, even if Black is better in its semeai against Red, it
will lose it because White will play at G8, and Red will play at D6 just after and capture
Black.

If we define the goal of multiplayer Go to be the winner of the game, we define
a queer game [10], which means that in some positions, no player can force a win.
A problem with this definition of the rule is that a player that has lost the game can
decide who is the winner. For example in three player Go, if a player P1 has a small
group surrounded by another player P2, and if P2 wins if the small group is captured,
but loses if the small group lives, P1 can either always pass and let P2 win, or make
his group alive and let P3 win. When we implemented and tested three player Go with
this rule, similar situations often happened and P2 was always passing because all the
moves were losing moves, letting the weaker player win.

To avoid queer games, we decided to define the goal of multiplayer Go as to score
as many points as possible, using Chinese rules. Every stone of a player counts as one
point in the end of a game, so as every empty intersection completely surrounded by
only one player. A games end when all the players have consecutively passed.

Another possibility would have been to use Japanese rule and to remove a string
only if it is surrounded only by one color. Not removing a string surrounded by more
than one color would be a very strong bias on the game since it would make weak
surrounded strings alive, and the game would be much different than usual Go. Using
Chinese rules is natural for Monte-Carlo based programs and Japanese rules would be
even more complicated for multiplayer Go.

4 Multiplayer Algorithms

In this section, we describe different algorithms for multiplayer games. We start with
maxn, the algorithm currently used in most multiplayer games. Then we overview UCT,
Coalitions of players, Paranoid UCT, UCT with alliance and eventually variations on
Confident UCT.

4.1 Maxn

The usual algorithm for multiplayer games is maxn [13] which is the extension of Min-
imax to multiplayer games. Some pruning techniques can be used with maxn [9, 12].
We did not test this algorithm on Go since building an evaluation function for Go is
difficult and since the UCT framework is more simple and powerful for Go.



4.2 UCT

Multiplayer UCT behaves the same as UCT except that instead of having one result for
a playout, the algorithm uses an array of scores with one result for each player which
is the number of points of each player at the end of the playout. When descending the
UCT tree, the player use the mean result of its scores, not taking into account the scores
of the other players.

4.3 Coalitions of players

In multiplayer games, on the contrary of two-player games, players can collaborate and
form coalitions. In order to model a coalition between players, we have used a very
simple rule: it consists in not filling an empty intersection that is surrounded by players
of the same coalition, provided that none of the surrounding strings is in atari. Of course,
this rule only applies for players of the same coalition.

We have also defined the Allies scoring algorithm which is different from the Nor-
mal scoring algorithm. In Normal scoring, an empty intersection counts as a point for a
player if it is completely surrounded by stones of the player’s color. In Allies scoring,
an empty intersection is counted as territory for a player if it is surrounded by stones
that can be either of the color of the player or of the color of any of its allies.

The third scoring algorithm we have used is the Joint scoring algorithm, it consists
in counting allied eyes as well as allied stones as points for players in a coalition.

4.4 Paranoid UCT

The paranoid algorithm consists in considering that all the other players form a coalition
against the player. The UCT tree is traversed in the usual way, but the playouts use the
coalition rules for the other players.

The algorithm has links with the paranoid search of Sturtevant and Korf [14] as it
considers that all the other players are opponents.

In the design of the Paranoid UCT, we choose to model paranoia modifying the
playouts. Another possibility is to model it directly in the UCT tree. In this case, the
other players choose the move that minimize the player mean instead of choosing the
move that maximize their own mean when descending the UCT tree. It could also be
interesting to combine the two approaches.

4.5 UCT with alliance

The alliance algorithm models an explicit coalition of players. The playouts of the play-
ers in the alliance use the coalition rule. The playouts can be scored either using the
Normal, the Allies or the Joint scoring algorithm.

4.6 Confident UCT

Confident UCT algorithms dynamically form coalitions depending on the situation on
the board. There are different types of confident algorithms.



The simplest one is the Confident algorithm. At each move it develops as many
UCT trees as there are players. Each UCT tree is developed assuming a coalition with a
different player. This includes developing a UCT tree with a coalition with itself, which
is equivalent to the normal UCT algorithm. Among all these UCT trees, it chooses the
one that has the best mean result at the root, and plays the corresponding move. The
idea of the confident algorithm is to assume that the player who is the most interesting
to cooperate with, will cooperate. In case of the paranoid algorithm, it will never be
the case. Even in the case of other confident algorithms, it is not always the case, since
the other confident algorithm can choose to cooperate with another player, or not to
cooperate.

To try to address the shortcomings of the Confident algorithm, we devised the Sym-
metric Confident algorithm. It does run the confident algorithm for each player, so for
each player we have the mean result of all coalition with all players. We can then find
for each player the best coalition. If the best coalition for the player to move is also the
best coalition for the other player of the coalition, then the player to move chooses the
move of the UCT tree of the coalition. If it is not the case, the player chooses the move
of a coalition that is better than no coalition if the other player of the coalition has its
best coalition with the player. In all other cases, it chooses the move of the UCT tree
without coalition.

The last confident algorithm is the Same algorithm. On the contrary of the two
previous algorithm, it assumes that it knows who are the other Same algorithms. It
consists in choosing the best coalition among the other Same players, including itself
(choosing itself is equivalent to no coalition).

5 Experimental Results

The experiments consist in playing the algorithms against each other. All our results
use 200 9x9 games experiments.

5.1 UCT

The Surrounded algorithm always avoids playing on an intersection which has all its
adjacent intersections of the same color as the player to move, it is a very simple rule
use in the playouts. The Eye algorithm also verifies the status of the diagonals of the
intersection in order to avoid playing on virtual eyes during playouts.

Table 1 gives the results of three players games. Each line gives the mean number
of points of each algorithm playing 200 9x9 games against the other algorithms.

Given the first line that only contains Surrounded algorithms, and the lines that only
contain Rave algorithm, we can see that the value of komi is low in three-player Go
(approximately one point for White and two points for Red given the Rave results for
10,000 playouts). This is our first surprising result, we expected the third player to be
more at a disadvantage than only two points.

The first three lines of table 1 compare algorithms that use surrounded intersections
as the avoiding rule, and algorithms that use real eyes as the avoiding rule. In two player
Go, using virtual eyes is superior to using surrounded intersections [3]. Surprisingly, it



Table 1. Results for different UCT algorithms

Playouts Black Black points White White points Red Red points
1 1,000 Surrounded 29.78 Surrounded 25.02 Surrounded 26.20
2 1,000 Eye 26.80 Surrounded 27.76 Surrounded 26.42
3 1,000 Surrounded 27.91 Eye 28.66 Eye 24.44
4 1,000 Pattern 24.46 Surrounded 33.31 Surrounded 23.23
5 1,000 Surrounded 23.63 Pattern 23.82 Surrounded 33.56
6 1,000 Rave 36.40 Surrounded 21.34 Surrounded 23.26
7 1,000 Rave 27.94 Rave 26.74 Rave 26.32
8 10,000 Rave 28.27 Rave 27.13 Rave 25.60

is not the case in three player Go as can be seen from the first three lines of the table.
I feel uneasy giving explanations about the strength of playout policies as it is a very
non-intuitive topic, it has been observed that a better playout player (i.e. one that often
wins playouts against a simple one) can give worse results than very simple playout
players when used in combination with tree search. In all the following algorithms we
have used the Surrounded rule.

The fourth and fifth lines of table 1 test an algorithm using MOGO patterns in the
playouts [6]. It uses exactly the same policy as described in the report. Friend stones in
the patterns are matched to friend stones on the board, and enemy stones in the patterns
can be matched with all colors different from friend on the board. On the contrary of two
player Go, MOGO’s patterns give worse results than no pattern, and tend to favor the
player following the player using patterns. A possible explanation for the bad results of
patterns may be that in multiplayer Go moves are less often close to the previous move
than in usual Go. The following algorithms do not use patterns in the playouts.

The next lines of table 1 test the Rave algorithm. When matched again two Sur-
rounded UCT based algorithms, it scores 36.40 points which is much better than stan-
dard UCT. When three Rave algorithms are used, the results come back close to the
results of the standard UCT algorithms. All the following algorithms use the Rave op-
timization.

5.2 Paranoid UCT

Table 2 gives the results of the Paranoid algorithm matched against the Rave algo-
rithm. Paranoid against two Rave algorithms has better results than both of them. Two
Paranoid algorithms against one Rave algorithm have also better results. When three
Paranoid algorithms are matched, the scores come back to the equilibrium. So in these
experiments, Paranoid is better than Rave.

5.3 Alliance UCT

Table 3 gives the results of the the Alliance algorithm with different scoring systems
for the playouts. When using Normal scoring, Alliance is not much beneficial against
Paranoid, but has better results against Rave.



Table 2. Results for the Paranoid algorithm

Playouts Black Black points White White points Red Red points
1,000 Paranoid 31.71 Rave 26.89 Rave 22.38
1,000 Paranoid 29.82 Paranoid 28.48 Rave 22.67
1,000 Paranoid 29.11 Paranoid 26.85 Paranoid 25.04

Using the Allies scoring gives better results for the Alliance and much worse results
for Paranoid and Rave. The best results for the alliance are obtained with Joint scoring,
in these case Paranoid only scores 1.57 on average and Rave 0.30.

Table 3. Results for the Alliance algorithms

Playouts Black Black points White White points Red Red points
1,000 Alliance(Normal) 28.69 Alliance(Normal) 25.09 Paranoid 24.58
1,000 Alliance(Normal) 32.15 Alliance(Normal) 30.44 Rave 14.56
1,000 Alliance(Allies) 30.78 Alliance(Allies) 29.85 Paranoid 6.91
1,000 Alliance(Allies) 32.88 Alliance(Allies) 30.55 Rave 2.64
1,000 Alliance(Joint) 34.38 Alliance(Joint) 33.12 Paranoid 1.57
1,000 Alliance(Joint) 35.61 Alliance(Joint) 34.01 Rave 0.30

5.4 Confident UCT

In this section, we address the various confident algorithms. In our tests, we used 1,000
playouts for each tree developed by the various confident algorithms.

Table 4 gives the results of the Confident algorithms against the Rave and the Para-
noid algorithms. The Paranoid and the Rave algorithms are clearly better than the con-
fident algorithm, and Paranoid is slightly better than Rave.

Table 4. Results for the Confident algorithm

Playouts Black Black points White White points Red Red points
1,000 Confid(Normal) 18.08 Confid(Normal) 23.84 Paranoid 39.08
1,000 Confid(Normal) 17.75 Confid(Normal) 24.86 Rave 38.40
1,000 Confid(Allies) 14.22 Confid(Allies) 17.67 Paranoid 48.11
1,000 Confid(Allies) 10.99 Confid(Allies) 22.24 Rave 45.97

Table 5 gives the results of the Symmetric Confident algorithms against the Rave
and the Paranoid algorithms. Here again, Paranoid and Rave are better that Symmetric
Confident, and Paranoid is slightly better than Rave.



Table 5. Results for the Symmetric Confident algorithm

Playouts Black Black points White White points Red Red points
1,000 Sym(Normal) 19.94 Sym(Normal) 16.67 Paranoid 42.97
1,000 Sym(Normal) 18.97 Sym(Normal) 19.54 Rave 39.85

In table 6 two types of Same algorithms are tested against Paranoid and Rave al-
gorithms. When the Same algorithm uses Normal scoring at the end of the playouts,
playing two Same algorithms against a paranoid algorithm is not much more beneficial
and even slightly worse than using paranoid algorithms as can be seen by comparing
with table 2. So cooperation with Normal playout scoring is not much beneficial. How-
ever, when the playouts are scored according to the Allies scoring, cooperation becomes
much more interesting and the paranoid algorithm gets much worse results (10.28 in-
stead of 27.79). The Rave algorithm is in this case even worse with only 4.73 points.
For all these results, the games were scored with the Normal scoring algorithm. Only
the playouts can be scored with the Allies scoring algorithm. This is why the games
played by the Same(Allies) algorithms do not sum up to 81 points, the allies algorithm
stops playing when empty intersections are surrounded by allies, but the game is scored
with the normal scoring and the empty intersection that are surrounded by more than
one color are not counted.

When three Same(Allies) algorithms play together, the results favor the first player.
The next two lines of table 6 gives the results of the Same algorithm with Joint

scoring of the playouts. The Same algorithm gives even better results in this case, and
Paranoid and Rave often end the games with no points at all.

When Same(Allies) plays against/with Same(Joint) and Paranoid, it scores extremely
well. Paranoid is beaten when the two Same algorithms decide to make an alliance, and
Same(Allies) beats Same(Joint) since it continue to make territory for itself at the end
of the game when Same(Joint) considers it common territory.

Table 6. Results for the Same algorithm

Playouts Black Black points White White points Red Red points
1,000 Same(Normal) 25.38 Same(Normal) 32.21 Rave 23.34
1,000 Same(Normal) 25.61 Same(Normal) 27.59 Paranoid 27.79
1,000 Same(Allies) 32.53 Same(Allies) 37.76 Rave 4.73
1,000 Same(Allies) 30.83 Same(Allies) 34.03 Paranoid 10.28
1,000 Same(Allies) 35.78 Same(Allies) 22.74 Same(Allies) 17.92
1,000 Same(Joint) 35.32 Same(Joint) 34.32 Rave 0.58
1,000 Same(Joint) 33.62 Same(Joint) 34.06 Paranoid 1.70
1,000 Same(Allies) 64.96 Same(Joint) 7.95 Paranoid 4.76



5.5 Techniques used in the algorithms

Table 7 gives the techniques used for each algorithm.

Table 7. Techniques used for each algorithm

Algorithm Playout policy Search Scoring function
Surrounded Surrounded by player UCT stones + eyes

Eye Eye by player UCT stones + eyes
Pattern Surrounded by player + Patterns UCT stones + eyes

Rave Surrounded by player Rave stones + eyes
Paranoid Surrounded by coalition Rave stones + eyes

Alliance(Normal) Surrounded by coalition Rave stones + eyes
Alliance(Allies) Surrounded by coalition Rave stones + common eyes
Alliance(Joint) Surrounded by coalition Rave common stones + common eyes

Confid(Normal) Surrounded by coalition Rave stones + eyes
Confid(Allies) Surrounded by coalition Rave stones + common eyes
Sym(Normal) Surrounded by coalition Rave stones + eyes

Same(Normal) Surrounded by coalition Rave stones + eyes
Same(Allies) Surrounded by coalition Rave stones + common eyes
Same(Joint) Surrounded by coalition Rave common stones + common eyes

6 Conclusion

We addressed the application of UCT to multiplayer games, and more specifically to
multiplayer Go. We defined a simple and effective heuristic, used in the playouts, that
models coalitions of players. This heuristic has been used in the Alliance algorithm
and can be very effective when used with the appropriate scoring of the playouts. The
Paranoid algorithm, which assumes a coalition of the other players plays better than the
usual Rave algorithm. Confident algorithms, such as Confident and Symmetric Confi-
dent, that choose to cooperate when it is most beneficial are worse than the Paranoid
algorithm when they are not aware of the other players algorithms. However, when the
players algorithms are known, as in the Same algorithm, they become better than the
Paranoid algorithm.

If a multiplayer Go tournament were organized, the best algorithm would be de-
pendent on the available information on the competitors. Future work will address the
extension of coalition algorithms to more than three players, the effects of communica-
tions between players as well as the parallelization of the algorithms [4].
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