
Integration of Different Reasoning Modes in a Go Playing and Learning

System

Tristan Cazenave

LIP6, Université Pierre et Marie Curie
4, place Jussieu

75252 PARIS CEDEX 05, FRANCE
Tristan.Cazenave@lip6.fr

Abstract
Integrating multiple reasoning mode is useful in complex
domains li ke the game of Go. Go players use various
forms of reasoning during a game. Reasoning at the
tactical level is completely different from reasoning at the
strategic level. Choosing a plan requires a different form
of reasoning than knowing how to execute a plan. This
paper gives examples of the integration of these reasoning
modes into a single system. Rule-based reasoning,
Constraint-based reasoning and Case-based reasoning are
used in this hierarchical order. Constraint-based reasoning
uses the results of Rule-based reasoning, and Case-based
reasoning uses the results of Constraint-based reasoning
and Rule-based reasoning.

Introduction

Integrating multiple reasoning modes is useful in complex
domains li ke the game of Go. Go players use various
types of reasoning during a game. Reasoning at the
tactical level is completely different from reasoning at the
strategic level. Choosing a plan requires a different type
of reasoning than knowing how to execute a plan. This
paper gives examples of the integration of these reasoning
modes into a single system. This work has some
similarities with the work by Epstein and Gelfand
[Epstein and Gelfand 1996].

The first section describes computer Go. The second
section shows how rules are used and learned in our
system at the tactical level. The third section describes
some constraints to choose a plan at the strategic level.
The fourth section provide a way to use Case-Based
Reasoning to choose the more appropriate move to follow
a plan. The last section gives the results of our computer
Go system.

Computer Go

The game of Go
Go was developed three to four millennia ago in China; it
is the oldest and one of the most popular board game in

the world. Like chess, it is a deterministic, perfect
information, zero-sum game of strategy between two
players. In spite of the simplicity of its rules, playing the
game of Go is a very complex task. Robson
[Robson 1983] proved that Go generali zed to NxN boards
is exponential in time. More concretely, Van den Herik
[Van den Herik 1991] and Alli s [Alli s 1994] use
complexity measures of different games to compare them.
They define the whole game tree complexity A.
Considering the average length of actual games L and
average branching factor B, we have A = BL. The state-
space complexity of a game is defined as the number of
legal game positions reachable from the initial position of
the game. In Go, L≈150 and B≈250 hence the game tree
complexity A≈10360. Go state space complexity, bounded
by 3361≈10172, and game tree complexity are far larger than
those of any other perfect-information game. Moreover, a
position is takes time to evaluate, on the contrary of chess
where positions can be evaluated very fast. This makes
Go very diff icult to program. Computer Go has been
recognized as a challenge for Artificial Intelli gence
[Selman 1996].

∆∆
∆∆
∆∆

∆∆

Figure 1

The board is made of 19 vertical li nes and 19 horizontal

li nes which cut themselves into 361 intersections. At the
beginning the board is empty. Each player (Black or
White) moves alternatively in adding one stone on an
empty intersection. Two adjacent stones of the same color
are connected and they are part of the same string. For
example, the white stones of Figure 1 marked with ∆ are
connected and are part of the same string. Empty adjacent
intersections of a string are the li berties of the string. The
string of four marked white stones of Figure 1 has eight
li berties. When a move fill s the last liberty of a string, this
string is removed from the board. The repetitions of
positions are forbidden. According to the possibilit y of
being captured or not, the strings may be dead or alive. A
player controls an intersection either when he has an ali ve
stone on it, either when the intersection is empty but
adjacent to ali ve stones. The aim of the game is to control
more intersections than the opponent. The game ends
when the two players pass.

In spite of the simplicity of the rules, a Go player uses a
lot of concepts to understand a position and to play a
move. This paragraph briefly shows some intuiti ve
definitions of these concepts. At the lower level, a player
looks at the safety of the strings in performing look-ahead.
When a string has enough liberties, the string is said to be
safe. A player also checks if an intersection is controlled
by one player or not. An eye is a small enclosed area,
Figure 2 gives an example of an eye on intersection A. In
this figure, B is one of the four diagonal intersections of
A. When searching to make an eye, it is important to
control diagonal intersections.

B
A

Figure 2

A virtual connection is a spatial configuration that
enables to connect strings whatever the opponent plays.
Figure 3 gives an example of a ‘Bamboo join’ . If the
white player plays at A, black plays at B and connects its
stones. If white plays at B, then black at A connects. The
four stones are virtuall y connected.

BA

Figure 3

Using these tactical results, a Go player starts its
strategic reasoning with the use of groups. A group is a
complex concept for human players. It may be either a set
of intersections that are virtuall y connected, either a set of
intersections that gather the same properties. A group has
a status. A status is dead or ali ve and it is derived from
other intuiti ve concepts li ke influence, fight, circling, life-
base. The reader does not need explanations of these
concepts to understand the following sections.

Different levels in a Go program
As it is impossible to search the entire tree for the game of
Go, the best Go playing programs rely on a knowledge
intensive approach. They are generall y divided in two
modules:

�
 A tactical module that develops narrow and deep

search trees. Each tree is related to the achievement
of a goal of the game of Go.

�

 A strategic module that chooses the move to play
according to the results of the tactical module.

Strategic reasoning is concerned with groups of stones.
A group of stones is a set of stones of the same color, each
stone can be connected to each other.

Different types of reasoning are required in these
modules. The tactical module uses rules to decide what
moves to try in the search trees. The strategic module has
to choose a plan and to execute it. A good way to choose
a plan is to use constraints on the groups calculated by the
tactical module. Choosing a move that executes the plan
can be done by comparing the present situation with cases
previously encountered in games.

Rule based reasoning

Rule based reasoning is used in the tactical module of the
system. The rules are used to decide what moves to try in
a search tree. These rules are automaticall y created by an
Explanation Based Learning system named Introspect
[Cazenave 1996]. Introspect is an introspective learning
system [Cox 1996], such systems have been formalized in
[Mitchell 1986] [Laird 1986] [Dejong 1986] and they
have received attention more recently in
[Ram & Leake 1995]. The rules learned by Introspect
enable to consider only between 1 and 5 moves out of the
250 possible moves on a board. They exponentiall y
decrease the size and time of the brute force search tree.
This enables our Go program to look 60 moves ahead in
some tactical positions. The formalism used to represent
these rules is first order predicate logic. The rules are
learned by Introspect, only given the rules of the game in
predicate logic.

Example of a (simple) learned rule used to find
connections between strings of stones :

Connect (S1 S2 I fr iend) :- Color (S1 friend), Color (
S2 friend), Liberty (I S1), Liberty (I S2), Move (I
friend).

This rule tell s that if an intersection I is a liberty of
strings S1 and S2 that are friend strings, playing a black
stone at I enables to achieve the goal Connect between the
two strings.

The target concepts of the Explanation Based Learning
module are the tactical subgoals of the game of Go :

Remove a string, Make a string ali ve, Connect two
strings, Disconnect two strings, Make an eye and Remove
an eye. Each of these target concepts is defined using
rules in predicate logic. For example the target concept
for the tactical goal RemoveString is defined using this
rule:

RemoveString (S I fr iend) :- Color (S enemy), Move (I
enemy), NumberOfLibertiesBeforeMove (S 1), Liberty (
I S), LegalMove (I enemy).

Thousands of rules are created by using the rules of the
game to speciali ze the tactical goals.

∆∆

Figure 4

The example learned rule is learned by explaining why
the move marked ∆ in the Figure 4 connects the two black
strings. The initial target concept defining the Connect
goal is:

ConnectedAfterMove (S1 S2) :- Color (S1 C), Color (
S2 C), ElementOfAfterMove (I S1),
ElementOfAfterMove (I S2).

The rules used to speciali ze the target concept in this
example are:

ElementOfAfterMove (I S) :- Liberty (I S), Color (S C
), Move (I C).

Connect (S1 S2 I fr iend) :- Move (I friend),
ConnectedAfterMove (S1 S2).

Note that there are different predicates to describe the
board after the move and the board before the move. This
is to prevent side effects to happen, and to avoid
incomplete explanations.

At each node of the proof tree, learned rules are used to
select useful moves to try. Knowledge about the moves to
try in the search trees are represented using predicate
logic rules because these rules represent theorems about
the moves useful or necessary to try and the moves not to
try.

Constraint based reasoning

Constraints can be used in games to choose a plan [Nigro
& Cazenave 1996]. They are used in the Go program to
choose plans at the strategic level. For example :

Save (G2) :- Neighbor (G2 G1), Territory (G2) <
Territory (G1), Territory (G2) + PotentialTerritory (G2
) / 2 < 9, NumberOfEyes (G2) < 2

This constraint tell s that it is interesting to save group
G2 if it has a neighboring group G1, and G2 has less
territory than G1, and if the sum of the territory of G2 and
of the potential territory of G2 divided by two is less than
9, and if the number of eyes of G2 is less than 2.

11
11
11

11

22

11

11
11

11
11

11

11

11
111111

11 22222222222222222222222222

22
22

22
22 22

22 22
22

22 11
∆∆

Figure 5

The constraints are about groups. Groups are
constructed using the results of the tactical module. For
example, each point of territory is the result of a proof
tree. The proof tree is developed for proving that a string
S that belongs to group G can be connected to the
intersection I if Friend plays first. If no opponent string
can connect to the same intersection I, then this
intersection is a territory of the group G that contains the
string S.

In the Figure 5, we give a board where the example rule
with the constraints applies. The group G2 is marked with
2, and the groups G1 with 1. The points of territory of the
group G2 are marked with littl e black points. There are
more than forty points of territory for the white group,
mainly on the upper left side of the board. G2 has five
points of territory and only one eye. The constraints of the
example rule are verified, so the goal Save (G2) is
active.

Using constraints is the obvious way to describe that
groups are unsafe under some criti cal threshold of the
numbers representing their properties. Groups have a lot
of numerical properties that are related to their safety, so
constraints enable to express easil y knowledge about the
safety of groups.

Case-based Reasoning

Once a plan has been chosen, the program has to choose
how to apply the plan. This is the next part of the strategic
level. Tactical goals and strategic plans are calculated on
a set of typical positions. It provides a set of cases with

associated moves. The moves can be the moves to play or
the moves not to play.

There are different degrees of similarity between the
predicates describing groups. For example, the conditions
‘Territory (G) = 9’ and ‘Territory (G) = 10’ are very
similar. Whereas the conditions ‘NumberOfEyes (G) =
1’ and ‘NumberOfEyes (G) = 2’ are very dissimilar.

Each move is associated to the goal it achieves. The
moves that achieve the plans chosen by the constraints are
selected. Each plan has a value, a move can achieve
multiple plans. The value of each move is the sum of the
value of the plans the move achieves. The move with the
highest value is played.

2222

11 11
11

11
1111

2222222222

22

22

22

22
22 22

∆∆

Figure 6

In the Figure 6, the situation of the groups marked with
1 is very similar to the situation of the group marked with
2 in Figure 5. Group 1 in Figure 6 has 3 points of territory
and only one eye, whereas the neighboring enemy group
has much more territory. The solution remembered to
save the group 1 in Figure 6 is to play the move that
enables to make two eyes and therefore to li ve (preventing
forever the opponent to remove the group from the board).
According to the stored move marked ∆ in Figure 6, the
system will choose to play the move marked ∆ in Figure
5.

Case-Based Reasoning enables imprecision in the use
of knowledge. Strategy is naturall y imprecise. Allowing to
define similarity with some reference groups enables to
have a concise and general representation of strategic
knowledge.

Results

The Go program plays a move in 10 seconds on a Pentium
133 MHz, for each move it proves about 450 tactical
theorems, each theorem requires between 4 and 600 nodes
in a search tree to be proved, at each node of each tree,
the rules learned by Introspect are called to find the useful

moves to try. Introspect has learned thousands of tactical
rules. All the learned rules are compiled into a 1 000 000
lines C++ program. The strategic level chooses plans
using constraints on some properties of the groups. The
groups and their properties are built using the results of
the tactical level. When strategic plans are chosen, moves
related to the plans are chosen using information about
previously seen similar situations.

Gogol competed in the international computer Go
tournament held during IJCAI97 together with 40 other
participants. It finished 6 out of 40 participants. The five
first programs are commercial programs that have
required a lot of person*years of work. It has
outperformed other commercial systems that have
required more than 10 person*years of work.

Conclusion

We have shown how to integrate multiple reasoning
modes in a complex domain that requires different forms
of reasoning. Rule-based reasoning is used at the tactical
level in our Go program to select the useful moves to try
when searching. Constraint-based reasoning is used to
select interesting plans according to constraints. Once the
plans are chosen, Case-based reasoning is used to select
the moves that enable the plans to work. Each move has a
value that is the sum of the values of the plans the move
achieves. The resulting Go program has good results in
international competitions (best non-commercial
program). This approach combining multiple types of
reasoning can also be used in other domains that are
complex enough to require different kind of knowledge to
use knowledge [Pitrat 1990].

A lesson learned from applying multimodal reasoning
to a very complex task li ke the game of Go, is that in
complex domains, as we need a lot of knowledge, using
multiple reasoning modes is appropriate because there are
different types of knowledge. Each type of knowledge is
suited to a particular reasoning mode. The problem is to
split a system into modules, and to choose a reasoning
mode for each module. In our application, we chose to
separate our system in three modules: A theorem prover
that uses rules and predicate logic for exact computations.
A module based on constraints to choose plans according
to predefined thresholds. A Case-Based Reasoning
module that enables imprecision in the recognition of how
much a move enables to achieve a strategic goal that
cannot be exactly foreseen.

Human Go players also use different reasoning mode
when studying a position. They search very fast when
reading tactical sequences of moves, using complex
learned patterns to choose the moves to try. They have a
less rigorous reasoning mode when they think
strategicall y. As we have shown with the game of Go, we
believe that the abilit y to switch between reasoning modes
is necessary to have good performances in many complex
cogniti ve tasks.

References

Alli s, L. V. 1994. Searching for Solutions in Games an
Artificial Intelli gence. Ph.D. diss., Vrije Universitat
Amsterdam, Maastricht.

Cazenave, T. 1996. Système d’Apprentissage par Auto-
Observation. Application au Jeu de Go. Ph.D. diss.,
Université Paris 6.

Cox, M. T. 1996. Introspective Multi strategy Learning :
Constructive a Learning Strategy Under Reasoning
Failure. Ph.D. diss., Georgia Institute of Technology,
College of Computing, Atlanta.

Dejong, G. and Mooney, R. 1986. Explanation Based
Learning : an alternative view. Machine Learning 1 (2).

Epstein, S. L. and Gelfand J. J. 1996. Pattern-based
learning and spatiall y-oriented concept formation in a
multi -agent, decision-making expert. Computational
Intelli gence 12 (1):199-221.

Laird, J.; Rosenbloom, P. and Newell A. 1986. Chunking
in SOAR : An Anatomy of a General Learning
Mechanism. Machine Learning 1 (1).

Mitchell , T. M.; Keller, R. M. and Kedar-Kabelli S. T.
1986. Explanation-based Generali zation : A unifying
view. Machine Learning 1 (1), 1986.

Nigro, J.-M. and Cazenave, T. 1996. Constraint-based
explanations in games. In Proceedings of IPMU’96,
Granada, Spain.

Pitrat, J. 1990. Métaconnaissance - Futur de l’I ntelli gence
Artifi cielle. Hermès, Paris.

Ram, A. and Leake, D. 1995. Goal-Driven Learning.
Cambridge, MA, MIT Press/Bradford Books.

Robson, J. M. 1983. The Complexity of Go. In
Proceedings IFIP, 413-417.

Selman, B.; Brooks, R. A.; Dean, T.; Horvitz, E.;
Mitchell , T. M.; Nilsson, N. J. 1996. Challenge Problems
for Artificial Intelli gence. In Proceedings AAA I-96, 1340-
1345.

Van den Herik, H. J.; Alli s, L. V.; Herschberg, I. S. 1991.
Which Games Will Survive ? Heuristic Programming in
Artificial Intelli gence 2, the Second Computer Olympiad
(eds. D. N. L. Levy and D. F. Beal), pp. 232-243. Elli s
Horwood. ISBN 0-13-382615-5. 1991.

