
Nested Monte-Carlo Search

Tristan Cazenave
LAMSADE

Université Paris-Dauphine
Paris, France

cazenave@lamsade.dauphine.fr

Abstract
Many problems have a huge state space and no
good heuristic to order moves so as to guide the
search toward the best positions. Random games
can be used to score positions and evaluate their
interest. Random games can also be improved us-
ing random games to choose a move to try at each
step of a game. Nested Monte-Carlo Search ad-
dresses the problem of guiding the search toward
better states when there is no available heuristic.
It uses nested levels of random games in order to
guide the search. The algorithm is studied theoreti-
cally on simple abstract problems and applied suc-
cessfully to three different games: Morpion Soli-
taire, SameGame and 16x16 Sudoku.

1 Introduction
When there is no available heuristic, it can be useful to per-
form random playouts in order to evaluate the interest of de-
veloping a position. Moreover, it is important to optimize
moves at all stages of a game and not only near the root.
Nested Monte-Carlo Search uses random playouts at its base
level. A search at a given level uses searches at the lower level
to decide which move to play in its game. Since a complete
game is performed at each level the moves are optimized at
all stages.

The point of this paper is to show that random moves can
be successfully used at the base level of a nested search algo-
rithm, and that memorizing the best sequence is very useful
in that case. A theoretical analysis of the algorithm as well as
its successful application to three different games with huge
state spaces are presented.

The outline of this paper is as follows: the next section
presents related work, section 3 presents the Nested Monte-
Carlo Search algorithm, section 4 analyzes the algorithm on
two simple abstract problems, section 5 gives experimental
results for three different games.

2 Related work
The simplest Monte-Carlo search algorithm is Iterative Sam-
pling, it consists in playing random games until a solution is
found or the search time is elapsed.

Rollouts were successfully used by Tesauro and Galperin
to improve their Backgammon program [Tesauro and
Galperin, 1996].

Nested rollouts combined with an heuristic to choose the
next move at the base level were used by Yan et al. to im-
prove their Klondike solitaire program [Yan et al., 2005].
Nested rollouts have been used with heuristics that change
with the stage of the game of Thoughtful Solitaire, a version
of Klondike Solitaire in which the locations of all cards is
known [Bjarnason et al., 2007]. These algorithms use a base
heuristic which is improved with nested rollouts, whereas our
algorithm uses random moves at the base level.

A related algorithm is Reflexive Monte-Carlo search
[Cazenave, 2007] which has been used to find long sequences
at Morpion Solitaire. The idea of Reflexive Monte-Carlo
search has some similarity with the nested rollouts idea, it
consists in playing random playouts at the base level, and to
play a few games at the lower level of a search in order to
find the best move at the current level of the search. Games
at the meta level give better results than games at the lower
level. In Reflexive Monte-Carlo search, there is a fixed num-
ber of games played at each level of the search before decid-
ing the move to play. Whereas in Nested Monte-Carlo Search
each possible move is tried only once before each lower level
search.

The use of Monte-Carlo methods in games has been re-
cently very successful for the game of Go [Gelly and Silver,
2007].

3 The algorithm
Nested Monte-Carlo Search combines nested calls with ran-
domness in the playouts and memorization of the best se-
quence of moves. In nested rollouts the rollouts are based on
a heuristic. It implies that nested rollouts always improves on
rollouts and on simply following the heuristic. When the base
level does not use a heuristic but random moves, it is possi-
ble that a nested search gives worse results than a lower level
search. It is then useful to memorize the best sequence found
so far in order to follow it when the randomized searches give
worse results than the best sequence.

The basic sample function just plays a random game from
a given position, we use the function play(position, move)
which plays the move in the position and returns the resulting
position:



int sample (position)
1 while not end of game
2 position = play (position,

random move)
3 return score

The Nested Monte-Carlo Search function plays a game,
choosing at each step of the game the move that has the
highest score of the lower level Nested Monte-Carlo Search.
At each step the algorithm tries all possible moves, plays a
nested search at the lower level after each move, and memo-
rizes the move associated to the best score of the lower level
searches. As the samples are randomized, it is not guaranteed
that a nested search will always improve on previous searches
or even lower level searches. In order not to lose the best
moves of the best sequence found by a previous search, the
algorithm memorizes the best sequence. If none of the moves
improve on the best sequence, the move of the best sequence
is played, otherwise the best sequence is updated with the
newly found sequence and the best move is played:

int nested (position, level)
1 best score = -1
2 while not end of game
3 if level is 1
4 move = argmax_m (sample (

play (position, m)))
5 else
6 move = argmax_m (nested (

play (position, m), level - 1))
7 if score of move > best score
8 best score = score of move
9 best sequence = seq. after move
10 bestMove = move of best sequence
11 position = play (position,bestMove)
12 return score

The algorithm can be made anytime with iterative calls:

int iterativeNested (position, level)
1 bestScore = -1
2 while time left
3 score = nested (position, level)
4 bestScore = max (bestScore, score)
5 return bestScore

4 Analysis of the algorithm
In order to explain how Nested Monte-Carlo search behaves,
we analyze it on two very simple abstract problems. The
search tree of both problems can be represented as a binary
tree. In each state there are only two possible moves: going
to the left or going to the right.

4.1 The leftmost path problem
The scoring function of the first problem consists in count-
ing the number of moves on the leftmost path of the tree.
Let’s call this problem the leftmost path problem. The search
space of the leftmost path problem for depth 3 is depicted in
figure 1. A sample search that chooses moves randomly has
a probability 2−n of finding the best score of a depth n prob-
lem. A depth-first search that order moves randomly has one

3 2 1 1 0 0 0 0

Figure 1: The score of a leaf is the number of moves on the
leftmost path

chance out of two of choosing the wrong move at the root, so
the mean complexity of finding the best score with a depth-
first search is at least 2n−2. A level 1 Nested Monte-Carlo
Search will always find the best score and its complexity is
n × (n − 1). Nested Monte-Carlo Search is appropriate for
the leftmost path problem because the scores at the leaves are
extremely correlated with the structure of the search tree.

4.2 The left move problem

3 2 1 02 2 1 1

Figure 2: The score of a leaf is the number of moves to the
left

However, leaf scores of a problem are not usually as cor-
related to the structure of the tree as in the leftmost path
problem. We define the left move problem as the problem
where the score of a leaf is the number of moves to the left
that have been made during a game. A depth 3 left move
problem search tree is depicted in figure 2. Sample search
and depth-first search behave the same as in the leftmost
path problem. Nested Monte-Carlo Search is less well in-
formed in this problem. At the root of a depth d tree, the
number of leaves that have a given score s is (sd), in the left
branch this number is (s−1

d−1), concerning the right branch this
number of leaves is (sd−1). The probability that a sample
search starting with a left move finds the score s is there-

fore Pleftscore(s, d, 0) =
(s−1
d−1)

2d−1 . The probability that a sam-
ple search starting with a right move finds the score s is



Prightscore(s, d, 0) = (sd−1)

2d−1 . We now make the assumption
that when a search gives equal scores for the left and the
right branch, the algorithm chooses randomly between a right
move and a left move. We can now deduce the probability for
a given score found at the left that it will enable the choice
of a left move: Pleftmove(s, d, 0) = Prightscore(s,d,0)

2 +
Σs−1
i=0Prightscore(i, d, 0) (the first term comes from the ran-

dom choice in case of equality). Therefore, the probabil-
ity of choosing the left move according to the score of a
sample search is Pleft(d, 0) = Σds=0(Pleftscore(s, d, 0) ×
Pleftmove(s, d, 0)).

We can now remark that the distribution of the scores under
any node of depth d in the tree is the same, except for the ad-
dition of a constant (which is the number of left moves played
above the node). Therefore the probability of choosing a left
move at a depth d node is not dependent on the location of
the node in the tree, and the formula for Pleft(d, 0) is true for
any depth d node in the tree.

Suppose that we already know the formulas that gives
the probability Pleftscore(s, d, l) that a level l search start-
ing with a left move finds score s at depth d, and the prob-
ability Prightscore(s, d, l) that a level l search starting with
a right move finds score s at depth d. We can now de-
duce the probability for a given score found at the left that
it will enable the choice of a left move: Pleftmove(s, d, l) =
Prightscore(s,d,l)

2 + Σs−1
i=0Prightscore(i, d, l), and the proba-

bility of choosing the left move at depth d according to
a level l search: Pleft(d, l) = Σds=0(Pleftscore(s, d, l) ×
Pleftmove(s, d, l)).

The probability that a level l search finds score s at depth d
can be written given the probability that a level l − 1 search
chooses a left move and the probabilities at depth d − 1:
Pscore(s, d, l) = Pleft(d, l − 1) × Pscore(s − 1, d − 1, l) +
(1− Pleft(d, l − 1))× Pscore(s, d− 1, l).

Now that we have this formula we can compute the prob-
abilities Pleftscore(s, d, l) = Pscore(s − 1, d − 1, l) and
Prightscore(s, d, l) = Pscore(s, d− 1, l).

We now have a recursive definition of the probability of
finding a given score for a given depth and a given level.

A simple and fast recursive program with memo-functions,
or a dynamic programming program, can then compute the
probabilities tables for all scores, depths and levels using the
formulas above. This program has computed all the probabil-
ities for depths ranging from 1 to 100 and for level ranging
from 1 to 3.

A Nested Monte-Carlo Search program for the left move
problem has also been written. Statistics on finding the best
score for different levels and depths were computed using
100,000 searches for each entry of the table.

The previous theoretical formula and statistics presume
that the best sequence is not used. In order to evaluate the
importance of memorizing the best sequence, statistics on
the same levels and depths were computed using 100,000
searches with memorization of the best sequence. Memoriz-
ing the best sequence improves the results a lot. For example,
a level 3 search of a depth 9 problem has a 0.41 probability
of finding the best score while a similar search with memo-
rization of the best sequence increases the probability to 0.80

without any additional cost.
Figure 3 and 4 give the distributions for a depth 60 left

move problem. A Nested Monte-Carlo Search that does
not memorizes the best sequence improves much less with
the level than a search that does memorize it. A level 3
search with memorization has some chances of finding the
best score, whereas a search without memorization has very
little chances of finding it. The experimental distribution of
figure 3 has been compared to the theoretical results given
by the dynamic programming algorithm. The experimental
results are within 1.02 % of the theoretical distribution.

Figure 3: Distributions of the scores for a depth 60 left move
problem and different search levels

Figure 4: Distributions of the scores for a depth 60 left move
problem and different search levels with memorization of the
best sequence

4.3 Real-time properties
It is clear that the distribution of the scores improves with the
level. However a level n + 1 search takes more time than a
level n search. In order to compare the programs according
to the time they take to search, we ran 100 iterative Nested
Monte-Carlo Search of 82 seconds for levels 0 to 3. For
times starting at 0.01 second and doubling until 81.92 sec-
onds we have the mean score reached with an iterated Nested



Monte-Carlo Search. Figure 5 give the mean scores for dif-
ferent times and levels of a search with memorization of the
best sequence. The mean score of a search increases almost
linearly with the logarithm of the time. A level 1 search is
much better than a level 0 search (6 points), a level 2 search
is 2 points better than a level 1 search and a level 3 search
is one point better than a level 2 search. In a real-time set-
ting increasing the level of the search is beneficial until level
3 for the left move problem. Figure 6 give similar results for
searches without memorization of the best sequence. We see
that a level 1 search is better than a level 0 search, however
level 2 and 3 are worse than level 1. For the left move prob-
lem nested calls are not beneficial at level 2 and 3 if the best
sequence is not memorized.

Figure 5: Mean scores of the searches with memorization of
the best sequence in a real-time setting.

Figure 6: Mean scores of the searches in a real-time setting.

5 Experimental results

Nested Monte-Carlo Search was experimented on three quite
different games: Morpion Solitaire, SameGame and 16x16
Sudoku.

5.1 Morpion Solitaire
Morpion Solitaire is an NP-hard puzzle and the high score
is inapproximable within n1−ε for any ε > 0 unless P = NP
[Demaine et al., 2006]. A move consists in adding a circle
such that a line containing five circles can be drawn. Lines
can either be horizontal, vertical or diagonal. The starting
position already contains circles disposed as in figure 7. In
the disjoint version a circle cannot be a part of two lines that
have the same direction. The best human score at Morpion
Solitaire disjoint version is 68 moves [Demaine et al., 2006].
We have tested a level 4 Nested Monte-Carlo Search on Mor-
pion solitaire and obtained an 80 moves grid after 5 hours of
computation on a cluster of 32 dual core computers. The grid
is given in figure 7. On a single machine a run at level 4 takes
approximately 10 days.

Figure 7: A world record found by Nested Monte-Carlo
Search at Morpion Solitaire disjoint version

Figure 8 gives the distributions of the Morpion Solitaire
scores for Nested Monte-Carlo Search without memorization
of the best sequence. They were computed with 100,000 sam-
ples for level 0 and 10,000 searches for level 1 and 2. If we
compare it with similar distributions of the left move problem
in figure 3 we can observe that Nested Monte-Carlo Search
scales better with the level for Morpion Solitaire than for the
left move problem.

Figure 9 gives the distributions of the Morpion Solitaire
scores for Nested Monte-Carlo Search with memorization of
the best sequence. They were also computed with 100,000
samples for level 0, 10,000 searches for level 1 and 2 and 400
searches for level 3. We can see that Nested Monte-Carlo
Search scales even better with the level in this case. At level
1 the peak of the distribution is at 61 when it is only at 59
without memorization. At level 2 the peak is at 66 when it is
only at 62 without memorization.



Figure 8: Distributions of the scores for Morpion Solitaire

Figure 9: Distributions of the scores for Morpion Solitaire
with memorization of the best sequence

In Morpion Solitaire a nested search of level l is 200 times
longer than a nested search of level l− 1. We can guess from
the figure 9 that playing 200 games at level l − 1 is likely
to give a worse score that playing one game at level l for
l ≤ 4. In order to test this assumption, we computed the mean
score of an iterated search for given times and levels. The
results are depicted in figure 10. It is clear that a level 2 search
is better than a level 1 search which is better than a level 0
search. Similarly to the left move problem, the increase in
score is almost linear with the logarithm of the time. So given
a time limit it is advisable to choose the highest level ≤ 4
that can be searched within the time limit, and to use iterative
Nested Monte-Carlo Search.

5.2 SameGame
SameGame is an NP-complete puzzle [Kendall et al., 2008].
It consists in a grid composed of cells of different colors. Ad-
jacent cells of the same color can be removed together, scor-
ing (numberOfCellsRemoved − 2)2. When cells are re-
moved, the upper cells fall down, and when a column is empty
the columns to the right of the empty column are moved to
the left. There is a bonus of 1,000 points for removing all the
cells.

Figure 10: Mean scores of the searches with memorization of
the best sequence at Morpion Solitaire in a real-time setting.

In the simulations we used the TabuColorRandom strategy
[Schadd et al., 2008]. It means that at the beginning of each
playout the color that has the most cells is set as the tabu color.
During the playouts, moves of the tabu color are played only
if there are no moves of the others colors.

The previous best algorithm at SameGame used SP-MCTS
based on restarts of the UCT algorithm [Schadd et al.,
2008], it scored 73,998 on a standard test set. With simi-
lar time settings IDA* scored a total of 22,354 and Darse
Billings program scored 72,816 [Schadd et al., 2008]. Nested
Monte-Carlo search is more simple and gives better results at
SameGame since it scores 77,934 with a level 3 search with
memorization of the best sequence that corresponds roughly
to the previous time settings.

Table 1 gives the scores of SP-MCTS and of a level 3
search for the 20 positions of the test set. In order to evaluate
the interest of memorizing the best sequence at SameGame a
level 2 search was also performed with memorization of the
best sequence (level 2m) and without memorization (level 2).
Memorizing the best sequence clearly improves the search
since its total score is 65,937 when not memorizing only
scores 44,731 at level 2.

5.3 16x16 Sudoku
Sudoku is a popular NP-complete puzzle [Kendall et al.,
2008] usually played on a 9x9 grid. Some cells are empty
and others are filled with a number. The goal is to fill all
the empty cells with numbers between 1 and 9 such that all
the numbers in a row are different, all the numbers in a col-
umn are also different, and all the numbers in predefined 3x3
squares are also different.

Instead of using the usual 9x9 grid, we have used a 16x16
grid in order to have more difficult problems. The principle
is the same except that numbers range from 1 to 16 and that
squares have size 4x4. We have modeled Sudoku as a con-
straint satisfaction problem. Each cell is a variable that may
contain the sixteen possible values. Each time a cell is asso-
ciated to a value, all the variables in the same row, column or
square are updated and the value is removed from their do-
main. As soon as a variable has an empty domain the search



Position SP-MCTS level 2 level 2m level 3m
1 2,557 1,442 1,805 3,121
2 3,749 1,543 3,151 3,813
3 3,085 1,817 2,707 3,085
4 3,641 2,077 3,221 3,697
5 3,653 2,471 3,084 4,055
6 3,971 2,394 3,367 4,459
7 2,797 1,802 2,567 2,949
8 3,715 2,480 3,785 3,999
9 4,603 3,598 3,897 4,695
10 3,213 2,040 3,075 3,223
11 3,047 1,486 2,687 3,147
12 3,131 1,995 2,699 3,201
13 3,097 1,265 2,857 3,197
14 2,859 1,163 2,413 2,799
15 3,183 1,871 2,937 3,677
16 4,879 3,468 4,607 4,979
17 4,609 3,263 4,397 4,919
18 4,853 3,015 4,689 5,201
19 4,503 2,822 4,287 4,883
20 4,853 2,719 3,705 4,835

Total 73,998 44,731 65,937 77,934

Table 1: Results for SameGame

is stopped. During the search, the variable that has the small-
est domain size is chosen to be tried first. The possible values
of a variable are tried in a random order.

The difficulty of 16x16 Sudoku problems is dependent on
the number of empty cells. When there are many empty cells,
problems are underconstrained and easy to solve. When there
are few empty cells, problems are overconstrained and also
easy to solve. At the transition between overconstrained and
underconstrained problems, lie the hardest problems. The
most difficult problems have a percentage of empty cells close
to 66%.

In order to apply nested Monte-Carlo search to 16x16 Su-
doku, we have used the depth of the sample as its score (i. e.
the number of variables that have been assigned before find-
ing a variable with an empty domain). The depth is a very
simple measure which biases Nested Monte-Carlo Search to-
ward states that have a high depth, and thus are more likely
to be near a solution (which is a state with the maximal depth
of 256).

Table 2 gives the times used to solve 100 problems that
have 66% of empty cells. The tested algorithms are Forward
Checking (i.e. a depth first search), Iterative Sampling and
Nested Monte-Carlo Search at level 1 and 2. Concerning
Nested Monte-Carlo Search, if the first search does not find a
solution, other searches of the same level are performed until
a solution is found. Forward Checking (FC) is stopped when
the search time for a problem exceeds 20,000 seconds, For-
ward Checking is unable to solve 21 problems out of 100.
Iterative sampling takes much less time than Forward Check-
ing and solves all the problems. Nested Monte-Carlo Search
is clearly much better than Forward Checking, and better than
Iterative Sampling. Going from a level 1 Nested Monte-Carlo
Search to a level 2 search is not beneficial, maybe because

FC Iterative Sampling level 1 level 2
>446,771.09 s. 61.83 s. 1.34 s. 1.64 s.

Table 2: Results for 16x16 Sudoku with 66% of empty cells

the problems are already easy for a level 1 search. A level 1
search without memorization of the best sequence takes 7.00
seconds instead of 1.34 seconds. A level 2 search without
memorization takes 4.87 seconds instead of 1.64 seconds.

6 Conclusion
Nested Monte-Carlo Search can be used for problems that do
not have good heuristics to guide the search. The use of ran-
dom games implies that nested calls are not guaranteed to im-
prove the search. On simple abstracts problems, a theoretical
analysis of nested Monte-Carlo search was presented. It was
also shown that memorizing the best sequence improves a lot
the mean result of the search. Experiments on three differ-
ent games gave very good results, finding a new world record
of 80 moves at Morpion Solitaire, improving on previous al-
gorithms at SameGame, and being more than 200,000 times
faster than depth-first search at 16x16 Sudoku modeled as a
Constraint Satisfaction Problem.

References
[Bjarnason et al., 2007] R. Bjarnason, P. Tadepalli, and

A. Fern. Searching solitaire in real time. ICGA Journal,
30(3):131–142, 2007.

[Cazenave, 2007] T. Cazenave. Reflexive monte-carlo
search. In Computer Games Workshop, pages 165–173,
Amsterdam, The Netherlands, 2007.

[Demaine et al., 2006] E. D. Demaine, M. L. Demaine,
A. Langerman, and S. Langerman. Morpion solitaire. The-
ory Comput. Syst., 39(3):439–453, 2006.

[Gelly and Silver, 2007] S. Gelly and D. Silver. Combining
online and offline knowledge in UCT. In ICML 2007,
pages 273–280, 2007.

[Kendall et al., 2008] G. Kendall, A. Parkes, and K. Spo-
erer. A survey of NP-complete puzzles. ICGA Journal,
31(1):13–34, 2008.

[Schadd et al., 2008] M. P. D. Schadd, M. H. M. Winands,
H. J. van den Herik, G. Chaslot, and J. W. H. M. Uiterwijk.
Single-player monte-carlo tree search. In Computers and
Games, volume 5131 of Lecture Notes in Computer Sci-
ence, pages 1–12. Springer, 2008.

[Tesauro and Galperin, 1996] G. Tesauro and G. Galperin.
On-line policy improvement using monte-carlo search. In
Advances in Neural Information Processing Systems 9,
pages 1068–1074, Cambridge, MA, 1996. MIT Press.

[Yan et al., 2005] X. Yan, P. Diaconis, P. Rusmevichientong,
and B. Van Roy. Solitaire: Man versus machine. In
Advances in Neural Information Processing Systems 17,
pages 1553–1560, Cambridge, MA, 2005. MIT Press.


