
Generalized Widening
Tristan Cazenave

�

Abstract. We present a new threat based search algorithm that
outperforms other threat based search algorithms and selective
knowledge-based ��� for open life and death problem solving in the
game of Go. It generalizes the Iterative Widening algorithm which
consists in iteratively increasing the threat searched at the root. The
main idea of Generalized Widening is to perform Iterative Widening
at all max nodes of the search tree instead of performing it only at
the root. Experimental results show it can be three times faster than
selective knowledge-based ��� using the same knowledge, and eight
times faster than simple Iterative Widening. The performance against
��� can possibly be greatly enhanced by adding more knowledge in
the selection of moves during the verification of the threats.

1 INTRODUCTION

Generalized Widening (gw) is an improvement on current search al-
gorithms to solve games. It improves on threat based search algo-
rithms such as Generalized Threats Search (gts) [6], and it is a gen-
eralization of the Iterative Widening (iw) optimization [4]. The basic
idea is to apply Iterative Widening at all max nodes of the search tree
instead of applying it only at the root of the search tree.

Another goal of the paper is to show the applicability of threat
based search algorithms to open life and death problems in the game
of Go. The game of Go is a challenging game for AI, it is the only
classical board game where humans are still clearly superior to ma-
chines despite lot of efforts [2, 10]. Open life and death problem
solving is an important part of a Go program.

Section 2 presents the problem of life and death in the game of Go.
Section 3 presents algorithms that are related to Generalized Widen-
ing. Section 4 explains the Generalized Widening algorithm. Section
5 details its application to open life and death problems in the game
of Go. Section 6 details experimental results. Section 7 gives hints
for future work.

2 LIFE AND DEATH IN THE GAME OF GO

Assessing the life of groups is an important subgame of the game of
Go. For strong human players, improving their level in life and death
problem solving is considered as a good way to improve their overall
reading abilities and their level at Go.

For completely enclosed life and death problems, GoTools [14] is
the best program. It can compete with high dan level players. Un-
fortunately, it is not able to solve open problems as those commonly
arising in real games. It is restricted to completely enclosed prob-
lems with thirteen or fewer intersections. In open problems from real
games, the boundaries are not well defined and the number of possi-
ble moves can easily be twenty. Some of the best Go programs use
�

Laboratoire d’Intelligence Artificielle, Université Paris 8, Saint Denis,
France email : cazenave@ai.univ-paris8.fr

static heuristics to evaluate the life and death property in real games
[7, 8] while others rely on selective pattern based search [3].

3 RELATED ALGORITHMS

In this section we start with presenting Generalized Threats Search
which is an algorithm that selectively chooses the nodes to expand
based on the verification of threats, then we present the Iterative
Widening optimization for selective search algorithms, and the last
subsection deals with Df-pn which relates to Generalized Widening
in the sense that it also performs multiple iterative deepening and
selects nodes to expand.

3.1 Generalized Threats Search

Generalized Threats Search tries to verify a threat at min nodes. It
stops search when the threat is not verified. A threat at a min node
always starts with a max move. Moves in a generalized threats are
associated to an order. The order of a position is the number of moves
in a row by the same player that are required to win the game. Moves
of order � are moves associated to positions of order less or equal to
� . An example of a threat is the (6, 3, 2, 0) threat. Six is the number
of order one moves allowed in the verification of the threat, three
the number of order two moves and two the number of order three
moves. Only threats that have less moves than specified in the vector
for each order are verified at min nodes. If no threat is verified at a
min node, the node is cut and returns the ���
	���
������ value which is
the lowest non terminal value. Generalized Threats Search is able to
solve some games much faster than ��� . Examples of games it can
solve faster are 11x11 Philosopher’s Football, 6x6 Ponnuki Go, and
the capture game of Go.

3.2 Iterative Widening

Iterative Widening is an optimization of selective search algorithms
which has been used with success in the capture game of Go [4]. It
has also recently worked for endgame play in Scrabble [13]. The idea
is to iteratively increase the sets of moves that will be considered by
the search. For threat based algorithms, it can consist in increasing
the threats. The algorithm starts with trying a full iterative deepening
search with the smallest threat, and if it does not work, it continues to
perform full iterative deepening searches with the following threats
until the last available threat.

3.3 Df-pn

The PN* algorithm [12] is a depth first version of the Proof-Number
search algorithm [1]. Proof number search uses proof numbers and
disproof numbers at each node. A proof number is the minimal num-
ber of leaves under a node that need to be expanded in order to prove

a win for the node. A disproof number is the minimum number of
leaves that need to be expanded to prove a loss. PN* uses iterative
deepening search at all max nodes, it stops when the threshold for the
proof number is reached or when the node is proved or disproved.

Df-pn [11, 9] goes further than PN* by performing iterative deep-
ening at all nodes, and having thresholds both for proof numbers and
for disproof numbers.

4 GENERALIZED WIDENING

The idea of Generalized Widening is to perform Iterative Widening
at all max nodes of the search tree. In this section we start by stating
what is multiple iterative widening, then we state what is multiple
iterative deepening, the third subsection details the use of transposi-
tion tables in Generalized Widening, and the fourth subsection gives
and explains some pseudo-code for the max nodes search.

4.1 Multiple Iterative Widening

At max nodes, the algorithm starts with the smallest threat and in-
creases the threat until the threat associated to the node is searched or
the time is elapsed or the node is won or the node is lost. Threats are
ordered and represented by an indice. For example the threat number
0 is usually (1,0), meaning that only min nodes where a single max
move threatens a direct win will be developed. The threat number 1
is usually (2,1,0) which is the simplest threat of order 2.

4.2 Multiple Iterative Deepening

Multiple iterative deepening consists in performing an iterative deep-
ening search at all max nodes of the search tree.

For threats that are less than the threat associated to the node, Gen-
eralized Widening performs a complete iterative deepening search
until the result of the search is terminal or the time is elapsed. For
the threat associated to the node, it performs an iterative deepening
search that stops at the depth associated to the node.

4.3 Use of transposition tables

Beside the usual information, a transposition table entry for Gener-
alized Widening contains the number of the threat used to search the
position. Each entry in the transposition table contains information
on the score of the position, the depth it was searched, a flag for de-
termining if the score is exact, is a lower bound or is a higher bound,
the threat used, the best move and the forced moves.

We give below the code used to detect transpositions. The function
returns 1 when a transposition is successful, and 0 when the position
has to be searched again. The alpha, beta and res variables are passed
by reference.

transpo (d, alpha, beta, res, t) {
if (score == Won) {

res = Won
return 1

}
else if (score == Lost) {

res = Lost
return 1

}
if (depthTranspo >= d) {

if (flag == ExactScore) {

res = score
if (t <= threatTranspo)

return 1
}
else {
if ((flag == MinScore) &&

(t <= threatTranspo))
alpha = max (alpha, score)

else if ((flag == MaxScore) &&
(t <= threatTranspo))

beta = min (beta, score)
if (alpha >= beta) {

res = score
return 1

}
}

}
return 0

}

4.4 Algorithm for max nodes

The Generalized Widening algorithm performs at each max node
complete iterative deepening searches for all threats lower than the
threat associated to the node. The multiple iterative deepening for
these threats continues until the overall maximum possible depth is
reached or the position has the maximum possible evaluation (� �
�
or � �
������� � if a ko has been taken back before) or the search
returns ��� 	 �
 ����� (meaning that the threat has to be increased to
possibly find a win) or � �	� �
����� � or � �
� � .

Concerning the threat associated to the node, the multiple iterative
deepening stops at the depth of the node. The threats less than the
maximum threat for the node are searched possibly deeper than the
maximum threat for the node. This means that the lower threats work
as quiescence searches of the main threat search.

The pseudo-code for the algorithm is:

MaxNode (alpha, beta, threat, depth) {
eval = evaluation ();
if (isTerminal (eval) ||

(depth == 0) ||
!moreTime ())

return eval

if (transpo (depth, alpha, beta,
res, threat))

return res

Generate max moves

// Multiple Iterative Widening
for (t = 0;

((t <= threat) &&
(res < MaxEval ()) &&
(res > MinEval ()) &&
moreTime ());
t++) {

res = eval

// Multiple Iterative Deepening
currentDepth = MaxDepth

if (t == threat)
currentDepth = depth

for (d = 1;
((d <= currentDepth) &&
(res > NoThreat) &&
(res < MaxEval ()) &&
moreTime ());

d++) {
res = MinEval ()
alphaTemp = alpha
betaTemp = beta
for all max moves

if (alphaTemp < betaTemp) {
play move
r = MinNode (alphaTemp,

betaTemp, t, d-1)
if (r > res) {

res = r
if (res > alphaTemp)

alphaTemp = res
}
undo move

}
}

}
return res

}

5 APPLICATION TO LIFE AND DEATH

In this section we present the features of the program specific to Life
and Death. We start with explaining how groups are built. The second
subsection describes how some properties of the group are evaluated.
The third subsection deals with the selection of moves. The fourth
subsection details the evaluation function.

5.1 Construction of the Group

A fundamental task of an open life and death solver is to list all the
strings that will be considered as related concerning their life and
death. The set of related strings is called a group, this terminology
comes from Go. In order to build the group, the program start from
a string and iteratively adds all the strings that share a liberty with
a string already in the group, it also adds strings that are adjacent
to opponent strings that can be captured in a ladder, if the opponent
string is itself adjacent to a string of the group.

The set of strings of the group is updated incrementally during the
search.

5.2 Properties of the Group

Once a group is built, we can compute properties of the group such
as its skin and the list of possible eye points. These properties are
useful to evaluate the life of the group.

The skin of a group is a set of strings and empty points that sur-
round the group. The skin includes the opponent strings that have one
or two liberties and that are adjacent to the group, the strings adja-
cent to these adjacent strings that have less liberties than the adjacent
strings. It also includes the liberties of all the strings of the groups, as
well as the empty intersections adjacent to these liberties. Moreover,

it includes the adjacent opponent strings that have four liberties or
less and that are completely enclosed by the group.

False eye points are intersections that cannot possibly be trans-
formed in eyes. An intersection of the skin is a false eye if it has a
neighbor of the color of the opponent which is not part of the skin, or
if it has two empty neighbors that are neighbors of opponent strings
that are not part of the skin, or if it is empty and has at least one
enemy neighbor, or if it is on the first line and it has at least one diag-
onal owned by the opponent, or if it is on the first line and it has two
empty diagonals that the opponent can own in one move, or if the
number of empty diagonals that the opponent can own in one move
divided by two plus the number of diagonals owned by the opponent
is strictly greater than one.

The set of possible eye points of a group is its skin minus the false
eye points.

5.3 Selection of moves

The program uses two specialized functions to select moves at max
and min nodes. The max nodes moves are the moves that try to make
the group alive. The possible moves for the max player are the lib-
erties of opponent strings adjacent to the group that can be captured
in a ladder, and the liberties of the friend strings adjacent to the op-
ponent string and which have less liberties than the opponent string,
moves that threaten to capture an adjacent opponent string in a lad-
der, moves on the liberties of the strings of the group and on the
empty intersections neighboring these liberties.

The possible moves for the min player are roughly the same as the
move for the max player, except for moves that escape a ladder of an
opponent string instead of moves that capture the ladder.

Move of order one are only moves that make an eye, a special
function is called to select this kind of moves. Moves of order one are
used in the evaluation function to detect if the group can live in one
move. In our implementation, the move selection functions are the
same for the ��� and for the threat based algorithms. More selective
move selection functions of order two and three can be written for
threat based move selection and can improve by much the behavior
of threat based search algorithms.

5.4 Evaluation function

The group is considered alive if two different eyes are recognized
on two different liberties of the same string and if the two eyes do
not share a non protected intersection (this last condition tests the
non-dependence of the two eyes). The group is not dead if there
are at least two possible eye points that are not neighbors, other-
wise it is considered dead and the evaluation function returns � �
� �
or � �
� � ����� � if a ko has been taken back earlier.

The evaluation function returns values that are ordered as fol-
low: � �
� � � � �
� �
����� � � ���
	���
������ ��� ��� � ��� � �
� ��������� � � � ��� .

The � �
	���
���� � value means that the current threat has not been
verified at a min node, it is different from the � �	� � value which
means that the threat to live has been verified, and that one of the
min moves has lead to a dead group.

At max nodes, the evaluation function tests if there is an order one
living move, if so it returns � �
� or � ��������� � depending on the
ko status of the node.

6 EXPERIMENTAL RESULTS

The test suite consists of fifty life problems. In some problems the
goal is to find a move that makes the group live, while in the oth-
ers the goal is to prove the group is alive whatever the opponent
plays. The problems are taken from games between computers, or
from games between human and computers. They are representative
of the kind of open problems that a life and death solver has to deal
with in real games.

The threat number 0 is the (1,0) threat, number 1 is (2,1,0), number
2 is (6,5,0) and number 3 is (6,3,2,0).

The ����� ��� ��� algorithm is a generalized widening algorithm that
reverts to usual � � when all the threats in [0,t-1] have failed. Instead
of stopping the increase of threats when the higher threats returns
NoThreat as in the gw algorithm, the ����� ��� ��� considers all the min
moves for threat number t without verifying any threats (as in the
usual ���). This can also be understood as an � � with a Generalized
Widening algorithm for quiescence search. The ����� �����	� algorithm
is an ��� with multiple iterative deepening at each max node.

The ��� uses the same knowledge as the other algorithms for move
generation and evaluation.

The window search for all the algorithms has been set to
[� �
� ����� � - 1, � �
�] as they all try to prove the life of the groups.

The machine used is a 1.7 GHz Pentium with 100 Mb of memory.
The transposition table contains 16384 entries. All the algorithms use
the transposition move, two killer moves and the history heuristic, in
this order, at all nodes, so as to have a good move ordering. � � uses
iterative deepening.

Table 1 gives the number of problems solved and the total time
used for the fifty problems under different time constraints. For each
algorithms, three different time constraints have been tested. The
thresholds used are 0.1 second, 1 second and 10 seconds. All algo-
rithm stop search as soon as the time threshold is reached, or before
the threshold when the result is not modifiable.

The 0.1 second threshold per problem fits well for Go programs
based on a global selective search where many positions including
some life and death problems have to be evaluated for deciding a
move[7]. The 1 second threshold is better associated to program
based on the evaluate and play architecture, which allocates more
time for the accurate evaluation of the position [3]. The 10 seconds
threshold is given to show the behaviour of the algorithms with more
time.

gts(0) does not figure in the table 1 because it is equivalent to
iw(0).

The result of 250 seconds for ��� with 25 problems solved, may
seem strange, but it is due to one problem quickly solved by the ���
but incorrectly labeled as won, whereas it is won by ko. The 24 other
unsolved problems account for 240 seconds, the other 10 seconds is
the time used for the 25 solved problems and the incorrectly assessed
one.

For all algorithms, only one problem is incorrectly labeled by all
the algorithms, the other unsolved problems are all due to a lack of
problem solving time and not to an incorrect answer. The incorrectly
labeled problem is due to the evaluation function that does not rec-
ognize ko, not to the search algorithm which can handle kos.

The results of the table 1 show that for all threats, the Iterative
Widening algorithm is better than the Generalized Threats Search (it
solves more problems in less time). The Generalized Widening algo-
rithm is clearly better than the Iterative Widening algorithm (except
for small occasional overheads, gw usually solves more problems
in less time than iw for all threats). Especially, � ����
�� solves more

Table 1. Different algorithms with different time constraints.

��
	� ��� � ��� � �
 �
���������������! � ����"�#�$ �%�& �# � ���'"(#�$ �%�&)# � ���'"�#�$ �%��)#
,+ 13 3.69 21 30.71 25 250.50,+ �.-0/21�3 19 3.46 24 26.89 26 235.91*,+ �.-0/�4.3 19 3.43 24 26.89 27 235.50*,+ �.-0/�5.3 19 3.46 23 27.26 26 238.46*,+ �.-0/ � 3 20 3.38 21 28.75 24 262.02*,+ �.-0/
 3 14 3.72 19 32.57 25 252.92�.-6/&4.3

18 3.51 24 26.30 26 198.46�.-6/&5.3
17 3.35 22 20.08 24 131.61�.-6/ � 3
18 2.78 21 10.94 21 40.79�.-6/
 3
16 1.31 18 3.66 18 14.39��-0/�4.3
16 3.56 21 29.04 23 228.10��-0/�5.3
16 3.30 22 20.26 22 145.93��-0/ � 3
16 2.66 21 11.25 21 36.93��-0/
 3
16 1.04 18 3.32 18 13.17�.� � /&4.3
10 4.06 12 36.37 19 288.66�.� � /&5.3
11 3.64 18 25.31 21 176.57�.� � / � 3
11 2.96 20 13.40 21 64.26

problems in less time than ��� and 7 ����
�� . The � �8� ����
�� generalized
widening algorithm appears to be the algorithm of choice, it solves
more problems than ��� in less time for all time constraints.

The ����� ���%9�� algorithm has been tested because it is the extension
of the � ����
�� algorithm. The same threats as in the � ����
�� algorithm
are used in the same order, but when no threats work, it reverts to ���
instead of stopping the search. It is interesting to note that � �8� ���%9:�
performs slightly worse than ����� ����
	� for the ten seconds threshold.
It might be the case that the overhead of verifying the threat num-
ber 3 (i.e. the (6,3,2,0) threat) is too large for the unsolved problem
compared to simply searching all the moves selected by the � � . The
choice of using high order threats versus the choice of using all the
moves selected by the � � is driven by two factors. The first factor
is the selectivity obtained in the move generation for the ��� . In the
case of open life and death problem, we have designed a quite se-
lective move generator, therefore the difference between the set of
moves generated by the high order threats and the one generated by
the selective move generator is not so large. The second factor is
the time needed to verify the high order threats, which is the over-
head of using threat based move selection. We have not used abstract
knowledge related to the threats for the move generation in the threat
verification, therefore the threat based move selection is relatively
slow. The combination of these two factors might explain why using
higher order threats does not always improve the � �8� � algorithm,
and particularly in the case of the (6,3,2,0) threat.

In the experiments of table 1, the total time is dominated by the un-
solved problems. This is realistic for approximating the behaviour of
the algorithms in a Go program. It is less relevant to compare the mer-
its of the different algorithms. So we did another experiment which
consisted in restricting the problems to the 27 solvable problems, and
then comparing the time and number of moves used by the different
algorithms to solve these problems. For each algorithm, we ran it
with a time limit of 100 seconds. The number of moves for threat
based algorithms includes the moves played in the main search, the
moves used to verify the threats, the moves played to generate pos-
sible moves, and the moves played in the evaluation function. Con-
cerning � � the number of moves includes the same numbers as for
threat based algorithms except that it does not verify threats.

Table 2 shows that Generalized Widening is superior to Iterative
Widening, which is in turn superior to simple Generalized Threats

Figure 1. Some problems of the test suite

Table 2. Timing the different algorithms.

�����������&���: � ���'"(#�$ �%�&)# �0 ���"�# �
*,+ �.-0/�4.3 27 15.40 916458�.-0/�4.3

26 18.71 1108289*,+ 27 50.80 7266459�&-0/�4.3
26 116.61 12040874�.� � /�4.3
23 � 463.36 � 39859002

Search. It also shows the superiority of Generalized Widening on ���
with the same knowledge: ����� ����
�� solves the problems three times
faster than ��� . This result is obtained without giving any special ab-
stract knowledge to the threat based algorithm, which is remarkable
as giving it such knowledge in other games gave speed-ups of an or-
der of magnitude [5]: the potential of the threat-based algorithms is
underestimated in these experiments.

The gw(3) algorithm is also much faster than ��� with the same
knowledge, but it fails to solve one problem because in this prob-
lem, the opponent can find moves that lead to min nodes where the
(6,3,2,0) threat is not verified, and the result for this problem is there-
fore NoThreat.

The gts(3) algorithm only solves 23 problems because 3 problems
reach the 100 seconds time limit without finding the solution. Given
more time it would solve 26 problems as the iw(3) and the gw(3)
algorithm.

7 FUTURE WORK

The current approach tests all possible max moves at max nodes, and
cuts min nodes if the threat is not verified. It is interesting to test for
threats to kill at max nodes, and to test Generalized Widening also at
min nodes on the threats to kill.

The program currently heuristically selects min moves in the ��� .
This heuristic function for selecting min moves is also used to select
min moves in the threats. The selectivity of min moves can be safely
improved by only selecting the min moves associated to the trace of
the verified threat.

Another possible improvement concerns the evaluation function.
Life can be detected earlier by recognizing larger eyes and using pat-
terns.

The selectivity of max nodes moves can also be improved. For ex-
ample, in the threat based search, except for order one moves, the
max nodes moves are the same as the max nodes moves of the � � . It
is possible to be more selective for order two moves, only consider-
ing eye making moves and moves threatening to make an eye near a
string that already has an eye.

More generally, it is possible to be more selective in the threat
based move generation by increasing the knowledge about the ab-

stract properties of the game. Abstract game knowledge about moves
generated in the threats and in the main search has been shown to be
an important factor for the speed of threat based search algorithms
[5]. It can give a large speed-up for ����� � , � � , 7 � and ��� � to give
this knowledge to the program.

The combination of Generalized Widening with the idea of Df-pn
search could also lead to substantial improvements.

Testing Generalized Widening in other games also looks promis-
ing.

8 CONCLUSION

We have shown that Generalized Widening can be associated to the
� � algorithm to improve problem solving for open life and death
problems in the game of Go. The resulting algorithm is faster and
solves more problems in less time than ��� alone and that other re-
lated threat-based algorithms.

REFERENCES
[1] L.V. Allis, M. van der Meulen, and H. J. Herik, ‘Proof-number search’,

Artificial Intelligence, 66(1), 91–124, (1994).
[2] B. Bouzy and T. Cazenave, ‘Computer Go: An AI-Oriented Survey’,

Artificial Intelligence, 132(1), 39–103, (October 2001).
[3] D. Bump, G. Farneback, et al., ‘gnugo’, web page,

http://www.gnu.org/software/gnugo/, Free Software Fondation,
(1999-2004).

[4] T. Cazenave, ‘Iterative Widening’, in Proceedings of IJCAI-01, Vol. 1,
pp. 523–528, Seattle, (2001).

[5] T. Cazenave, ‘Admissible moves in two-player games’, in SARA 2002,
volume 2371 of Lecture Notes in Computer Science, pp. 52–63,
Kananaskis, Alberta, Canada, (2002). Springer.

[6] T. Cazenave, ‘A Generalized Threats Search Algorithm’, in Computers
and Games 2002, volume 2883 of Lecture Notes in Computer Science,
pp. 75–87, Edmonton, Canada, (2002). Springer.

[7] K. Chen and Z. Chen, ‘Static analysis of life and death in the game of
Go’, Information Sciences, 121, 113–134, (1999).

[8] D. Fotland, ‘Static eye analysis in ”The many faces of Go”’, ICGA Jour-
nal, 25(4), 203–210, (2002).

[9] A. Kishimoto and M. Müller, ‘Df-pn in Go: an application to the one-
eye problem’, in Advances in computer games 10, pp. 125–141, (2003).

[10] M. Müller, ‘Computer go’, Artificial Intelligence, 134(1-2), 145–179,
(2002).

[11] A. Nagai, ‘Df-pn algorithm for searching AND/OR trees and its appli-
cations’, Phd thesis, Department of Information Science, University of
Tokyo, (2002).

[12] M. Seo, ‘The C* algorithm for AND/OR tree search and its application
to a tsume-shogi program’, Master’s thesis, Departement of Informa-
tion Science, University of Tokyo, (1995).

[13] B. Sheppard, ‘Endgame play in scrabble’, ICGA Journal, 26, 147–165,
(September 2003).

[14] T. Wolf, ‘Forward pruning and other heuristic search techniques in
tsume go’, Information Sciences, 122, 59–76, (2000).

