Overestimation for Multiple Sequence Alignment

Tristan Cazenave
L.ILA.S.D.
Dept. Informatique
Université Paris 8
cazenave@ai.univ-paris8.fr

Abstract— Multiple sequence alignment is an important prob- Let's first consider the case of dimension two, it consists
lem in computational biology. A-star is an algorithm that canbe in aligning two sequences. We can write the letter of the
used to find exact alignments. We present a simple modificatio it sequence on the horizontal axis, and the letters of the

of the A-star algorithm that improves much multiple sequen@ . -
alignment bott? in time and rﬂemory at the cogt of g small Second sequence on the vertical axis. The path starts at the

accuracy loss. It consists in overestimating the admissiel Origin point of the matrix (point (0,0) at the upper left).
heuristic. A typical speedup for random sequences of lengttwo ~ For each point there are three possible moves: the diagonal,

hundred fifty is 47 associated to a memory gain of 13 with an the horizontal, and the vertical moves. A diagonal move is
error rate of 0.09%. Concerning real sequences, the speedgan equivalent to aligning two characters of the sequences, an

be greater than 13,000 and the memory gain greater than 150, hori tal ; valent to aliani h ¢ f th
the error rate being in the range from 0.08% to 0.71% for the orizontal move IS equivalent to aligning a character or the

sequences we have tested. Overestimation can align sequesc hori;ontal sequence with a gap in the SeCOUd sequence, a
that are not possible to align with the exact algorithm. vertical move aligns a character of the vertical sequence

with a gap in the horizontal sequence. All paths stop at the
bottom right of the matrix after the last two characters of
Multiple sequence alignment is one of the most importariioth sequences have been aligned.

problem in computational biology. It is used to align DNA The simple model to evaluate the cost of a move is: 0 for a
and protein sequences. The problem of aligning more thanatch (aligning the two same characters), 1 for a mismatch,
eight sequences takes too much memory for current exact ahd 2 for a gap (a gap is represented with a -). The cost of
gorithms such as A-star or dynamic programming. Biologists path is the sum of the costs of its moves.

use programs that give an approximate answer to overcomeror example, if the first sequence is ACGTTAGCTA and

the difficulty of finding exact alignment. the second sequence is ACAGTTAGTA the best alignment
From a search point of view, the problem has propertigs:

that are different from other problems that are commonly
solved with A-star such as the sliding-tile puzzle, or pati AC- GTTAGCTA
ing on game maps. It has a branching factor iR<®(when ACAGITAG TA
s is the number of sequences to align. The state space form%mOI it has a cost of four.
a lattice, and there are many paths that go through the sam
node. d
We propose to improve the basic A-star algorithm WithC
overestimation. We have found that it enables large speed
and memory gains at the cost of a low error rate.
The second section presents the multiple sequence align- . ,
ment problem, the third section details the modifications- Dynamic programming
to the basic A-star algorithm, the fourth section presentS Dynamic programming can be used to efﬁcienﬂy find
experimental results, the last section concludes. solution to the problem of sequence alignment. However if
the average length of the sequences to aligieigith, and
the number of sequences isdynamic programming needs
In this section we present the multiple sequence alignmey(eyg¢th*) memory and time. A possible improvement
problem, then we show how dynamic programming cagades off time for space [2] but it still requiresi@fgth*—?)

be applied to it. We present the approximate algorithmgemory which is still too much for aligning many sequences.
currently used to solve the problem, and we give an overview

of the exact algorithms that have been tested on it.

I. INTRODUCTION

Svhen aligning s sequences, the path goes through a s-
imensional lattice, the branching factor2s — 1, and the

u ost of a move is the sum of the costs of the moves for each
gg)air of sequences.

Il. MULTIPLE SEQUENCEALIGNMENT

C. Approximate algorithms

A. The problem The programs currently used by biologist such as
The multiple sequence alignment problem can be consi@LUSTAL W [3] and DCA [4] find sub-optimal alignments.
ered as a shortest path problem in a s-dimensional lattjce [TThey consist in series of progressive pairwise alignments.

D. Exact algorithms A. Choosing the best open node

A-star was applied to the optimal alignment of multiple Naive implementation of A-star use a list to store the open
sequences by lkeda and Imai [5]. The admissible heuristand the closed nodes. In this case, when the program has to
is computed using the dynamic programming tables for thitnd the best open node, it has to go through all the list to
pairwise alignments. Because of the large branching factéind the node with the minimunf. The cost of using a list
of the problem, and the large number of open nodes, As linear in the size of the list.
star cannot align more than seven sequences due to memorA more elaborate, and commonly used, implementation
limits. To overcome this difficulty and reduce the memorf A-star uses a priority queue to represent the open list. A
requirements, A-star with partial expansion was propo8gd [priority queue uses a heap to maintain the nodes sorted. The
It consists in not memorizing in the open list child nodes thansertion of a new node, as well as the finding of the best
have af value greater than thg value of their parent plus a node require a logarithmic time in the size of the list.
threshold. Experimental results show that Partial Exgamsi |nstead of a simple queue, we have used an array of stacks
A-star can align seven sequences using fewer stored nodgsnaintain the open list. The index in the array is the value
than A-star, and can align some eight sequences problergs. f for the nodes stored in the corresponding stack. The
However the gain in memory is acquired at the cost of sertion of an element is performed in constant time, just
greater search time. pushing it on the top of the stack that corresponds tofits

Another refinement was proposed to reduce both the mewalue. Finding the best node is also performed in almost
ory and the time requirements, using an octree to represeiginstant time. The smallest value ¢urrentf) over all
a three-way heuristic [7]. A close approach is the use afie nodes is maintained, and updated each time a node is
external memory pattern databases using strucured dteplicinserted in the open list. When retrieving the best open node
detection [8]. It reduces the memory requirements of theurrentf is used to check if the stack at this index has an
pattern databases by an average factor of 83 times, ag@ment. If so the first element is popped and returned as the
makes Sweep-A-star [9] run 16% faster than using traditiondest node. If the stack is emptyrrent f is incremented and
pattern databases. the test is performed again for the next index in the array of

Other researchers have compared A-star and dynanstacks.
programming [10].

B. Duplicate node detection

I11. A- STAR . . o
In the multiple sequence alignment problem, it is very

This section presents modifications to the A-star algorithnimportant not to expand again nodes that are already present
In all the paper, the admissible heuristic we have used fdm the open or closed lists, with a smaller or eqgal
A-star is the sum of the pairwise alignments given by the A possible implementation is to go through all the closed
2-dimensional dynamic programming tables. and open nodes, to verify if the node to insert in the open
In A-star, the value associated to a node (thealue) is list is not already present with a smaller or eqgaMWhen
the sum of the cost of the path from the origin to the nodi#mplemented this way, the duplicate node detection takes
(the g value), and of the admissible heuristic that gives most of the time of the algorithm.
lower bound on the cost of the remaining path to the goal We propose an implementation of duplicate node detection
(the h value). We have for the node f(n) = g(n)+h(n). which uses a transposition table. Transposition tables are
The main loop of the A-star algorithm works as follow: often used in game programs so as to memorize the results of
search at nodes of the tree [11]. In order to hash position, we

void AStar() { have used Zobrist hashing [12]. A position in the state space
bool outOf Menory = fal se; is defined by its coordinates. There are as many coordinates
Node * node = nodeWthSmallestf(); as there are sequences. For each possible sequence, and
whi | e(! node->final () && !out O Menory){ each possible coordinate in this sequence, a 64-bit random
out O Memory = devel op(node); number has been computed once for all. These static random
node = nodeWthSmallestf(); numbers are computed using the rand function to set each one
} of the 64 bits of the random number. The Zobrist hashing
} of a position is the XOR of all the random numbers that

where develop(node) puts the node in the closed list correspond to the coordinates of the position. The XOR is

and puts all the children of the node in the open list, an#Sed because:

nodeWithSmallest f() sends back a node of the open list . it is a very fast operation on bits,

with a minimal f. e it is incremental: in order to undo the XOR with a
The first subsection deals with the efficient choice of the number, the only operation needed is to XOR again

best open node. The second subsection is about efficient with this number. When a node is expanded, it is a

duplicate node detection. The third subsection explaing ho move to a neighboring position. The program only has

we have used overestimation. to XOR the random numbers of the old coordinates that

TABLE |

change, and to XOR also the random numbers of the
COMPARISON OF PRIORITY QUEUES AND ARRAY OF STACKS

new coordinates.
o The XOR of random values that have a uniform reparti-

s algorithm X time > nodes
tion gives a random value that has a uniform repartition. 5 array :1%53%5 %%5145266198
LS .. - 5 queue .38s ,310,
It is important to lower the collision probability. 6 aray 744425 23045612
Each position in the search space is associated to a 64- 6 queue 888.92s 23,914,925

bit hashcode. The lowest bits of this hascode are use to
index the position in the transposition table. An entry af th

transposition table contains a list of structures. Eaalctire TABLE II
contains a hashcode and gavalue. When the algorithm COMPARISON OF LIST AND TRANSPOSITION TABLE
detects duplicate, it goes through the list and verifies if an , ,
. " s algorithm X time
entry with the same hashcode as the current position, and a) St 124545

less or equay is present. In that case, the node is cut. 4 transposition 2.03s

C. Overestimation

Overestimation has been used for Sokoban in the program
Rolling Stones, adding all the patterns that match instdad B. Array of stacks
only selecting the ones that ensure admissibility [13].sThi Table | gives the time and number of nodes used by A-star
use of overestimation has helped Rolling Stones solve dth a STL priority queue, and A-star with an array of stacks.

problems instead of 47 without overestimation. s is the number of sequences to align. Each line describes
Pearl has introducedadmissible search [14] which finds the result of solving one hundred problems with sequences
solutions with bounded costs. of length fifty.

A related but different approach is to use likely-admissibl For five sequences the speed of the array of stacks is
heuristics [15]. It consists in relaxing the admissibilig- 81,844 nodes per second while the speed of the priority queue
guirement in a probabilistic sense. Instead of providing ais 72,953 nodes per second. The array of stacks is 12% faster.
upper bound to the cost, it guarantees to end-up with optimal On more complex problems with more nodes, the compar-
solutions with a given probability. ison is even better for the array of stacks: for six sequeitces

In order to overestimate the length of the remaining pattflevelops 30,957 nodes per second versus 26,903 nodes per
we have used the following: f(n) = g(n) + w x h(n) second for the priority queue. The array of stacks is 15%
wherew is a real number greater than one. Overestimatici@ster.
speeds up A-star at the cost of making it inexact. C. Duplicate node detection

The main property of this overestimation is that it more i _
Table Il gives the time used to solve the one hundred

easily develops nodes that have a lbwalue first, i. e. nodes / !) "
that are closer to the goal than in usual A-star. Nodes thBfoPlems with sequences of length fifty, using transpasitio

have been discarded early in the search stay discardedlong@l,es' and using lists. The transposition table uses 65,53
than in usual A-star. So overestimation prefers paths whe atries. The index of a position is the last 16 bits of its

some search has already been invested, and paths that code.)
a low admissible heuristic at the beginning of the path. Even ff’r problems with a small number of nod_e_s such
as the alignment of four sequences, the transposition table

algorithm clearly out performs the list implementation.
On the more complex problem of aligning five sequences,

Experiments use a machine with 1 GB of RAM. Giventhe list implementation takes 2203 seconds for solving the
the available memory, we have chosen a limit of 10,000,0d0'st six problems, when the transposition table implementa

IV. EXPERIMENTAL RESULTS

nodes for A-star. tion takes 2.05 seconds. Lists become even worse for more
than five sequences since the number of nodes grows and the
A. Generation of random test data list implementation takes time proportional to the squdre o

the number of nodes.
In order to test the different algorithms, we have generated

random sequences of bases (i.e. strings composed of lettBrsStraight alignment

in the {A,C,G,T} alphabet). The tests use sets of strings of In order to find an upper bound to the cost of an alignment
length fifty, one hundred, two hundred or two hundred andnd better evaluate overestimation, we have tested the algo
fifty. This methodology is similar to Korf and Zhang testingrithm which consists of aligning all the sequences without
methodology [16]. Generating random problems allows tmtroducing gaps. The tests were run for one hundred sets of
generate a large number of problems, and to easily replicaequences of length fifty and one hundred sets of sequences
experiments. For each length, we have generated one hundoédength one hundred. The same sets of sequences are used
problems. Each problem is composed of ten strings. for testing overestimation. The results are given in tatle |

TABLE Ill TABLE V
UPPER BOUNDS FOR ONE HUNDRED SETS OF SEQUENCES OF LENGTH RESULTS FOR ONE HUNDRED SETS OF SEQUENCES OF LENGTH FIETY

FIFTY.

s w Y time X score Y. nodes
s X score 5 1.00 3854s 36,654 3,154,269
5 37,341 5 1.05 2.59s 36,747 556,463
6 56,041 5 1.10 0.57s 37,036 212,282
7 78,561 5 1.20 0.30s 37,320 161,983
8 104,711 6 1.00 744.42s 55,362 23,045,612
9 135545 6 1.05 24.97s 55,477 2,556,103
10 168,401 6 110 1.76s 55,929 496,354
6 1.20 0.85s 56,161 328,479
7 1.00 30,844.41s 77,982 168,829,955
7 1.05 268.40s 78,147 12,052,417
7 110 6.47s 78,592 1,247,218
TABLE IV ' b
7 1.20 2.17s 78,767 653,935
UPPER BOUNDS FOR ONE HUNDRED SETS OF SEQUENCES OF LENGTH g 1.05 5,639.71s 104,396 58,990,176
ONE HUNDRED. 8 1.10 26.17s 104,895 3,151,376
8 1.20 4.62s 104,914 1,305,738
s X score 9 1.10 94.02s 134,856 8,153,718
4 44,894 9 1.20 16.68s 134,765 2,586,087
5 75,061 10 1.10 572.74s 168,920 21,489,700
6 112,500 10 120 44.12s 168,592 5,193,800
7 157,548
8 209,945
TABLE VI
GAINS OVER THE EXACT ALGORITHM FOR SEQUENCES OF LENGTH
. . FIFTY.
for sequences of length fifty, and in table 1V for sequences of
length one hundred. ThE score field gives the sum of the ; . (7)1)5 speiiugB egrzog(y memory gaén67
H B . . . 0 .
scores of the straight alignment for all the random sequence 5 110 6761 1.04% 14.86
. 5 1.20 128.47 1.82% 19.47
E. Overestimation for random sequences 6 1.05 2981 0.21% 9.00
L . 6 1.10 422,97 1.02% 46.42
We testeq overestlmatlon for d|fferent numbers of se- 6 120 87578 1.44% 70.15
quences, different weights, and different lengths of se- 7 1.05 11492 0.21% 14.01
quences. Results for sequences of length fifty are given in 7 110 4,767.30 0.78% 135.36
7 120 14,21400 1.01% 258.17

table V. The first column gives the number of sequences
to align, the second column gives the weight used for
overestimation (1.00 corresponds to the exact algorittimg),
third column gives the cumulated time used to solve one
hundred problems, the fourth column gives the sum of thiacrease fast with the number of sequences, and that the
scores (length of the shortest path) found for each problempeedups increase even faster with the number of sequences.
the fifth column gives the sum of the nodes used for solving We tested the program on sequences of length one hun-
each problem. dred. Results are given in table VII. We can observe that
The results for the exact algorithm are not given for eighthe 1.10 weight is always better than the straight alignment
or more sequences, since the node limit is reached for theshile the 1.20 weight becomes worse for seven and eight
problems before the problem is solved. sequences. The 1.05 weight gives interesting speedups and
We can observe than the 1.05 weight is a safe weight. iemory gains for alignments that are close to optimal.
significantly reduces the time and the number of nodes, while Table VIII gives the gains and the error calculated with
finding alignments that are better than straight alignmentable VII. If we compare table VI with table VIII, we can
and quite close to optimal alignments. The 1.10 and thebserve that the gains for four sequences in table VIl are
1.20 weights sometimes give worse results than the straigdimilar to the gain for five sequences in table VI. The
alignment, and should be avoided. branching factor is fifteen for four sequences, and thirtg on
Table VI has been created using table V. For each numbfar five sequences, the average length of the shortest path
of sequences, and each weight, the speedup, the error anditheour hundred twenty six for four sequences of length one
memory gain are given. The error is calculated dividing thbundred, and three hundred sixty seven for five sequences of
sum of the lengths of the paths found with overestimatiolength fifty. The gains are slightly greater for four sequesnc
by the sum of the lengths of the shortest paths found by thef length one hundred than for five sequences of length fifty,
exact algorithm. The memory gain is computed dividing thevith length of the shortest paths which are also slightly
number of nodes of the exact algorithm by the number ajreater.
nodes of the approximate algorithm. Concerning five sequences of length one hundred, and
We can observe in this table that the memory gainseven sequences of length fifty, the average length of the

TABLE VIl TABLE IX

RESULTS FOR ONE HUNDRED SETS OF SEQUENCES OF LENGTH ONE RESULTS FOR ONE HUNDRED SETS OF SEQUENCES OF LENGTH TWO
HUNDRED. HUNDRED.
s w Y time X score ¥ nodes s w Y time X score Y nodes
4 1.00 65.31s 42,605 5,403,857 4 1.00 3,664.79s 84,102 91,691,701
4 1.05 3.18s 42,696 732,666 4 1.05 97.87s 84,197 7,638,509
4 1.10 0.58s 43,069 243,311 4 1.10 2.28s 85,190 611,965
4 1.20 0.36s 43,587 162,110 4 1.20 0.99s 86,631 336,527
5 1.00 4547.52s 72,152 88,548,072 4 straight 0.06s 90,104 0
5 1.05 109.81s 72,246 8,045,147
5 1.10 2.90s 72,986 788,188
5 1.20 0.84s 74,167 340,647
6 1.05 6250,38s 109,398 93,687,353 TABLE X
g i%g 1]7.819_3 i‘ig:fgé 2'7883';'683 GAINS OVER THE EXACT ALGORITHM FOR SEQUENCES OF LENGTH TWO
7 110 216.68s 155,251 14,090,458 HUNDRED.
7 1.20 4,47s 157,674 1,415,208
8 110 7,288.41s 207,858 89,290,030 S w speedup error memory gain
8 1.20 10.43s 210,554 2,839,425 4 105 3744 0.11% 12.00
4 1.10 1607.36 1.29% 149.83
4 1.20 3701.81 3.00% 272.46

TABLE VIII
GAINS OVER THE EXACT ALGORITHM FOR SEQUENCES OF LENGTH ONE

HUNDRED. alignment of five sequences with a weight of 1.05, the node
s w speedup error memory gain limit was reached and A-star stopped with no solution after
;1 1-2(5) ﬁg-gg (i%g"f 272-3£ 2,818 seconds. Comparatively, a weight of 1.10 found a path

. . . () . H H

4 120 18142 2.30% 3334 of_ length 1807 in 0.39 seconds_ and 57,044 nodes (a straight
= 1.05 2141 0.13% 11.01 alignment gave 1865). For this problem the speedup was
5 1.10 1568.11 1.15% 112.34 therefore of much more than 7,225 and the memory gain of
5 120 541371 2.79% 259.94

much more than 175.

In conclusion, in our experiments on random sequences,
overestimation gives better results for sequences that are
difficult to align.
shortest paths are respectively seven hundred twenty WO ~ arestimation for real sequences

and seven hundred eighty, when the gains in memory are

equivalent, and the speedups are three times greater for the//é have tested overestimation on real sequences with
seven sequences. another machine, a Pentium 2.8 GHz with 1 GB of RAM.

The error rates are more important for five sequences of

length one hundred than for seven sequences of length fifty, TABLE XI
even if the speedup are lower. It is interesting as it showsRESULTS FOR ONE HUNDRED SETS OF SEQUENCES OF LENGTH TWO
that speedup and error rates are not always correlated, and HUNDRED FIFTY.
that there are portions of the space of problems (denoted by s w S time S score 5 nodes
the length of the sequences and the number of sequences) 1 100 12098.15s 104565 217,402.086
that are more favorable to overestimation than others. 4 1.05 274.72s 104,660 16,514,033
L . 4 1.10 417s 106,002 1,019,825
As the overestimation has a better behavior for sequences 4 120 127s 107831 426,185
of length one hundred than for sequences of length fifty, we 4 straight 0.08s 112,060 0
have tested the algorithm on sequences of length two hundred 5 110 64.88s 179,024 7,012,805
(tables IX and X), and on sequences of length two hundred 5 120 3.44s 183,058 933,319
. 5 straight 0.15s 187,103 0
and fifty (tables XI and XII).
For sequences of length two hundred, all weights give
much better results than the straight alignment. Moreover, TABLE X

the speedups and the memory gains are also better than for
GAINS OVER THE EXACT ALGORITHM FOR SEQUENCES OF LENGTH TWO
four sequences of length one hundred.

Concerning sequences of length two hundred fifty, the HUNDRED FIFTY

speedups and memory gains are even better, and all the s w speedup error memory gain

weights give alignments much better than the straight one. 4 105 47.31 0.09% 13.16
For five sequences, the overestimation finds alignments that 4 110 3117.06 1.37% 213.18
or 1ive sequ ; g 4 120 1023476 3.12% 510.11

are much better than the straight one when the exact al-
gorithm exhausts memory. When we have tested the first

TABLE Xl TABLE XIV

RESULTS FOR REAL SEQUENCES GAINS OVER THE EXACT ALGORITHM FOR REAL SEQUENCES
name s w score time nodes name s w error speedup memory gain

test4-refl 10 1.00 unknown >2,664.1382 >10,000,000 test4-refl 10 1.05 unknown >175.29 >7.54
test4-refl 10 1.05 2,634 15.1980 1,326,779 test3-refl 9 1.05 unknown >2,958.81 >47.48
test3-refl 9 1.00 unknown >2,536.0442 >10,000,000 test2-refl 8 1.05 unknown >13,610.39 >156.63
test3-refl 9 1.05 2,081 0.8571 210,605 testrefl 7 1.05 0.08% 3,068.84 96.45
test2-refl 8 1.00 unknown >2,096.7981 >10,000,000 1bbt3-refl 5 1.05 unknown >164.62 >13.85
test2-refl 8 1.05 1,624 0.1540 63,843 laboA-refl 5 1.05 0.71% 228.35 98.93

testrefl 7 1.00 1,220 210.5230 3,373,102 lad2-refl 4 1.05 0% 19.67 9.53

testrefl 7 1.05 1,221 0.0686 34,972 laab-refl 4 1.05 0.50% 14.10 7.31
1bbt3-refl 5 1.00 unknown >903.0281 10,000,000 laho-refl 5 1.05 0.20% 8.57 5.88
1bbt3-refl 5 1.05 1,847 5.4853 721,808 larbA-refl 4 1.05 0.13% 1.26 1.67
TaboArefl 5 1.00 701 3.9505 475,654 lesprefl 5 1.05 0.24% 1.20 1.39
laboA-refl 5 1.05 706 0.0173 4,808

Tad2-refl 4 1.00 985 0.1180 45,011

lad2-refl 4 1.05 985 0.0060 4,723

Taab-refl 4 1.00 403 0.0550 25,017

i:ﬁg:gg g i:gg igg 8:8232 li”ﬁg Future works include combining our improvement with
laho-refl 5 1.05 489 0.0047 2449 other heuristics used for exact algorithms such as pattern
larbA-refl 4 1.00 748 0.0185 5107 databases [8], partial expansion [6] and dynamic program-
lar5A-refl 4 1.05 749 0.0234 3,052 ming [10]

icsprefl 5 1.00 412 0.0144 3,127)

lcsp-refl 5 1.05 413 0.0120 2,246

REFERENCES

[1] H. Carrillo and D. Lipman, “The multiple sequence aligemt problem
in biology,” SIAM Journal Applied Mathematicsol. 48, pp. 1073—
1082, 1988.
. 2] D. S. Hirschberg, “A linear space algorithm for compgtimaximal
T_he sequences are taken from BaliBase [17]. The results a}e] common subsequenceCommunications of the ACMol. 18, no. 6,
given in table Xlll. The name of the sequences are the names pp. 341-343, 1975.

in BaliBase. Some of the test sequences have been creat&l J- Thompson, D. Higgins, and T. Gibson, "CLUSTAL W: Imping
the sensitivity of progressive multiple sequence alignimimough

by merging the five sequences of laho-refl and the five gequence weighting, position-specific gap penalties arightenatrix
sequences of 1csp-refl, which gives ten sequences. THe test choice,” Nucleic Acids Researghvol. 22, pp. 4673-4680, 1994.

refl file contains all the ten sequences, test3-refl comtaim [K. Reinert, J. Stoye, and T. Will, "An iterative methodrftaster sum-
' of-paris multiple sequence alignmenBloinformatics vol. 16, no. 9,

first nine sequences (the five sequences of 1aho-refl fallowe ;" g08-814, 2000.
by the first four sequences of 1csp-refl), test2-refl castai [5] T. lkeda and T. Imai, “Fast A* algorithms for multiple seence
the first eight sequences, and test-refl the first seven. alignment,” inGenome Informatics Workshop 94994, pp. 90-99.

. . [6] T. Yoshizumi, T. Miura, and T. Ishida, “A* with partial @ansion for
The score field gives the length of the shortest path found ™" |51ge branching factor problems,” IAAI-0Q 2000, pp. 923-929.

for the alignment of the sequences, thige field gives the [7] M. McNaughton, P. Lu, J. Schaeffer, and D. Szafron, “Meyro

time in seconds. and theodes field the number of nodes efficient A* heuristics for multiple sequence alignmentj’ AAAI-02
’ 2002, pp. 737-743.

used by A-star. . . . [8] R. Zhou and E. Hansen, “External-memory pattern datbassing
The memory gains and speedups are given in table XIV. structured duplicate detection,” IAAI-05 Pittsburgh, PA, July 2005.
An impressive result is the alignment in test2-refl thatean [—— "Sweep A* Space-efficient heuristic search in paifyi ordered

. . . L graphs,” in Proceedings of 15th IEEE International Conference on
be found by A-star, when overestimation finds it in less than 74015 with Artificial Intelligence 2003, pp. 427-434.

13,000 times less time and less than 150 times less memdng] H. Hohwald, I. Thayer, and R. Korf, “Comparing best-fisgarch and

Another excellent result is the alignment of ten sequences dynamic programming for optimal multiple sequence aligntfiein
9 q IJCAI-03 2003, pp. 1239-1245.

fc_>r test4-ref1..We do_not have.error rates for these two tesu_l[ll] D. Breuker, “Memory versus search in games,” Universit Maas-
since the optimal alignment is too hard to find, however it tricht,” PhD thesis, October 1998.

has been calculated for test-refl and in this case it is veR#] A. Zobrist, "A new hashing method with applications fgame
o playing,” ICCA Journa) vol. 13, no. 2, pp. 69-73, 1990.
small (0.08 0) _ [13] A.Junghanns and J. Schaeffer, “Domain-dependentesimgent search
The experiments with real sequences show that overesti- enhancements,” iNICAI-99, 1999, pp. 570-575.

mation works very well for difficult to align sequences, and14] J. Pearl Heuristics: Intelligent Search Strategies for Computeolir
y 9 q lem Solving Addison-Wesley, Reading, MA, 1984.

is associated with a small error rate. [15] M. Ernandes and M. Gori, “Likely-admissible and subrdyolic
heuristics,” inECAI 2004 Valencia, Spain: 10S Press, 2004, pp.
V. CONCLUSION AND FUTURE WORK 613-617.

; ; feai et _ [16] R. E. Korf and W. Zhang, “Divide-and-conquer frontiezasch applied
Overestimation of the admissible heuristic of A-star ap=™' = optimal sequence alignment.” MAAL-0Q 2000, pp. 910-916.

plied to the multiple sequence alignment problem givesgargi17] 3. Thompson, F. Plewniak, and O. Poch, “BaliBase: a bewgk
speedups and memory gain for small error rates. In our tests, alignment database for the evaluation of multiple sequatigament
it works better with difficult sequences than with easy ones. Programs,Bioinformatics vol. 15, pp. 87-88, 1999.

