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Abstract

Dealing with multi-objective combinatorial optimization and local search, this article proposes a
new multi-objective meta-heuristic named Pareto Adaptive Decomposition algorithm (PAD). Com-
bining ideas from decomposition methods, two phase algorithms and multi-armed bandit, PAD pro-
vides a 2-phase modular framework for finding an approximation of the Pareto front. The first phase
decomposes the search into a number of scalarized problems by linear aggregation of the original
multi-objective problem. Following a data perturbation step, the second phase conducts an iterative
process: a number of scalarized problems are selected by a multi-armed bandit policy and optimized
by a single-objective local search solver. Resulting solutions will serve as a starting point of a multi-
objective local search procedure, called Pareto Local Search. Based on this framework, we conduct
experiments on several instances of the bi-objective symmetric Traveling Salesman Problem. The
experiments show that our proposed algorithm outperforms the best current method on this problem.

1 Introduction

In multi-objective (MO) combinatorial optimization, several criteria are taken into account. When the
preferences of the decision maker are not known, a far challenge is to generate the set of non domi-
nated points, so that no improvement on any objective is possible without sacrificing on at least another
objective.

This article presents the Pareto Adaptive Decomposition algorithm (PAD), a new MO local search
meta-heuristic. PAD provides a modular framework by combining ideas from the Multi-Objective
Memetic Algorithm based on Decomposition [9], the Two Phase Pareto Local Search [11] and the mor-
tal multi-armed bandit paradigm [6]. The paper is organized as follows: Sect 1 first recalls the formal
definition of a MO combinatorial optimization (MOCO) problem and fundamental definitions from MO
optimization. Then, we introduce basic concepts of local search algorithms, followed by a presentation
of related work. Sect 2 describes the proposed algorithm, PAD. Finally Sect 3 is devoted first to the
adaptation of PAD to the bi-objective Traveling Salesman Problem (bTSP) and then the computational
experiments. Sect 4 concludes on the contributions and perspectives of PAD.

1.1 Multi-objective optimization

Let ξ be a finite set of q elements ξ := {e1, ...eq}, defining a combinatorial structure. Let c1 : ξ →
N, ..., cp : ξ → N be the p ≥ 2 cost functions on the elements of ξ. Considering the minimization sum
version, a MOCO problem is defined as:{

min f(x) = (f1(x), ..., fp(x))

subject to x ∈ X
(1)

given the feasible set X ⊂ 2ξ and the p potentially conflicting objective functions fi : X → N such
that fj (x) =

∑
e∈x

cj (e) for a given feasible solution x ∈ X , for each j = 1, ..., p.

LetZ⊂ Rp be the objective space andZX := f(X) = {z ∈ Z : zj=fj(x) for j = 1,...,p and x ∈ X}
the attainable objective set, mapping a feasible solution x to a point z = f(x) of the objective space Z.

Let z, z′ ∈ Z be two points in the objective space. We say that z dominates z′, denoted by z ≺ z′

, if zj ≤ z′j for each j=1,...,p and there exists i ∈ {1, ..., p} such that zi < z′i. We say that z weakly
dominates z′, denoted by z � z′, if zj ≤ z′j for each j=1,...,p.

Agadir, June 7-10, 2015



id–2 MIC 2015: The XI Metaheuristics International Conference

An attainable objective point z ∈ ZX is called non dominated if and only if there is no other ẑ ∈ ZX
such that ẑ ≺ z.

A feasible solution x ∈ X is called efficient if its image in objective space is non dominated.
The set of all non dominated points ZND is called non dominated set or Pareto front. The set of all

efficient solutions XE is called the efficient set.
The ideal point is defined as z∗j := min

x∈X
fj (x) for each j=1,...,p. The nadir point is defined as

ηj := max
x∈XE

fj (x) for each j=1,...,p. Let λ = (λ1, ..., λp) be a weighting vector (weight).

The weighted sum problem is given by :{
min ws(x, λ) =

∑p
i=1 λifi(x)

subject to x ∈ X
(2)

In this paper, the weighting vector λ is normalized such that λj ≥ 0 for each j=1,...,p and
∑p

j=1 λj =
1. The resulting scalarized problem is a single-objective instance of the original MO problem.

Supported efficient solutions are optimal solutions of a weighted sum scalarization for some vec-
tor λ > 0. The image in objective space of the supported efficient solutions corresponds to the non-
dominated points, which are located on the convex hull of ZX . Non-supported efficient solutions are ef-
ficient solutions that are not optimal solutions for any weighted sum problem with λ > 0. Non-supported
non-dominated points are located in the interior of the convex hull of ZX .

1.2 Single-objective and multi-objective local search

Let d : (X , X) → R+ be a distance measure between two feasible solutions. For any k ≥ 1, we define
the k neighborhood functionNk : X → 2X asNk (x) = {y ∈ X | d(x, y) ≤ k}. Changing from x ∈ X
to y ∈ Nk (x) is called a neighborhood move.

Given a single-objective minimization problem with objective function g : X → R, an iterative im-
provement local search algorithm searches, at each step, from the current solution x ∈ X for a neighbor
y ∈ Nk (x) such that g (y) < g (x). If such a neighbor exists, it moves to y, otherwise the method stops
and x is a local optimum.

A (stochastic) perturbation move (called kick) is a technique with the aim of escaping from a local
optimum. Let x ∈ X be a local optimum according to Nk (k ≥ 1). A kick consists in applying a
move from x in a larger size neighborhood Nl (l > k). The perturbation neighborhood size l has to be
sufficiently large to lead to a different attraction basin than the one generated by x.

An iterated local search (ILS) algorithm [10] builds a sequence of locally optimal solutions by itera-
tively perturbing the current solution by use of a stochastic kick, and then applying iterative improvement
local search after starting from the modified solution.

In MOCO, we search for a set of solutions rather than a single solution. We define the neighborhood
of a set of feasible solutions as the union of the neighborhood of each solution.

Pareto Local Search (PLS) [2] is the MO version of iterative improvement local search. Starting
from a set of solutions, PLS searches for the set of all potentially efficient neighbors. A new iteration
starts from the newly found set and searches again for potentially efficient neighbors. PLS continues until
no more potentially efficient neighbors have been identified, stopping in what we call a local optima set.

Iterated PLS (IPLS) [8] is the MO version of ILS. Starting from an initial set of solutions, IPLS
iteratively performs a PLS, then perturbs (by use of stochastic kicks) some potentially efficient solutions
previously found. Newly generated solutions compose a new starting set for PLS. This technique can
escape from a local optima set.

1.3 Related work

The concept of decomposition [16], introduced by the MO Evolutionary Algorithm based on Decom-
position (MOEA/D) method, is simple yet efficient: it decomposes a MO optimization problem into a
number of scalarized problems and optimizes them simultaneously in a collaborative way.
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Two phase Pareto Local Search (2PPLS) [11] is a bi-objective stochastic local search method. The
first phase follows a dichotomous scheme [1], tackling a well-suited number of weighted sum problems
by use of a single-objective ILS solver. Resulting solutions serve as a starting set for PLS. The main
idea of 2PPLS is the following: PLS is a powerful tool to generate potentially efficient solutions; how-
ever, instead of starting the method with randomly generated solutions (thus of poor quality) as done in
previous works, 2PPLS first generates a set of high quality solutions covering well the Pareto front by
approximating the supported efficient solution set. PLS is used in the second phase to generate a more
accurate approximation of the Pareto front by searching for the remaining solutions, the non supported
ones. The authors experimentally show that this first phase drastically increases the final quality and
convergence speed of PLS.

The Multi-Objective Memetic Algorithm based on Decomposition (MOMAD) [9] is a recent method
combining ideas from 2PPLS [11] and MOEA/D [16]. As a decomposition method, MOMAD is an
iterative algorithm and first decomposes the MOCO problem into several weighted sum problems. Each
of these problems is defined by a weight λ given a unique search direction, and maintains a best-so-
far solution (incumbent) according to ws(·, λ) for the entire duration of the run. Such as 2PPLS, an
ILS is applied on each single-objective problem in order to initialize the incumbents with high quality
potentially supported efficient solutions covering well the Pareto front. Then the iterative part begins.
At each iteration, MOMAD conducts a PLS. When PLS stops, MOMAD apply again an ILS from each
incumbent. The potentially efficient solutions generated compose a starting set for the next PLS. Note
that incumbents are regularly updated in a collaborative way, by comparison with the other ones. This
iterative mechanism of restarting PLS by perturbation is not new and has already been used in [8] with
the notion of IPLS. However, [9] hybridizes IPLS with the decomposition methodology.

To our knowledge, MOMAD is the state-of-the-art algorithm on the bTSP and the MO multidimen-
sional knapsack problem. This paper compares our algorithm PAD, with MOMAD on the bTSP. Recent
experiments [9] have shown that MOMAD outperforms the 2PPLS method on all the tested instances,
so comparing our algorithm with 2PPLS does not seem to be relevant.

2 Pareto Adaptive Decomposition algorithm

This section describes the algorithm presented in this paper, the Pareto Adaptive Decomposition algo-
rithm (PAD). Sect. 2.1 presents the PAD framework, while the following subsections describe its main
components. In the different algorithms, the symbols ↓, ↑, and l specify the parameter transmission,
respectively in, out and in-out.

2.1 General framework

PAD is a two phase iterative method using the idea of decomposition [16]. Basically, the first phase
decomposes the search into a number of sub-problems; the second phase iteratively produces a starting
set by use of ILS and conducts a PLS from this set of potentially efficient solutions.

First phase begins by the decomposition phase. It produces several sub-problems, initially weighted
sum problems. Each of them is defined by a weight λ; and maintains the best so far solution minimizing
ws (·, λ) called incumbent, regularly updated during the search. The number of sub-problems remains
fixed during the entire duration of the run. Then, an efficient ILS is applied on each sub-problem to
initialize the incumbents with high quality potentially supported efficient solutions covering well the
Pareto front. What follows makes a great difference compared with MOMAD. Each sub-problem, corre-
sponding up to now to a weighted-sum one, has already been optimized by an ILS. Thus many potential
supported efficient solutions have been already found. We claim that continuing the optimization on
these directions during the second phase, like MOMAD does, may be too restrictive. Indeed, we will
search for the potentially non supported ones, which are usually much more numerous than supported
ones in a MOCO problem.

This way, the set of starting solutions provided for running PLS will be much larger, thus interesting
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for the global quality and the convergence behavior of PLS. Because these solutions can not be found by
a single-objective solver on a weighted-sum problem, we use the data perturbation technique [7] which
adds a random noise to a cost matrix related to a weighted sum problem. By adding such a noise in a
scalarized cost matrix, we produce a non-linear change to the direction of the search of the sub-problem,
which remains a single-objective version of the MOCO problem. Thus, ILS still can optimize such
problem and provide potentially efficient supported or non supported solutions. So the scalarized matrix
related to each sub-problem are perturbed.

Framework: Pareto Adaptive Decomposition
Input : stopping criterion, MO cost matrix C, decomposition parameter σ, maximum depth of

PLS l, data perturbation parameter d
Output: set A of potentially efficient solutions

Step 1) Decomposition phase: Π←Decomposition(C↓, σ↓, Al), where Π =
(
π1, ..., πK

)
Step 2) Initial settings:

Step 2.1) Set PPLS ← A, the starting set of PLS

Step 2.2) Perturbation: for each πk ∈ Π do : Ck ←DataPerturbation(C↓, λk↓, d↓)

Step 3) Adaptive optimization phase: for it=1 to K do :

Step 3.1) Select a sub-problem: πb ←AdaptiveGreedySelection(Π↓)
Step 3.2) Iterated local search: Set P ←IteratedLocalSearch (Cb↓, xb↓)
Step 3.3) Update of Π, A and PPLS: for each x ∈ P do :

• UpdateIncumbents(x↓, Πl)
• if UpdateSolutionSet(x↓, Al) then : UpdateSolutionSet(x↓, PPLSl)

Step 3.4) Update attributes: rb ← rb + |P ∩A| ; sb ← sb + 1

Step 4) Reset the worst sub-problem: Select πw ← arg min
πk∈Π

{ rk
sk
}

Then: Cw ←DataPerturbation(C↓, λw↓, d↓) ; rw, sw ← 0

Step 5) Pareto local search: ParetoLocalSearch(l↓, PPLS↓, Al, Πl) ; PPLS ← ∅

Step 6) : If the stopping criterion is satisfied, then stop and return A. Otherwise, go to Step 3.

The second phase iteratively: selects several sub-problems and applies an ILS from their respective
incumbent; then runs a PLS starting from the newly found potentially efficient solutions. The sub-
problem selection used at each iteration is inspired by a recent Multi-armed Bandit (MAB) selection
policy [4] called Adaptive Greedy Selection [6]. Knowing that a major role of ILS is to provide new
potentially efficient solutions to restart PLS stuck in a local optima set, the MAB policy will direct the
selection towards the sub-problems from which ILS finds more such solutions.

As previously mentioned, each sub-problem maintains an incumbent. Each time a new (potentially
efficient) solution is found, it will be compared to all the incumbents and may replaces one of them if it
is better than the incumbent on the related weighted sum value. Introduced in [9], this procedure allows
to regularly updates incumbents. This way, incumbents follow the evolution of the approximation set
and provide good quality and well-dispersed solutions for ILS.

Because data perturbation is a stochastic procedure, it can produce problems whose optimal solution
is not efficient for the addressed MOCO problem, or simply problems which provide via ILS fewer
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potentially efficient solutions than the other ones. To overcome this issue, we need to modify them by
perturbing again their scalarized cost matrix. However it may be very resource-consuming to do this
for each sub-problem concerned. Instead, at each iteration, just before PLS, we select the sub-problem
from which ILS was the least efficient for finding potentially efficient solutions. Then we reset its cost
matrix by perturbing it again. The combination of data perturbation, sub-problem selection policy and
sub-problem reset procedure constitutes a major contribution of our work and provides to our algorithm
an adaptive behavior. Indeed, PAD initially proposes a set of search directions by perturbing all the sub-
problems once; then, at each iteration, it tends to apply more ILS from the best ones and to search for
new search directions by perturbing again the less effective ones.

Finally, at the end of an iteration, PAD conducts a PLS from the set of newly generated potentially
efficient solutions, provided by ILS.

The framework of PAD (page 4) depicts the main steps previously described. PAD is an anytime
algorithm and takes as input any stopping criterion. It considers a MO cost matrix C, a decomposition
parameter σ used by the decomposition phase to define the number of sub-problems, the maximum depth
of PLS l limiting the computational cost of PLS, and the data perturbation parameter d controlling the
maximum variation of the noise put into scalarized cost matrix. PAD maintains two set of solutions: the
set of potentially efficient solutions found so far A and the starting set of PLS PPLS .

PAD uses several auxiliary procedures. The IteratedLocalSearch procedure conducts an ILS
which not only returns the best solution, but the set of local optima whose images in the objective space
do not dominate each other. This is one of the differences between [9, 11] and our work. Updates
of solution sets are made by the UpdateSolutionSet procedure, which adds a solution to a set of
solutions whose images do not dominate each other. It returns true if and only if the solution has been
added to the set. The method maintains the set of K sub-problems Π = (π1, ..., πK), where K remains
fixed. For each k = 1, ...,K, a sub-problem πk is a tuple (λk, Ck, xk, rk, sk) composed of five elements:
the weight λk linearly scalarizing the MO cost matrix C into the scalarized matrix Ck, the incumbent
minimizing ws

(
·, λk

)
, and two attributes used in the second phase of PAD: the cumulative number rk

of efficient solutions found by ILS conducted from xk, and the selection counter sk counting the amount
of times πk has been selected during the second phase. The procedure UpdateIncumbents manages
incumbent updates. Given a solution x ∈ X and the set of sub-problems Π, the procedure searches in
a random order for an incumbent xk in Π such that ws

(
x, λk

)
< ws

(
xk, λk

)
, then xk is replaced by

x and the procedure stops. Otherwise xk is discarded and the procedure continues until all incumbents
have been discarded. In PAD, each time a solution is added to the set A of potentially efficient solutions
or generated by ILS, it will be compared to the incumbents through this procedure.

2.2 Decomposition phase

Given the MO cost matrix C, the parameter σ fixing the number K of sub-problems and the set A of
potentially efficient solutions, the Decomposition procedure (Step 1) decomposes a MOCO problem
into a number of well dispersed weighted sum problems. It first generates the set of weights Λ = {λ =
(λ1, ..., λp) :

∑p
j=1 λj = σ, λj ∈ {0, ..., σ}, j = 1, ..., p} such that |Λ| = K = ( p+ σ − 1

σ ) following
the method presented in [5]. For each weight λk from Λ, it first builds the linearly scalarized cost matrix
Ck and then solves the related weighted-sum problem ws

(
·, λk

)
using an ILS. The starting solution for

ILS is generated by a domain-dependent heuristic. Given P the set of solutions whose images are non
dominated to each other, we set as incumbent the solution xk which minimizes ws(x, λk) where x ∈ P ,
and updates A with the solutions of P . The attributes rk and sk are both initialized to 0. Finally, the
sub-problem πk ← (λk, Ck, xk, rk, sk) is added to the set of sub-problems Π, returned at the end of the
procedure.

2.3 Data perturbation

Data perturbation [7] in MO optimization has been first introduced in [11]. In this paper, data pertur-
bation needs only one parameter, whereas the one in [11] needs three parameters. The principle of data
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perturbation used in PAD is to add a random noise into a linearly scalarized cost matrix. Given the MO
cost matrix C, a weight λ and the data perturbation parameter d :∈ ]0; 1[ controlling the maximum varia-
tion of the noise, the DataPerturbation procedure (Step 2.2) computes for each e ∈ ξ its perturbed
value wsperturb (e, λ, d) = U(1 − d, 1 + d) ×

∑p
j=1 λjcj (e) and inserts it into a new single-objective

perturbed cost matrix, returned at the end of the procedure. The higher d, the greater the perturbation is.

2.4 Sub-problem selection

The purpose of the sub-problem selection issue is to select sub-problems providing a maximum of poten-
tially efficient solutions. This situation involves an exploration vs exploitation trade-off and it is natural
to link our issue to the Multi-Armed bandit (MAB) problem [4]. A MAB problem models a set of K
slot machines, where each machine (arm) has a different and unknown reward distribution. The goal
is to sequentially select the optimal arm to pull, in order to maximize the cumulative reward. Obvi-
ously, arms in the MAB problem stand for sub-problems in our selection issue and reward stands for the
number of potentially efficient solutions generated by a sub-problem. As seen in SubSect 2.1, at each
iteration the worst sub-problem is reset. This refers to the Mortal MAB problem [6], where available
arms are assumed to be born and die regularly such that the number K of arms remains fixed, like the
number of our sub-problems. In [6], the authors show that the UCB algorithm [14] commonly used for
the original MAB problem, is no longer suitable for the Mortal version and propose the Adaptive Greedy
algorithm [6]. The AdaptiveGreedySelection procedure (Step 3.1) works as follows: given the
set of sub-problems Π, the sub-problem πm maximizing the ratio { ri

si
} (i = 1, ...,K) is chosen. Then,

πm is selected with probability equals to min(1, r
m

sm ), otherwise a random one is selected among the set
of sub-problems Π.

In the vast majority of decomposition algorithms [16], all sub-problems receive about the same
amount of computational resource. To our knowledge, [17] first introduced the idea of managing in
a different way the sub-problem selection. However this approach is not founded on the MAB paradigm
but rather on an ad hoc one and their set of sub-problems was not dynamic, thus we do not consider their
algorithm.

2.5 Pareto Local Search

Algorithm 1 (Step 5) presents a modified version of the original PLS [2]. Given a neighborhood func-
tion NPLS , PLS explores the neighborhood of a starting set P of potentially efficient solutions. Each
potentially efficient neighbor found (Line 4) is inserted into a temporary set Pnext and serves to update
incumbents (Line 5). When the neighborhood of all solutions of P has been explored, a new PLS is
conducted on Pnext (Line 9). Following [9], PLS stops when Pnext is empty or the limited depth of the
algorithm l is exceeded. During the process, P is static and A can be updated with potentially efficient
neighbors. Thus it may append that the image of a newly generated neighbor entering A dominates the
image of a solution in P . Our modifications prevent the exploration of the neighborhood of such a non
efficient solution: Line 2 checks if x ∈ P is still in A, and Line 7 switches of current solution as soon as
its image is dominated. Thus contrary to previous works [9, 11], we never explore the neighborhood of
a solution proven to be non efficient. These modifications are added from the original PLS to limit the
computational resources allocated to PLS and transfer them to ILS.

3 Computational experiments

Computational experiments of PAD are conducted on the bTSP. We first recall the formal definition of
the multi-objective TSP (MO TSP), then present the benchmark on bTSP instances and introduce the
notion of quality indicators. After parameters settings, we compare the results of PAD and MOMAD,
the state-of-the-art algorithm on bTSP.
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Algorithm 1: ParetoLocalSearch
Input : maximum depth l, starting set of solutions P , set of potentially efficient solutions A, set

of sub-problems Π =
(
π1, ..., πK

)
Output: A, Π

1 Pnext ← ∅
2 foreach x ∈ P ∩A do
3 foreach y ∈ NPLS (x) such that f (x) ⊀ f (y) do
4 if UpdateSolutionSet(y↓, Al) then
5 UpdateIncumbents(y↓, Πl)
6 UpdateSolutionSet(y↓, Pnextl)
7 if f (y) ≺ f (x) then break;

8 if Pnext 6= ∅ and l > 1 then
9 ParetoLocalSearch(l − 1↓, Pnext↓, Al, Πl)

3.1 Definition of the problem

In the single-objective version of the TSP, a traveling salesman has to visit a set of cities without passing
more than once through each city and returns to the starting one. The goal is to find a tour such that the
total cost is minimized. In the MO TSP, the traveling salesman has to minimize several different costs
(potentially conflicting) at the same time. More formally, we define the MO TSP as follows. Given a
complete graph G = (V, ξ) with V = {v1, ..., vn} the set of n nodes and ξ := {e1, ...eq} corresponds
to the set of edges such that q = n(n−1)

2 , the MO TSP is defined by Eq. 1 where x ∈ X represents an
Hamiltonian cycle on G. We are interested here in the bTSP, that is p = 2. The MO TSP is NP-hard
and intractable, even if p = 2.

3.2 Benchmark instances

We experiment PAD on nineteen bTSP instances. We consider four different types of instances.
First, the Euclidean instances: an instance is composed of two single-objective euclidean instances.

For each objective, the costs between the edges correspond to the Euclidean distance between two cities
in a plane. The ten following euclidean instances are used: three instances published in [13]: euclid100,
euclid300 and euclid500. Two instances generated on the basis of TSPLIB instances [15]: kroAB100,
kroAB200. And finally five other instances generated in [11] : kroAB300, kroAB400, kroAB500,
kroAB750, kroAB1000.

Second, the random instances: the costs between the edges are randomly generated from a uniform
distribution. We use three random instances published in [13]: rdAB100, rdAB300 and rdAB500.

Next, the mixed instances: the first cost corresponds to the Euclidean distance between two cities in
a plane and the second cost is randomly generated from a uniform distribution. Three mixed instances
also published in [13] are used: mixedAB100, mixedAB300 and mixedAB500.

Finally, the clustered instances: an instance is composed of two single-objective clustered instances.
For each objective, the cities are randomly clustered in a plane, and the costs between the edges cor-
respond to the Euclidean distance. We consider three clustered instances generated in [11]: Clus-
teredAB100, ClusteredAB300 and ClusteredAB500.

3.3 Multi-objective quality indicators

This section presents two of the most used quality indicators to compare approximation sets in MOCO,
the hypervolume indicator [18] and the ε-indicator [19]. The computation of these indicators implies to
know the Pareto front ZND, which is generally unknown for a given instance. Thus we approximate it
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by merging all the approximations generated during the experimental phase and keeping only the non
dominated ones, forming the approximation of the Pareto front Z̃ND.

Given a set A and a reference point z̄ ∈ Z weakly dominated by every point of A, the hypervolume
indicator IH value of A with regards of z̄ measures the hypervolume of the region of the objective
space which is weakly dominated by A and weakly dominates z̄. The higher IH (A), the better the
approximation setA is. On each tested instance, the reference point z̄ has been set to z̄ = η̃+ 1

10 (η̃ − z̃∗)
where η̃ and z̃∗ are respectively the approximation of η and z∗, based on Z̃ND.

Given an approximation set A and the approximation of the Pareto front Z̃ND, the ε-indicator Iε
gives the factor by which A is worse than Z̃ND with respect to all objectives: Iε(A, Z̃ND) = inf

ε∈R
{∀z′ ∈

Z̃ND∃z ∈ A : z �ε z′}, where z �ε z′ if and only if zj ≤ (1 + ε) z′j for j = 1, ..., p. The lower
Iε(A, Z̃ND), the better the approximation set A is comparing to Z̃ND.

3.4 Experimental parameter setup and adaptation of PAD to the bTSP

We have implemented ourselves MOMAD [9]. Parameters have been fixed as follows, as done in [9]: the
maximum number of iterations for PLS is set to 10. The number of sub-problems is set to min (n, 600)
except for rdAB300 and rdAB500, for whose MOMAD had difficulties and thus authors have increase
the number of sub-problems to respectively 400 and 600. The number of iterations is fixed to 500 for
all instances. As done in [11], MOMAD uses the Chained Lin-Kernighan (LK) heuristic [3] as ILS in
initialization, a 2-opt best improvement with random double-bridge kicks as ILS in the main loop, and a
2-exchange neighborhood for PLS.

Concerning PAD, we also choose as ILS for the decomposition phase the Chained LK heuristic. We
use its default parameters but we modified it to memorize all the generated local optima. The neighbor-
hood function of PLS NPLS chosen is the 2-exchange neighborhood, as suggested in [5]. A candidate
edge list is associated toNPLS in the same manner as [9]: it consists of all edges composing at least one
solution of the current population PPLS of our method. The list is updated each time PPLS is updated by
the UpdateSolutionSet procedure. During the main loop of PAD, a 3-opt first improvement with
biased random double-bridge kicks and same candidate edge list as PLS, is conducted as ILS. We use
the implementation of Paquete1. For each instance, the number K of sub-problems in PAD is the same
as done in MOMAD to have a fair comparison. The parameter fixing the depth of PLS has been set to
10 as in [9], and the parameter controlling the perturbation has experimentally been fixed to 5%. The
stopping criterion used by PAD for a given instance corresponds to the average time spent by MOMAD
on this instance. Due to the lack of space, we can not present different parameter settings of PAD for the
tested instances.

The two algorithms have been run 20 times on each instance and compared using IH and Iε. All
experiments presented were performed on a 3.4 GHz computer with 16Gb RAM on a Linux OS. All
algorithms are written in C++.

3.5 Experimental results

Table 1 presents for the nineteen bTSP benchmark instances the average values and standard deviation
of IH and Iε, the average size |A| of the approximation set returned for each algorithm, the size |Z̃ND|
of the Pareto front approximation and the average time spent by the two algorithms. Numbers in bold
indicate a better average value. PAD has better average values on both IH , Iε and even |A| on all the
tested instances. Note that unlike Iε, even a minor difference between values of IH is important. In order
to statistically compare PAD and MOMAD, the Mann-Whitney non-parametric statistical test [12] has
been applied. For a specific indicator on a given instance, this test assesses whether two algorithms come
from the same distribution. When the hypothesis is satisfied, it means there is no difference between
the values of the quality indicator obtained by the algorithms. Otherwise average values are simply

1http://www.sls-book.net/implementations.html
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compared. Given a starting level of risk of 1%, the Mann-Whitney test indicates that PAD is better than
MOMAD for each tested instance and quality indicator used.

Instance IH
(
×106

)
Iε
(
×10−3

)
|A| ∣∣∣Z̃ND∣∣∣ Time (s)

Name Size PAD MOMAD PAD MOMAD PAD MOMAD

ClusterAB100 100 26019 (± 0.15) 26016 (± 0.20) 1.68 (± 0.34) 4.06 (± 0.49) 2774 2454 3009 14
ClusterAB300 300 249323 (± 1.58) 249256 (± 6.37) 1.65 (± 0.29) 6.19 (± 0.47) 18423 15931 20952 209
ClusterAB500 500 853581 (± 2.50) 853532 (± 1.97) 1.28 (± 0.44) 7.02 (± 1.01) 45605 40936 51496 678
euclidAB100 100 21005 (± 0.06) 21002 (± 0.27) 2.04 (<0.01) 3.64 (± 0.39) 1613 1400 1790 10
euclidAB300 300 226973 (± 0.50) 226962 (± 0.27) 0.87 (± 0.10) 1.28 (± 0.01) 16329 14436 18191 164
euclidAB500 500 712502 (± 2.37) 712477 (± 0.40) 0.90 (± 0.14) 1.08 (± 0.01) 37851 34148 42987 606

kroAB100 100 26905 (± 0.04) 26901 (± 0.28) 1.98 (± 0.37) 3.94 (± 0.28) 3046 2569 3298 11
kroAB200 200 105196 (± 0.13) 105188 (± 0.18) 1.06 (± 0.09) 3.41 (± 0.07) 7884 6649 8760 59
kroAB300 300 248952 (± 0.98) 248942 (± 0.27) 0.90 (± 0.14) 1.82 (± 0.14) 16900 14880 18685 169
kroAB400 400 432421 (± 1.72) 432400 (± 0.48) 1.21 (± 0.29) 2.07 (<0.01) 24911 21793 28942 346
kroAB500 500 674447 (± 2.66) 674422 (± 0.44) 1.11 (± 0.22) 2.18 (<0.01) 37914 33436 43164 632
kroAB750 750 1598812 (± 4.99) 1598769 (± 0.72) 1.13 (± 0.16) 1.61 (± 0.07) 66829 60415 74519 1417
kroAB1000 1000 2806068 (± 10.71) 2805997 (± 1.02) 1.55 (± 0.34) 2.45 (<0.01) 105198 98476 112892 2466

mixedAB100 100 32589 (± 0.14) 32576 (± 0.56) 4.69 (± 0.67) 15.22 (± 1.26) 1480 983 1824 11
mixedAB300 300 345841 (± 1.87) 345803 (± 0.51) 8.22 (± 0.88) 24.70 (± 0.14) 7386 5786 10274 185
mixedAB500 500 1029245 (± 4.02) 1029198 (± 0.59) 7.89 (± 1.24) 12.18 (± 0.39) 16545 14008 21460 721

rdAB100 100 53556 (± 0.54) 53522 (± 1.25) 6.37 (± 0.88) 21.88 (± 2.88) 1167 639 1636 11
rdAB300 300 490918 (± 4.44) 490817 (± 1.10) 10.38 (± 0.94) 32.14 (± 1.06) 3245 2078 5334 206
rdAB500 500 1443005 (± 7.61) 1442858 (± 1.14) 13.09 (± 1.50) 24.02 (± 0.60) 4842 3533 6702 757

Table 1: Comparison between PAD and MOMAD results for each instance.

Standard deviation is globally lower for MOMAD compared to PAD, particularly for IH on most
of the instances and for Iε on large scale euclid and kro instances. This shows in the same time the
strength and the limit of MOMAD: by constantly running ILS every time in the same directions (without
data perturbation), the incumbents will be updated in an homogeneous way from a run to another. This
process provides a reliable algorithm, therefore it brings a lack of diversity as well. On the other hand,
the variations of values for our method are not negligible for a large part of tested instances.

This behavior is due to the use of data perturbation which induces an additional level of stochasticity
in our method compared with MOMAD. However, we inform the reader that for both IH and Iε collected
values, the best value found by MOMAD never reaches the worst one found by our method for all the
instances, except for Iε on euclidAB500. We can not show this result by lack of place.

4 Conclusion

We showed in this paper that by using a combination of local search and MAB techniques, we can obtain
very good results on the bTSP. To our knowledge, this is the first time in a decomposition algorithm
[16] the MAB paradigm [4] and the Adaptive Greedy Algorithm [6] are used to manage the selection of
sub-problems and the data perturbation technique [7] is used.

PAD has been compared on large-scale bTSP instances to MOMAD, another state-of-the-art method
on this problem. Our method outperforms MOMAD both on the IH and Iε indicators. Furthermore,
it can be adapted to other MOCO problems, such as the MO multi-dimensional knapsack and the MO
Assignment Problem. However, the results of PAD are not as stable as the MOMAD ones.

It would be important to study the influence of the parameters and the different components on
the result quality. Focusing on the MO TSP, it would be a great improvement to use the Chained Lin-
Kernighan heuristic [3] as single-objective ILS solver in second phase. Maybe the most interesting future
work concerning PAD is its application to a p ≥ 3 optimization. The reader can notice that PAD can be
directly used for a p ≥ 3, however some modifications have to be done to enhance its efficiency in such
spaces.
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