Optimizations of data structures, heuristics and algorithms for
path-finding on maps

Tristan Cazenave
Labo IA
Dept. Informatique
Université Paris 8, Saint-Denis, France
cazenave@ai.univ-paris8.fr

Abstract— This paper presents some optimizations of A* and Section four deals with the re-expansion of points. Section
IDA* for pathfinding on maps. The best optimal pathfinder we  five presents the different admissible heuristics we have

present can be up to seven times faster than the commonly tegteq. Section six details experimental results. Sestven
used pathfinders as shown by experimental results. We also .
concludes and outlines future work.

present algorithms based on IDA* that can be even faster
at the cost of optimality. The optimizations concern the daa
structures used for the open nodes, the admissible heuristiand
the re-expansion of points. We uncover a problem related to

the non re-expansion of dead-ends for sub-optimal IDA*, and ) . .
we provide a way to repair it. A* [1] is a search algorithm that finds shortest paths. It

Keywords: path-ﬁnding' game maps, mazes, A-star, IDA*USES a fast heuristic function that never over-estimates th
length of the path to the goal state, i.e. an admissible biuiri
|. INTRODUCTION often named h. For each node, it knows g the cost of the path
Path-finding is an important part of many applicationsfrom the root of the search to the node, and it computes f =
including commercial games and robot navigation. In gamés + . The f function is used to develop the tree in a best
it is important to use an optimized path-finding algorithnfirst manner: A* expands the node with the smallest possible
because the CPU resources are also needed by other alydDA* [5] is the iterative deepening version of A*. It can
ritth, and because many games are rea'_time. The panicuw enhanced W|th a tranSpOSition table that deteCtS pDSitiO
problem addressed in this paper is grid-based path-findingjat have already been searched [6].
It is often used in real-time strategy games for example, in Fringe Search [4] is a hybrid of A* and IDA* that reduces
order to find the shortest path for an agent tajits! location ~ slightly the computation time compared to A*. The Fringe
on the map. Search paper also presents useful optimizations of IDA* for
A* [1] is the standard algorithm for finding shortest pathsgame maps.
The usual heuristic associated to A* is the Manhattan heuris The use of map abstractions can be combined with A* to
tic. We present data structures and heuristics that enable Make it faster. For example, Path-Refinement A* [7] builds
to be up to seven times faster than the usual implementatidrigh level plans and progressively refines them into lovelev

Il. RELATED WORK

The contributions of this paper are : actions.
« ltis better to use an array of stacks than a priority queue The admissible heuristic used for path-finding on road
for maintaining the open nodes of an A* search. maps, which are much more constrained than game maps,

« The ALT Bestp heuristic is introduced, and is showncan be improved (i.e. give greater admissible values) using
to perform better than the Manhattan heuristic and thaite ALT heuristic [2]. The heuristics used on road maps can
the ALT heuristic [2]. be reused for game maps, especially when the game maps

« It is useful for IDA* to maintain a two-step lazy cacheare complex and are close to mazes.
of the length of the shortest paths found so far.

« Adding a constant to the next threshold of IDA* enables 1. CHOOSING THE BEST OPEN NODE
large speed-ups at the cost of optimality. However the
lengths of the paths are within 2% of the optimal. Sub- Each time it expands a node, A* chooses the node with
optimal IDA* can be competitive with A*. the smallest f function. Therefore the cost of finding the

« Recording the minimum f for each searched locatiomode with the smallest f is very important for A*. In this
is useful to find dead-ends, but it can cut valid pathgection we present three methods and the associated data
when used with a sufficiently large added constant to th&ryctures used to find the best open node. The first method
threshold of IDA*. Our program can detect and repails ysing a list of open nodes. The second method is widely
the problem. used and implements the open list as a priority queue. The

Section two describes related work. Section three presentsrd method is faster than the two others and uses an array

optimizations related to the choice of the best open nodef stacks.



A. Maintaining a list IV. AVOIDING RE-EXPANSION OF POINTS

The naive method for finding the open node with the Avoiding re-expansion of points is important for path-
smallest f is to go through all the open list to find it. Wherfinding on maps because there are many paths that goes
the open list grows up to more than ten thousand nodes §gough a point. Among these paths, many arrive at the point

it can be the case for game maps, it becomes quite timpdth a path longer than the shortest path to the point and must
consuming. not be expanded. Among the paths that arrive with a length

equal to the length of the shortest path, it is necessary to

s o expand only one, and it saves time to cut the others.
B. Maintaining a priority queue

L L A. Checking of the open and closed nodes
A commonly used optimization for maintaining the open

list is to use a priority queue [8], [3], [4], [7]. If N is the A simple method to avqid re-expanding ppints that have
number of elements in the priority queue, the insertion an@lféady been expanded with a shorter path is to go through
the extraction of an element both take O(log N) which i¢he open and closed lists and verify if the point has already
faster than a constant time for inserting and a linear tinre fd?¢€n seen. However when the number of open and closed

extracting as in the list implementation. nodes grows up, this method is quite inefficient.
B. The lazy cache optimization
C. Maintaining an array of stacks As game maps fits in memory, it is more efficient to use

Given that the f values are bounded by a relatively smafi? @rray of the size of the map. Each point in the map has
value, it is possible to implement a data structure thatrtase 2" associated index, and the value stored at this index in the
nodes in constant time, and that extracts the best node 42y iS the shortest path found so far to the point. As it is
short time. This structure is an array of stacks. The index ¢fme consuming to reinitialize the whole array before each

a stack in the array is the common f value of all the node¥€arch, an optimization is to use a lazy initialization [4].
in the stack. consists in having an integer named therker initially set

to zero, and another array of the size of the map initially set
tEﬁ)zero too. Letseen be the name of the array that contains

the length of the shortest path found, andeen be the name

of the array that is used for the lazy initialization. Before

The node class has mext field which is a pointer to
another node, and which can be used to put the node on
of a stack of nodes. The code is as follows:

Node Open [ MaxLength + 1]; each search, the only thing to do to reinitialize the arrays
int currentf; is to increment thenarker. To verify if the length of the
shortest path to a point has been stored, the program verifies
void insert (Node *node) ({ that themseen array has the value of thewarker at the
Node * tnp = & Open [node->f ()]; index of the point. To update a shortest path, the program
node- >next = tnp->next; stores the length of the shortest path in taen array at the
t np- >next = node; index of the point, and put the value ofarker at the index
} of the point in themseen array. This optimization can be

used both for the A* and the IDA* algorithms.
Node * best () {

while (Qpen [currentf].next == NULL && C. Maintaining the best path for each visited point

currentf < MaxLengt h) For each point the program keeps the length of the shortest
currentf ++: path to this point that has been found yet. Each time the
return Open [currentf]. next: search passes through the point, the value of g is compared

} to the stored value for the point. If g is strictly smaller,

the value is replaced with g and the search continues. If

The insert function inserts a node in constant time in thg is greater or equal to the value of the point, the search is
array of stacks. The best function is used to extract the nodepped. When using the lazy cache optimization for A*, a
with the best f, and takes very little time too. single lazy initialization is sufficient. When using it fdbA*,

The property used to extract the best node starting awo lazy initializations are better. A first lazy initialitian
currentf in thebest function is that moves in the map domainis used before the first search of IDA*, as in A*, in order
never decrease the f function, given the h heuristics used Iy reinitialize the values. However, before performing the
the program. In domains with possibly decreasing f valuesecond search of the IDA* algorithm, we are faced with
it is straightforward to adapt the code by maintaining the dilemma: if we reinitialize the values the program loses
currentf variable in the insert function, taking the minimu the valuable information of the length of the shortest paths
of the f of the inserted node and of currentf. found so far, and if we do not reinitialize the values, the

The space complexity of the array is the maximum lengthbrogram won't expand the nodes that have already been
of a shortest path, which is low. The space complexity of theearched coming from a shortest path and then the search
stacks is proportional to the number of open nodes. will fail. The solution is to use two lazy arrays and two



markers:mseen and marker to differentiate the searches
between different points, angming andmarkerming to
differentiate between different searches between the same
points. Note that the later differentiation is only usefalda

used for IDA*.

Before making a move, the program calls thieen func-
tion that tells him if the move leads to a re-expansion. To

if (!Seen (newpos, g)) {
i f (Seenm nf (newpos) &&
M nf (newpos) == MaxLengt h)
conti nue;
if (IDA (g + dg, newpos, tnpminf))
return true;
Set mi nf (newpos, tnpmni nf);

make things even clearer, we give the code of the function }

that uses the two lazy arrays:

bool Seen (int pos, int g) {

if (mseen [pos] != marker) {
seen [pos] = g;
nseen [ pos] mar ker ;
nmi ng [ pos] mar ker mi ng;
return false;

}

if (g < seen [pos]) {
seen [pos] = g;
nri ng [ pos] = markermi ng;
return false;

}

if (g == seen [pos])

if (mmng [pos] != markerm ng) {
nmi ng [ pos] = nmarkerning;
return fal se;

}

return true;

}

}

if (tnpminf < ninf)
m nf = tnpm nf;
return false;

}

The lazy cache is modified using tl#&tminf function.
A cut occurs when a location has already been searched
(Seenmin f(newpos) returns true) and when no minimum
f has been found with this searc{n f (newpos) returns
MaxLength).

E. Thresholds for IDA*

The minimum f found over all the leaves of the root node
(minf) can be used for the next threshold of the IDA*
search, instead of simply incrementing the threshold.vMésa
the searches with the thresholds between the last threshold
and minf.

A problem with IDA* on maps is that the number of nodes
of a search with a threshold is not small in comparison with
the number of nodes of the search with the next threshold.
This is the main reason why IDA* is not competitive with

The points on the map are represented by an integetr on maps. If we accept to find slightly sub-optimal paths,
and the map and its associated arrays are representedibys possible to improve the speed of IDA* by taking a

unidimensional arrays.

D. Maintaining the minimum f for each visited point

threshold slightly greater than minf at each iteration oAtD
We call this algorithm/ DAAp when the threshold for the
next iteration is minf + D.

A lazy cache can also be used to memorize for each node
the minimum f found over all leaves under the node. It can E F

be used to detect dead ends of the map [4].

The code of IDA* with the memorization of the minimum

f, and the related cut of dead-ends is:

bool IDA (int g, int pos, int & nminf) {
/1 minf is passed by reference, it can
/1 be changed in the calling function
nodes++;

int f =g+ h (pos);

/1 currentflDA is the threshold of

/1 the iterative deepeni ng search

if (f > currentflDA) {

if (f < minf)
mnf = f;
return fal se;

}

i f (pos == goal Pos)

return true;

int tnpm nf = MaxLengt h;

for (newpos in all neighbors) {
if (!occupied (newpos))

C D
A B

Fig. 1. Problem cutting with the minimum f

However, there is a problem using the minimum f opti-
mization with increased thresholds. Let’s look at the palssi
paths from A in figure 1. We choose for this example that
going horizontally and vertically costs two, and that going
diagonally costs three. If the program starts searchingat
ADE and ADF, theseen value of D is three, theeen value
of E is six, and theseen value of F is five. Now if the
program search the paths ABC, it arrives at C with a g of
five, and therefore the tree is cut when it continues to E (g
is seven andieen(E) is six), to F (g is eight andeen(F)
is five), and to D (g is seven aneken(D) is three). The



consequence is that the minimum f stored at C is MaxLength d(cPos, gPos) < d(cPos,pPos) + d(pPos,gPos) (2)
and that C is considered a dead-end. So when the program
looks at the path that starts with AC (and which may be the (gPos, pPos) < d(gPos, cPos) + d(cPos,pPos)  (3)
shortest path), the tree is cut.

In our experiments the problem does not appear wheafrom 1 and 3 we can show, respectively:
using the minf threshold with IDA* or when using tiles.
However it appears on complex maps using octiles and a d(cPos, gPos) > d(cPos,pPos) — d(gPos,pPos) (4)

large delta forf DAAp.

and
V. IMPROVING THE ADMISSIBLE HEURISTIC

The usual heuristic for path-finding on maps is the Man- d(gPos,cPos) > d(gPos,pPos) — d(cPos,pPos) (5)
hattan heuristic. The ALT heuristic usually finds bettemues
than the Manhattan heuristic, but it takes more memory sinéeiven thatd(gPos, cPos) = d(cPos, gPos) we have ¢bs
for each point of the heuristic the pre-computations take i& the absolute value):
memory proportional to the size of the map, and it also takes
more time to compute. The ALTBastheuristic gives better (9P 0s,cPos) > abs(d(gPos, pPos) — d(cPos, pPos))

values than the Manhattan heuristic but takes more time than o o . (6)

it, and worse values than the ALT heuristic but takes less tim' herefore, an admissible heuristic, which only uses pre-
than it. This section presents these three heuristics. computed values, is:

A. The Manhattan heuristic h = abs(d(gPos, pPos) — d(cPos, pPos)) 7)

The Manhattan heuristic is a very popular heuristic. It is
used for path-finding on maps, but also for other games suéfdistances are pre-computed for multiple points, the fseur
as the 15-Puzzle or Rubik’s cube. It consists in consideririif chooses for h the maximum value over the ALT values
that the path to the goal is free of obstacles, which allowg!ven by each point.
a very fast computation of a lower bound on the length
of the shortest path. For maps, the heuristic is different {£. The ALTBest heuristic

the moves are restricted to the four horizontal and vertical The ALTBes} uses pre-computed distances from P points
neighbors (tiles), or if the eight neighbors including dagls Instead of taking the maximum value over the h values

are allowed (octiles). The code for the Manhattan heuristlgOmputed with the P points at each node of the search, it

on Maps Is- selects among the P points the one that gives the highest h
int h (int pos) { value at the root node. For all nodes of the search, it chooses
int dx = abs (x (goal Pos) - x (pos)); as h value the maximum of the ALT value computed with the

int dy = abs (y (goal Pos) - y (pos)); selected point and of the Manhattan heuristic. The h values
i f (nbNei ghbors == 8) found with this heuristic are worse than the h values found
return CostDiag * min (dx, dy) + with the ALT heuristic, therefore the search will develop
Cost * (max (dx, dy) - more nodes. The advantage of ALTBes$ that it takes less
nmn (dx, dy)); time at each node and that it is not much worse.
el se
} return dx + dy; D. Other use of pre-computed distances

. _ _ _ Pre-computed distances can also be used to find if a goal
whereCost is the cost of moving to a horizontal or vertical js impossible. If the starting location has a distance toea pr
neighbor, andCostDiag the cost of moving to a diagonal computed point, and that the goal location has an infinite
neighbor. distance to the pre-computed point, the program knows it is
B. The ALT heuristic useless to search a path, and it can find it without search.

ALT i heuristic that K I d > ItThis is also true for the reverse situation where there is an
' IS a heunstic that works well on road maps [2]. infinite distance to the starting location, and a finite dis&
consists in pre-computing the distance to all points from

& the goal location.
given point, and then in using these pre-computed distance hegs mmetric use of pre-comouted points is to find if
to calculate an admissible heuristic. The heuristic is Base y P P P

on the triangular inequality. For exampledf X,Y") is the a path is possible. This can be useful for th®AAp

length of the shortest path betwe&nandY’, if the distances algorithm when it ha§ prob!ems due to .the minimum f dead-
. end cuts. If the algorithm finds a path is impossible when a
are pre-computed fromPos, the current node is atPos,

L : re-computed point finds there is one, the program can revert
nd th I ition i Pos, we have the following P . .
iie%ualeiztigga position Is a’os, we have the following to a slower but more safe algorithm such as IDA* without

the minimum f dead-end cut optimization, or to a simple
d(cPos,pPos) < d(cPos, gPos) + d(gPos,pPos) (1) IDA* with a D set to zero.



VI. EXPERIMENTAL RESULTS maximum of the ALT value computed with this point
and of the Manhattan heuristic.

IDA(N) is iterative deepening A* with the Manhattan
heuristic. Each point has N neighbors.

IDABestp(N) is iterative deepening A* with the
ALTBestp heuristic. Each point on the map has N
neighbors.

IDABestpAp(N) is iterative deepening A* with the
ALTBestp heuristic. Each point on the map has N
neighbors. At each iteration of the iterative deepening
search, instead of taking minf as the next threshold for
the search, the programs takes the minimum f over the
leaves of the previous search (minf) plus D.

A. Memory allocation « IDAA(N) is iterative deepening A* with the Man-
hattan heuristic. At each iteration, the next threshold is
minf + D.

IDAnof(N) is IDA(N) except that the program does
not use the recorded minf at each node to cut the search.

The maximum number of nodes per search is set to
10,000,000. Experiments are performed on a Celeron 1.7°
GHz with 1GB of RAM. When the program only considers
four neighbors for each point on the map, the cost of a *
move to one of the four neighbor is set to one. When it
considers eight neighbors, the cost of going to a vertical or
a horizontal neighbor is set to two, and the cost of going *
to a diagonal neighbor is set to three. If the horizontal and
vertical cost is two, the real diagonal cost is 2.8 which is
close to three. The reason we choose three is that the array
of stacks optimization works more simply with integer costs

Memory allocation is one of the instructions that takes the
most time with current operating systems. The standard A*
algorithm allocates memory for each new node of the search.*®
In order to optimize further A*, we have used pre-allocation
An array of 10,000,000 nodes is allocated once for all the. The experimental testbed

searches at the .be'zgmnmg of the program, and when a NeWrhe algorithms have been tested with different values for
node is needed it is taken from the array. When a search

to reinitiali th v thing to do is t eth tife number of neighbors, the number of pre-computed points,
over, to reinitialize memory, the only thing t0 do 1S 10 PUEN 5, the gelta threshold. There are three experiments, #dl wi
integer associated to the array back to the top of the arr

. N . e 00x300 maps. The experiments use maps with respectively
Th's optimization Is linked to the buffering optimizatiosed two hundred walls of size twenty, four hundred walls, and six
in [3], but we find the use of a pre-allocated array mor

; . fundred walls. A set of one hundred maps has been generated
simple and more efficient. for each experiment. The walls of a map are generated by
B. The tested algorithms te}king at random an unoccupigd point _and.one of thg eight

) ) directions, for vertical and horizontal directions the Inial
The different algorithms that have been tested are:  yonarated as a line with a thickness of one, and for diagonal
« M(N) is A* with the Manhattan heuristic, each pointdirections it is generated as a line with a thickness of two
has N neighbors. The structure used to maintain th@ order to avoid a path that goes diagonally through a
open list sorted is an array of stacks, and new nodegagonal wall. For each map, two unoccupied points are

are taken from a pre-allocated array of nodes. chosen at random and the algorithm searches for a shortest
« Mmem(N) is M (N) with memory allocation at each path between these two points. For each algorithm, we give
node. the sum of the number of nodes of all the searches, the time

« Mqueue(N) is M (N) with a STL (Standard Template spent, the number of problems where the algorithm found a

Library) priority queue for finding the best open node.path, and the sum of the lengths of the found paths.
o« ALTp(N) is A* with the ALT heuristic, points on

the map have N neighbors, and P points chosen B Results on simple maps

random are used for computing the distances for the Table | gives the nodes, time, number of solved problems
ALT heuristic. All the distances are pre-computed, anénd sum of lengths of paths found for different algorithms
their pre-computation is not taken into account foron 300x300 maps with 200 random walls of size 20.

the timing of the algorithm. The admissible heuristic The best algorithm for speed 1§D A Best19A1¢ both for
consists in computing, for all the pre-computed P pointdjles and octiles. The length of the paths it finds is close to
the absolute value of the difference of the distancthe shortest path as can be seen comparing the sums of the
between the point and the goal position, and of th&ngths.

distance between the point and the node’s position. It The best exact algorithm igl LT Bestyy. For tiles it is
then chooses the maximum value over all the absoluteteresting and surprising to note thaD A Besto(4) always
values and the Manhattan heuristic. finds the shortest path and is faster th&hT Best1(4).

o« ALTBestp(N) is A* with the ALTBestp heuristic, Another result is that using an array of stackd ®)) is
points on the map have N neighbors. P points arwvice as fast as using priority queuel/ gueue(8)) for oc-
randomly chosen and the distances to each point tifes, and three times faster for tiled/(4) vs M queue(4)).
the map are pre-computed for each of the P point3he number of nodes is different in the favor of priority
At the root of the search, the program selects the prerueue for the two algorithms because they do not expand
computed point which has the highest h value. Duringodes in the same order due to their different algorithms for
the remainder of the search, it computes h as theelecting the best node.



TABLE | TABLE Il

300x300MAPS WITH 200WALLS OF SIZE20. 300x300MAPS WITH600WALLS OF sizE20.

Algorithm nodes time  solved sum Algorithm nodes time  solved sum
IDABestigA10(8) 1,102,592 0.79s 98 36,387 IDABestigA10(8) 1,880,053 1.42s 61 36,513
ALT Best10(8) 480,407 1.60s 98 35,998 IDABestigAaq(8) 2,262,738 1.71s 60 36,008
IDABesti(8) 2,146,234  1.98s 98 35,998 ALT Best10(8) 604,461 1.81s 61 36,208
M(8) 764,262  2.10s 98 35,998 IDABestigAagnof(8) 3,302,562 2.36s 61 36,785
ALT10(8) 335,418 3.21s 98 35,998 IDABestigAignof(8) 3,318,593 2.50s 61 36,469
IDA(8) 4,340,651 3.42s 98 35,998 ALTs(8) 542,129 2.71s 61 36,208
ALTs(8) 500,989 3.80s 98 35,998 ALT10(8) 347,189 3.00s 61 36,208
M queue(8) 722,344  4.16s 98 35,998 IDABestio(8) 6,683,647 6.33s 61 36,208
IDABestigAig(4) 479,046 0.26s 98 21,300 M(8) 2,438,460 6.67s 61 36,208
IDABestio(4) 690,457  0.49s 98 21,072 IDAA%(8) 12,111,234 9.45s 56 33,087
ALT Bestio(4) 399,839 0.77s 98 21,072 Mmem(8) 2,438,460 10.05s 61 36,208
M(4) 611,595 0.91s 98 21,072 IDAA((8) 12,233,668 10.93s 61 36,637
IDA(4) 1,628,550 1.08s 98 21,072 Mgqueue(8) 2,296,036 13.67s 61 36,208
ALTi0(4) 256,310 1.23s 98 21,072 IDA(8) 67,483,398 70.27s 61 36,247
M queue(4) 664,504 2.96s 98 21,072 IDABestigAi1g(4) 614,865 0.37s 44 15,889

IDABestigAa0(4) 693,650 0.37s 44 16,161
ALT Besti0(4) 401,287 0.61s 44 15,711
IDABestig(4) 2,954,173 1.81s 44 15,711
TABLE Il M(4) 1,886,487 2.94s 44 15,711
IDAAg(4 7,575,321 4.66s 44 16,199
300x300MAPS WITH 400WALLS OF SIZE20. IDAAmgzlg 7,839,990 5.49s 44 15959
. . IDA(4) 233,428,544  131.24s 44 15,711
Algorithm nodes time  solved sum
IDABestipA10(8) 2,601,120 2.05s 95 39,362
IDABestioA20(8) 2,773,262 2.07s 95 39,969
ALT Best10(8) 950,862 2.93s 95 38,911
M(8) 1,455,092 4.24s 95 38,911
ALT5(8) 866,041  4.85s 95 38911 gead-end cut can be harmful withD ABest;oA10(8) or
Mmem(8) 1,455,092 6.30s 95 38,911 . L
IDABest10(8) 7,901,822 7.92s 95 38,911 with IDAB@Stl(]AQ(](g), it is not the case here as they
M queue(8) 1,358,262  8.36s 95 38,911 solve all the problems. However we tested the usefulness
ALTi0(8) 646,554  11.74s 95 38911  of the minimum f dead-end cut by removing it, and we
IDA(8) 21,837,340 19.71s 95 38,911 . . .
TDAnof(8) 133,089,043 98.93s 95 38,911 see thatIDAnof(S) is five times slower tha[iDA(S) with

the optimization. Using thel LT Best;o heuristic with IDA*
improves it sincel D ABest;o(8) is more than twice as fast
asIDA(8).

IDA(8) andIDA(4) are worse than/(8) and M (4) as
already found in other studies [4], but the difference betwe _ _ . _
the two is much smaller than what was found before (20% Table Il gives the nodes and time for different algorithms
to 60% more time instead of six to twenty times more time)2n 300x300 maps with 600 random walls of size 20.

The ALT heuristic searches half of the nodes of the The first observation is that on complex maps that look

F. Results on complex maps

Manhattan heuristic but is slower. more like mazes or road maps, the AL'Bnd the ALTy,
heuristics are now faster than the Manhattan heuristic. The
E. Results on moderately complex maps overhead of computing the ALT values at each node is
Table Il gives the results for different algorithms oncompensated by a greater number of cut nodes. However
300x300 maps with 400 random walls of size 20. the ALT Best1(8) is still the best exact algorithm and it is

The IDABest 0A10(8) is the fastest algorithm, it solves more than three times faster than the Manhattan heuristic,
all the solvable problems, and the sum of the lengths of tt&nd more than seven times faster theiyueue(8) which is
found paths is within 2% of the sum of the shortest paths.the standard implementation for path-finding on game maps.

The best exact algorithm is agaid LT Best1¢(8), it M (8) with arrays of stacks is still twice as fast as
develops less nodes in less time than the Manhattan heuristV/ queue(8), and 1.5 faster thad/mem(8).

ALT5(8) and ALTy(8) also develop less nodes than the two The fastest algorithm is stillTD ABest19A19 and it
previous algorithms, but take more time due to the overheasl within 2% of the optimal sum of lengths. However
of computing the ALT heuristic at each node. IDABesti10A2(8) and IDAAy(8) do not find all the

ComparingM queue(8) and M (8), we can see that main- paths, due to the problem with the minf dead-end cut
taining an array of stacks enables a speed-up of two comhen employed with a sufficiently large delta. This problem
pared to maintaining a priority queue. Pre-allocating rodeappears on octiles and not on tiles. A possible repair to the
in an array gives a speed-up of 1.5 as can be seen wheroblem is to use the pre-computed distances. If the program
comparingM mem(8) and M (8). knows a path is possible, arfd) AA,((8) does not find it,

Concerning thel D A(8) algorithm, it is almost five times it can revert toI D ABestigAsgnof(8) or IDABestio(8)
slower than theM (8) algorithm. Even if the minimum f only for this problem.



Unlike IDAnof(8) which was five times slower
than IDA(8) in the previous experiment, herey
IDABestigAgnof(8) is less than two times slower
than IDAB@St]OA]O(S), andIDABesthggnof(S) finds 2]
all the paths wherd D ABest19A2(8) misses one.

The ALT Bestyq heuristic is even more useful on complex[3]
maps than on more simple map&D ABestqy(8) is more
than ten times faster thahD A(8), and it is even better with 4
tiles sinceI D ABest1(4) is more than seventy times faster
thanIDA(4). 5]
(6]

New data structures, heuristics and algorithms for fast
path-finding have been described and tested. [71

We showed that maintaining an array of stacks enabl?g
A* to be faster than usual implementations of A* that use a
priority queue.

We presented thd T Best p heuristic and we experimen-
tally proved it is better than the Manhattan heuristic aral th
ALT heuristic for maps of different complexities, both for
A* and IDA*. The best exact algorithm we have presented,
based oA LT Bestp and A* with arrays of stacks, is up to
seven times faster than the usual algorithm for path-finding
on maps.

Another result is that IDA* can be competitive with
A* on maps. We presented an algorithm based on IDA*
(IDABest1gA1g) that finds close to optimal paths faster
than our best implementation of A*A(L.T Best,). We also
observed that the speed up of traditional A* over traditlona
IDA* depends on the complexity of the map.

We have also shown that it is useful to have a two-step lazy
cache strategy for remembering the length of the shortekt pa
to visited points of the maps. A potential problem with the
use of a recorded minimum f for each visited point, when
it is used to cut the search, has been uncovered. A repair
strategy has been proposed when this problem happens. It
uses the pre-computed distances from the ALT heuristic to
detect the problem, and it falls back on a safe algorithm when
the problem occurs.

The ALT Bestp heuristic as well as the lazy cache opti-
mizations increase the space requirements of the algasithm
by an ammount proportional to the size of the map.

For future work, it is interesting to find a way to deal better
with the problems encountered while cutting nodes due to the
memorized minimum f. In particular, it would be valuable to
keep the current power of memorizing the minimum f-value
for each node and of cutting dead-end nodes, while enabling
to increase the threshold of IDA* by more than the minimum
f, without losing some paths.

It is also interesting to have a better selection of the oint
used for the ALT heuristic, like for example selecting the
points which are the farthest away from already existing
points [2].

Combining the optimizations presented in this paper with
optimizations due to abstractions of the maps, or optimiza-
tions related to way-points can also be of interest.

VIl. CONCLUSIONS AND FUTURE WORK

REFERENCES

P. Hart, N. Nilsson, and B. Raphael, “A formal basis foe theuristic
determination of minimum cost path$EEE Trans. Syst. Sci. Cybernet.
vol. 4, no. 2, pp. 100-107, 1968.

A. V. Goldberg and C. Harrelson, “Computing the shortpsth: A*
search meets graph theory,” 8ODA’05 2005.

P. Kumar, L. Bottaci, Q. Mehdi, N. Gough, and S. Natkin,ffféient
path finding for 2D games,” I€GAIDE 2004 Reading, UK, 2004, pp.
263-267.

Y. Bjornsson, M. Enzenberger, R. C. Holte, and J. ScleseffFringe
search: beating A* at pathfinding on game maps,"IEE CIG'05
Colchester, UK, 2005, pp. 125-132.

R. E. Korf, “Depth-first iterative-deepening: an optihamissible tree
search,"Artificial Intelligence vol. 27, no. 1, pp. 97-109, 1985.

A. Reinefeld and T. Marsland, “Enhanced iterative-de=@pg search,”
IEEE Transactions on Pattern Analysis and Machine Inteticg
vol. 16, pp. 701-710, 1994,

N. Sturtevant and M. Buro, “Partial pathfinding using meipstraction
and refinement,” inAAAI 2005 Pittsburgh, 2005.

B. Stout, “Smart moves: Intelligent path-findingGame Developper
Magazine, pp. 28-35, October 1996.



