
Optimizations of data structures, heuristics and algorithms for

path-finding on maps

Tristan Cazenave
Labo IA

Dept. Informatique
Université Paris 8, Saint-Denis, France

cazenave@ai.univ-paris8.fr

Abstract— This paper presents some optimizations of A* and
IDA* for pathfinding on maps. The best optimal pathfinder we
present can be up to seven times faster than the commonly
used pathfinders as shown by experimental results. We also
present algorithms based on IDA* that can be even faster
at the cost of optimality. The optimizations concern the data
structures used for the open nodes, the admissible heuristic and
the re-expansion of points. We uncover a problem related to
the non re-expansion of dead-ends for sub-optimal IDA*, and
we provide a way to repair it.

Keywords: path-finding, game maps, mazes, A-star, IDA*

I. I NTRODUCTION

Path-finding is an important part of many applications,
including commercial games and robot navigation. In games
it is important to use an optimized path-finding algorithm
because the CPU resources are also needed by other algo-
rithms, and because many games are real-time. The particular
problem addressed in this paper is grid-based path-finding.
It is often used in real-time strategy games for example, in
order to find the shortest path for an agent to itsgoal location
on the map.

A* [1] is the standard algorithm for finding shortest paths.
The usual heuristic associated to A* is the Manhattan heuris-
tic. We present data structures and heuristics that enable A*
to be up to seven times faster than the usual implementation.

The contributions of this paper are :� It is better to use an array of stacks than a priority queue
for maintaining the open nodes of an A* search.� The ALTBestP heuristic is introduced, and is shown
to perform better than the Manhattan heuristic and than
the ALT heuristic [2].� It is useful for IDA* to maintain a two-step lazy cache
of the length of the shortest paths found so far.� Adding a constant to the next threshold of IDA* enables
large speed-ups at the cost of optimality. However the
lengths of the paths are within 2% of the optimal. Sub-
optimal IDA* can be competitive with A*.� Recording the minimum f for each searched location
is useful to find dead-ends, but it can cut valid paths
when used with a sufficiently large added constant to the
threshold of IDA*. Our program can detect and repair
the problem.

Section two describes related work. Section three presents
optimizations related to the choice of the best open node.

Section four deals with the re-expansion of points. Section
five presents the different admissible heuristics we have
tested. Section six details experimental results. Sectionseven
concludes and outlines future work.

II. RELATED WORK

A* [1] is a search algorithm that finds shortest paths. It
uses a fast heuristic function that never over-estimates the
length of the path to the goal state, i.e. an admissible heuristic
often named h. For each node, it knows g the cost of the path
from the root of the search to the node, and it computes f =
g + h. The f function is used to develop the tree in a best
first manner: A* expands the node with the smallest possible
f. IDA* [5] is the iterative deepening version of A*. It can
be enhanced with a transposition table that detects positions
that have already been searched [6].

Fringe Search [4] is a hybrid of A* and IDA* that reduces
slightly the computation time compared to A*. The Fringe
Search paper also presents useful optimizations of IDA* for
game maps.

The use of map abstractions can be combined with A* to
make it faster. For example, Path-Refinement A* [7] builds
high level plans and progressively refines them into low-level
actions.

The admissible heuristic used for path-finding on road
maps, which are much more constrained than game maps,
can be improved (i.e. give greater admissible values) using
the ALT heuristic [2]. The heuristics used on road maps can
be reused for game maps, especially when the game maps
are complex and are close to mazes.

III. CHOOSING THE BEST OPEN NODE

Each time it expands a node, A* chooses the node with
the smallest f function. Therefore the cost of finding the
node with the smallest f is very important for A*. In this
section we present three methods and the associated data
structures used to find the best open node. The first method
is using a list of open nodes. The second method is widely
used and implements the open list as a priority queue. The
third method is faster than the two others and uses an array
of stacks.



A. Maintaining a list

The naive method for finding the open node with the
smallest f is to go through all the open list to find it. When
the open list grows up to more than ten thousand nodes as
it can be the case for game maps, it becomes quite time
consuming.

B. Maintaining a priority queue

A commonly used optimization for maintaining the open
list is to use a priority queue [8], [3], [4], [7]. If N is the
number of elements in the priority queue, the insertion and
the extraction of an element both take O(log N) which is
faster than a constant time for inserting and a linear time for
extracting as in the list implementation.

C. Maintaining an array of stacks

Given that the f values are bounded by a relatively small
value, it is possible to implement a data structure that inserts
nodes in constant time, and that extracts the best node in a
short time. This structure is an array of stacks. The index of
a stack in the array is the common f value of all the nodes
in the stack.

The node class has anext field which is a pointer to
another node, and which can be used to put the node on top
of a stack of nodes. The code is as follows:

Node Open [MaxLength + 1];
int currentf;

void insert (Node *node) {
Node * tmp = & Open [node->f ()];
node->next = tmp->next;
tmp->next = node;

}

Node * best () {
while (Open [currentf].next == NULL &&

currentf < MaxLength)
currentf++;

return Open [currentf].next;
}

The insert function inserts a node in constant time in the
array of stacks. The best function is used to extract the node
with the best f, and takes very little time too.

The property used to extract the best node starting at
currentf in thebest function is that moves in the map domain
never decrease the f function, given the h heuristics used by
the program. In domains with possibly decreasing f values,
it is straightforward to adapt the code by maintaining the
currentf variable in the insert function, taking the minimum
of the f of the inserted node and of currentf.

The space complexity of the array is the maximum length
of a shortest path, which is low. The space complexity of the
stacks is proportional to the number of open nodes.

IV. AVOIDING RE-EXPANSION OF POINTS

Avoiding re-expansion of points is important for path-
finding on maps because there are many paths that goes
through a point. Among these paths, many arrive at the point
with a path longer than the shortest path to the point and must
not be expanded. Among the paths that arrive with a length
equal to the length of the shortest path, it is necessary to
expand only one, and it saves time to cut the others.

A. Checking of the open and closed nodes

A simple method to avoid re-expanding points that have
already been expanded with a shorter path is to go through
the open and closed lists and verify if the point has already
been seen. However when the number of open and closed
nodes grows up, this method is quite inefficient.

B. The lazy cache optimization

As game maps fits in memory, it is more efficient to use
an array of the size of the map. Each point in the map has
an associated index, and the value stored at this index in the
array is the shortest path found so far to the point. As it is
time consuming to reinitialize the whole array before each
search, an optimization is to use a lazy initialization [4].It
consists in having an integer named themarker initially set
to zero, and another array of the size of the map initially set
to zero too. Letseen be the name of the array that contains
the length of the shortest path found, andmseen be the name
of the array that is used for the lazy initialization. Before
each search, the only thing to do to reinitialize the arrays
is to increment themarker. To verify if the length of the
shortest path to a point has been stored, the program verifies
that themseen array has the value of themarker at the
index of the point. To update a shortest path, the program
stores the length of the shortest path in theseen array at the
index of the point, and put the value ofmarker at the index
of the point in themseen array. This optimization can be
used both for the A* and the IDA* algorithms.

C. Maintaining the best path for each visited point

For each point the program keeps the length of the shortest
path to this point that has been found yet. Each time the
search passes through the point, the value of g is compared
to the stored value for the point. If g is strictly smaller,
the value is replaced with g and the search continues. If
g is greater or equal to the value of the point, the search is
stopped. When using the lazy cache optimization for A*, a
single lazy initialization is sufficient. When using it for IDA*,
two lazy initializations are better. A first lazy initialization
is used before the first search of IDA*, as in A*, in order
to reinitialize the values. However, before performing the
second search of the IDA* algorithm, we are faced with
a dilemma: if we reinitialize the values the program loses
the valuable information of the length of the shortest paths
found so far, and if we do not reinitialize the values, the
program won’t expand the nodes that have already been
searched coming from a shortest path and then the search
will fail. The solution is to use two lazy arrays and two



markers:mseen and marker to differentiate the searches
between different points, andmming andmarkerming to
differentiate between different searches between the same
points. Note that the later differentiation is only useful and
used for IDA*.

Before making a move, the program calls theSeen func-
tion that tells him if the move leads to a re-expansion. To
make things even clearer, we give the code of the function
that uses the two lazy arrays:

bool Seen (int pos, int g) {
if (mseen [pos] != marker) {

seen [pos] = g;
mseen [pos] = marker;
mming [pos] = markerming;
return false;

}
if (g < seen [pos]) {

seen [pos] = g;
mming [pos] = markerming;
return false;

}
if (g == seen [pos])

if (mming [pos] != markerming) {
mming [pos] = markerming;
return false;

}
return true;

}

The points on the map are represented by an integer,
and the map and its associated arrays are represented by
unidimensional arrays.

D. Maintaining the minimum f for each visited point

A lazy cache can also be used to memorize for each node
the minimum f found over all leaves under the node. It can
be used to detect dead ends of the map [4].

The code of IDA* with the memorization of the minimum
f, and the related cut of dead-ends is:

bool IDA (int g, int pos, int & minf) {
// minf is passed by reference, it can
// be changed in the calling function
nodes++;
int f = g + h (pos);
// currentfIDA is the threshold of
// the iterative deepening search
if (f > currentfIDA) {
if (f < minf)

minf = f;
return false;

}
if (pos == goalPos)
return true;

int tmpminf = MaxLength;
for (newpos in all neighbors) {
if (!occupied (newpos))

if (!Seen (newpos, g)) {
if (Seenminf (newpos) &&

Minf (newpos) == MaxLength)
continue;

if (IDA (g + dg, newpos, tmpminf))
return true;

Setminf (newpos, tmpminf);
}

}
if (tmpminf < minf)
minf = tmpminf;

return false;
}

The lazy cache is modified using theSetminf function.
A cut occurs when a location has already been searched
(Seenminf(newpos) returns true) and when no minimum
f has been found with this search (Minf(newpos) returnsMaxLength).

E. Thresholds for IDA*

The minimum f found over all the leaves of the root node
(minf ) can be used for the next threshold of the IDA*
search, instead of simply incrementing the threshold. It saves
the searches with the thresholds between the last threshold
and minf.

A problem with IDA* on maps is that the number of nodes
of a search with a threshold is not small in comparison with
the number of nodes of the search with the next threshold.
This is the main reason why IDA* is not competitive with
A* on maps. If we accept to find slightly sub-optimal paths,
it is possible to improve the speed of IDA* by taking a
threshold slightly greater than minf at each iteration of IDA*.
We call this algorithmIDA�D when the threshold for the
next iteration is minf + D.

A

C D

B

E F

Fig. 1. Problem cutting with the minimum f

However, there is a problem using the minimum f opti-
mization with increased thresholds. Let’s look at the possible
paths from A in figure 1. We choose for this example that
going horizontally and vertically costs two, and that going
diagonally costs three. If the program starts searching paths
ADE and ADF, theseen value of D is three, theseen value
of E is six, and theseen value of F is five. Now if the
program search the paths ABC, it arrives at C with a g of
five, and therefore the tree is cut when it continues to E (g
is seven andseen(E) is six), to F (g is eight andseen(F )
is five), and to D (g is seven andseen(D) is three). The



consequence is that the minimum f stored at C is MaxLength
and that C is considered a dead-end. So when the program
looks at the path that starts with AC (and which may be the
shortest path), the tree is cut.

In our experiments the problem does not appear when
using the minf threshold with IDA* or when using tiles.
However it appears on complex maps using octiles and a
large delta forIDA�D .

V. I MPROVING THE ADMISSIBLE HEURISTIC

The usual heuristic for path-finding on maps is the Man-
hattan heuristic. The ALT heuristic usually finds better values
than the Manhattan heuristic, but it takes more memory since
for each point of the heuristic the pre-computations take a
memory proportional to the size of the map, and it also takes
more time to compute. The ALTBestP heuristic gives better
values than the Manhattan heuristic but takes more time than
it, and worse values than the ALT heuristic but takes less time
than it. This section presents these three heuristics.

A. The Manhattan heuristic

The Manhattan heuristic is a very popular heuristic. It is
used for path-finding on maps, but also for other games such
as the 15-Puzzle or Rubik’s cube. It consists in considering
that the path to the goal is free of obstacles, which allows
a very fast computation of a lower bound on the length
of the shortest path. For maps, the heuristic is different if
the moves are restricted to the four horizontal and vertical
neighbors (tiles), or if the eight neighbors including diagonals
are allowed (octiles). The code for the Manhattan heuristic
on maps is:

int h (int pos) {
int dx = abs (x (goalPos) - x (pos));
int dy = abs (y (goalPos) - y (pos));
if (nbNeighbors == 8)

return CostDiag * min (dx, dy) +
Cost * (max (dx, dy) -

min (dx, dy));
else

return dx + dy;
}

whereCost is the cost of moving to a horizontal or vertical
neighbor, andCostDiag the cost of moving to a diagonal
neighbor.

B. The ALT heuristic

ALT is a heuristic that works well on road maps [2]. It
consists in pre-computing the distance to all points from a
given point, and then in using these pre-computed distances
to calculate an admissible heuristic. The heuristic is based
on the triangular inequality. For example ifd(X;Y ) is the
length of the shortest path betweenX andY , if the distances
are pre-computed frompPos, the current node is at
Pos,
and the goal position is atgPos, we have the following
inequalities:d(
Pos; pPos) � d(
Pos; gPos) + d(gPos; pPos) (1)

d(
Pos; gPos) � d(
Pos; pPos) + d(pPos; gPos) (2)d(gPos; pPos) � d(gPos; 
Pos) + d(
Pos; pPos) (3)

From 1 and 3 we can show, respectively:d(
Pos; gPos) � d(
Pos; pPos)� d(gPos; pPos) (4)

andd(gPos; 
Pos) � d(gPos; pPos)� d(
Pos; pPos) (5)

Given thatd(gPos; 
Pos) = d(
Pos; gPos) we have (abs
is the absolute value):d(gPos; 
Pos) � abs(d(gPos; pPos)� d(
Pos; pPos))

(6)
Therefore, an admissible heuristic, which only uses pre-
computed values, is:h = abs(d(gPos; pPos)� d(
Pos; pPos)) (7)

If distances are pre-computed for multiple points, the heuris-
tic chooses for h the maximum value over the ALT values
given by each point.

C. The ALTBestP heuristic

The ALTBestP uses pre-computed distances from P points.
Instead of taking the maximum value over the h values
computed with the P points at each node of the search, it
selects among the P points the one that gives the highest h
value at the root node. For all nodes of the search, it chooses
as h value the maximum of the ALT value computed with the
selected point and of the Manhattan heuristic. The h values
found with this heuristic are worse than the h values found
with the ALT heuristic, therefore the search will develop
more nodes. The advantage of ALTBestP is that it takes less
time at each node and that it is not much worse.

D. Other use of pre-computed distances

Pre-computed distances can also be used to find if a goal
is impossible. If the starting location has a distance to a pre-
computed point, and that the goal location has an infinite
distance to the pre-computed point, the program knows it is
useless to search a path, and it can find it without search.
This is also true for the reverse situation where there is an
infinite distance to the starting location, and a finite distance
to the goal location.

The symmetric use of pre-computed points is to find if
a path is possible. This can be useful for theIDA�D
algorithm when it has problems due to the minimum f dead-
end cuts. If the algorithm finds a path is impossible when a
pre-computed point finds there is one, the program can revert
to a slower but more safe algorithm such as IDA* without
the minimum f dead-end cut optimization, or to a simple
IDA* with a D set to zero.



VI. EXPERIMENTAL RESULTS

The maximum number of nodes per search is set to
10,000,000. Experiments are performed on a Celeron 1.7
GHz with 1GB of RAM. When the program only considers
four neighbors for each point on the map, the cost of a
move to one of the four neighbor is set to one. When it
considers eight neighbors, the cost of going to a vertical or
a horizontal neighbor is set to two, and the cost of going
to a diagonal neighbor is set to three. If the horizontal and
vertical cost is two, the real diagonal cost is 2.8 which is
close to three. The reason we choose three is that the array
of stacks optimization works more simply with integer costs.

A. Memory allocation

Memory allocation is one of the instructions that takes the
most time with current operating systems. The standard A*
algorithm allocates memory for each new node of the search.
In order to optimize further A*, we have used pre-allocation.
An array of 10,000,000 nodes is allocated once for all the
searches at the beginning of the program, and when a new
node is needed it is taken from the array. When a search is
over, to reinitialize memory, the only thing to do is to put the
integer associated to the array back to the top of the array.
This optimization is linked to the buffering optimization used
in [3], but we find the use of a pre-allocated array more
simple and more efficient.

B. The tested algorithms

The different algorithms that have been tested are:� M(N) is A* with the Manhattan heuristic, each point
has N neighbors. The structure used to maintain the
open list sorted is an array of stacks, and new nodes
are taken from a pre-allocated array of nodes.� Mmem(N) is M (N) with memory allocation at each
node.� Mqueue(N) is M (N) with a STL (Standard Template
Library) priority queue for finding the best open node.� ALTP (N) is A* with the ALT heuristic, points on
the map have N neighbors, and P points chosen at
random are used for computing the distances for the
ALT heuristic. All the distances are pre-computed, and
their pre-computation is not taken into account for
the timing of the algorithm. The admissible heuristic
consists in computing, for all the pre-computed P points,
the absolute value of the difference of the distance
between the point and the goal position, and of the
distance between the point and the node’s position. It
then chooses the maximum value over all the absolute
values and the Manhattan heuristic.� ALTBestP (N) is A* with the ALTBestP heuristic,
points on the map have N neighbors. P points are
randomly chosen and the distances to each point of
the map are pre-computed for each of the P points.
At the root of the search, the program selects the pre-
computed point which has the highest h value. During
the remainder of the search, it computes h as the

maximum of the ALT value computed with this point
and of the Manhattan heuristic.� IDA(N) is iterative deepening A* with the Manhattan
heuristic. Each point has N neighbors.� IDABestP (N) is iterative deepening A* with the
ALTBestP heuristic. Each point on the map has N
neighbors.� IDABestP�D(N) is iterative deepening A* with the
ALTBestP heuristic. Each point on the map has N
neighbors. At each iteration of the iterative deepening
search, instead of taking minf as the next threshold for
the search, the programs takes the minimum f over the
leaves of the previous search (minf) plus D.� IDA�D(N) is iterative deepening A* with the Man-
hattan heuristic. At each iteration, the next threshold is
minf + D.� IDAnof(N) is IDA(N) except that the program does
not use the recorded minf at each node to cut the search.

C. The experimental testbed

The algorithms have been tested with different values for
the number of neighbors, the number of pre-computed points,
and the delta threshold. There are three experiments, all with
300x300 maps. The experiments use maps with respectively
two hundred walls of size twenty, four hundred walls, and six
hundred walls. A set of one hundred maps has been generated
for each experiment. The walls of a map are generated by
taking at random an unoccupied point and one of the eight
directions, for vertical and horizontal directions the wall is
generated as a line with a thickness of one, and for diagonal
directions it is generated as a line with a thickness of two
in order to avoid a path that goes diagonally through a
diagonal wall. For each map, two unoccupied points are
chosen at random and the algorithm searches for a shortest
path between these two points. For each algorithm, we give
the sum of the number of nodes of all the searches, the time
spent, the number of problems where the algorithm found a
path, and the sum of the lengths of the found paths.

D. Results on simple maps

Table I gives the nodes, time, number of solved problems
and sum of lengths of paths found for different algorithms
on 300x300 maps with 200 random walls of size 20.

The best algorithm for speed isIDABest10�10 both for
tiles and octiles. The length of the paths it finds is close to
the shortest path as can be seen comparing the sums of the
lengths.

The best exact algorithm isALTBest10. For tiles it is
interesting and surprising to note thatIDABest10(4) always
finds the shortest path and is faster thanALTBest10(4).

Another result is that using an array of stacks (M(8)) is
twice as fast as using priority queues (Mqueue(8)) for oc-
tiles, and three times faster for tiles (M(4) vsMqueue(4)).
The number of nodes is different in the favor of priority
queue for the two algorithms because they do not expand
nodes in the same order due to their different algorithms for
selecting the best node.



TABLE I

300X300MAPS WITH 200WALLS OF SIZE 20.Algorithm nodes time solved sumIDABest10�10(8) 1,102,592 0.79s 98 36,387ALTBest10(8) 480,407 1.60s 98 35,998IDABest10(8) 2,146,234 1.98s 98 35,998M(8) 764,262 2.10s 98 35,998ALT10(8) 335,418 3.21s 98 35,998IDA(8) 4,340,651 3.42s 98 35,998ALT5(8) 500,989 3.80s 98 35,998Mqueue(8) 722,344 4.16s 98 35,998IDABest10�10(4) 479,046 0.26s 98 21,300IDABest10(4) 690,457 0.49s 98 21,072ALTBest10(4) 399,839 0.77s 98 21,072M(4) 611,595 0.91s 98 21,072IDA(4) 1,628,550 1.08s 98 21,072ALT10(4) 256,310 1.23s 98 21,072Mqueue(4) 664,504 2.96s 98 21,072

TABLE II

300X300MAPS WITH 400WALLS OF SIZE 20.Algorithm nodes time solved sumIDABest10�10(8) 2,601,120 2.05s 95 39,362IDABest10�20(8) 2,773,262 2.07s 95 39,969ALTBest10(8) 950,862 2.93s 95 38,911M(8) 1,455,092 4.24s 95 38,911ALT5(8) 866,041 4.85s 95 38,911Mmem(8) 1,455,092 6.30s 95 38,911IDABest10(8) 7,901,822 7.92s 95 38,911Mqueue(8) 1,358,262 8.36s 95 38,911ALT10(8) 646,554 11.74s 95 38,911IDA(8) 21,837,340 19.71s 95 38,911IDAnof(8) 133,089,043 98.93s 95 38,911IDA(8) andIDA(4) are worse thanM(8) andM(4) as
already found in other studies [4], but the difference between
the two is much smaller than what was found before (20%
to 60% more time instead of six to twenty times more time).

The ALT heuristic searches half of the nodes of the
Manhattan heuristic but is slower.

E. Results on moderately complex maps

Table II gives the results for different algorithms on
300x300 maps with 400 random walls of size 20.

The IDABest10�10(8) is the fastest algorithm, it solves
all the solvable problems, and the sum of the lengths of the
found paths is within 2% of the sum of the shortest paths.

The best exact algorithm is againALTBest10(8), it
develops less nodes in less time than the Manhattan heuristic.ALT5(8) andALT10(8) also develop less nodes than the two
previous algorithms, but take more time due to the overhead
of computing the ALT heuristic at each node.

ComparingMqueue(8) andM(8), we can see that main-
taining an array of stacks enables a speed-up of two com-
pared to maintaining a priority queue. Pre-allocating nodes
in an array gives a speed-up of 1.5 as can be seen when
comparingMmem(8) andM(8).

Concerning theIDA(8) algorithm, it is almost five times
slower than theM(8) algorithm. Even if the minimum f

TABLE III

300X300MAPS WITH 600WALLS OF SIZE 20.Algorithm nodes time solved sumIDABest10�10(8) 1,880,053 1.42s 61 36,513IDABest10�20(8) 2,262,738 1.71s 60 36,008ALTBest10(8) 604,461 1.81s 61 36,208IDABest10�20nof(8) 3,302,562 2.36s 61 36,785IDABest10�10nof(8) 3,318,593 2.50s 61 36,469ALT5(8) 542,129 2.71s 61 36,208ALT10(8) 347,189 3.00s 61 36,208IDABest10(8) 6,683,647 6.33s 61 36,208M(8) 2,438,460 6.67s 61 36,208IDA�20(8) 12,111,234 9.45s 56 33,087Mmem(8) 2,438,460 10.05s 61 36,208IDA�10(8) 12,233,668 10.93s 61 36,637Mqueue(8) 2,296,036 13.67s 61 36,208IDA(8) 67,483,398 70.27s 61 36,247IDABest10�10(4) 614,865 0.37s 44 15,889IDABest10�20(4) 693,650 0.37s 44 16,161ALTBest10(4) 401,287 0.61s 44 15,711IDABest10(4) 2,954,173 1.81s 44 15,711M(4) 1,886,487 2.94s 44 15,711IDA�20(4) 7,575,321 4.66s 44 16,199IDA�10(4) 7,839,990 5.49s 44 15,959IDA(4) 233,428,544 131.24s 44 15,711

dead-end cut can be harmful withIDABest10�10(8) or
with IDABest10�20(8), it is not the case here as they
solve all the problems. However we tested the usefulness
of the minimum f dead-end cut by removing it, and we
see thatIDAnof(8) is five times slower thanIDA(8) with
the optimization. Using theALTBest10 heuristic with IDA*
improves it sinceIDABest10(8) is more than twice as fast
asIDA(8).
F. Results on complex maps

Table III gives the nodes and time for different algorithms
on 300x300 maps with 600 random walls of size 20.

The first observation is that on complex maps that look
more like mazes or road maps, the ALT5 and the ALT10
heuristics are now faster than the Manhattan heuristic. The
overhead of computing the ALT values at each node is
compensated by a greater number of cut nodes. However
theALTBest10(8) is still the best exact algorithm and it is
more than three times faster than the Manhattan heuristic,
and more than seven times faster thanMqueue(8) which is
the standard implementation for path-finding on game maps.M(8) with arrays of stacks is still twice as fast asMqueue(8), and 1.5 faster thanMmem(8).

The fastest algorithm is stillIDABest10�10 and it
is within 2% of the optimal sum of lengths. HoweverIDABest10�20(8) and IDA�20(8) do not find all the
paths, due to the problem with the minf dead-end cut
when employed with a sufficiently large delta. This problem
appears on octiles and not on tiles. A possible repair to the
problem is to use the pre-computed distances. If the program
knows a path is possible, andIDA�20(8) does not find it,
it can revert toIDABest10�20nof(8) or IDABest10(8)
only for this problem.



Unlike IDAnof(8) which was five times slower
than IDA(8) in the previous experiment, hereIDABest10�10nof(8) is less than two times slower
than IDABest10�10(8), andIDABest10�20nof(8) finds
all the paths whenIDABest10�20(8) misses one.

TheALTBest10 heuristic is even more useful on complex
maps than on more simple maps.IDABest10(8) is more
than ten times faster thanIDA(8), and it is even better with
tiles sinceIDABest10(4) is more than seventy times faster
thanIDA(4).

VII. CONCLUSIONS AND FUTURE WORK

New data structures, heuristics and algorithms for fast
path-finding have been described and tested.

We showed that maintaining an array of stacks enables
A* to be faster than usual implementations of A* that use a
priority queue.

We presented theALTBestP heuristic and we experimen-
tally proved it is better than the Manhattan heuristic and the
ALT heuristic for maps of different complexities, both for
A* and IDA*. The best exact algorithm we have presented,
based onALTBestP and A* with arrays of stacks, is up to
seven times faster than the usual algorithm for path-finding
on maps.

Another result is that IDA* can be competitive with
A* on maps. We presented an algorithm based on IDA*
(IDABest10�10) that finds close to optimal paths faster
than our best implementation of A* (ALTBest10). We also
observed that the speed up of traditional A* over traditional
IDA* depends on the complexity of the map.

We have also shown that it is useful to have a two-step lazy
cache strategy for remembering the length of the shortest path
to visited points of the maps. A potential problem with the
use of a recorded minimum f for each visited point, when
it is used to cut the search, has been uncovered. A repair
strategy has been proposed when this problem happens. It
uses the pre-computed distances from the ALT heuristic to
detect the problem, and it falls back on a safe algorithm when
the problem occurs.

TheALTBestP heuristic as well as the lazy cache opti-
mizations increase the space requirements of the algorithms
by an ammount proportional to the size of the map.

For future work, it is interesting to find a way to deal better
with the problems encountered while cutting nodes due to the
memorized minimum f. In particular, it would be valuable to
keep the current power of memorizing the minimum f-value
for each node and of cutting dead-end nodes, while enabling
to increase the threshold of IDA* by more than the minimum
f, without losing some paths.

It is also interesting to have a better selection of the points
used for the ALT heuristic, like for example selecting the
points which are the farthest away from already existing
points [2].

Combining the optimizations presented in this paper with
optimizations due to abstractions of the maps, or optimiza-
tions related to way-points can also be of interest.

REFERENCES

[1] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,”IEEE Trans. Syst. Sci. Cybernet.,
vol. 4, no. 2, pp. 100–107, 1968.

[2] A. V. Goldberg and C. Harrelson, “Computing the shortestpath: A*
search meets graph theory,” inSODA’05, 2005.

[3] P. Kumar, L. Bottaci, Q. Mehdi, N. Gough, and S. Natkin, “Efficient
path finding for 2D games,” inCGAIDE 2004, Reading, UK, 2004, pp.
263–267.

[4] Y. Bjornsson, M. Enzenberger, R. C. Holte, and J. Schaeffer, “Fringe
search: beating A* at pathfinding on game maps,” inIEEE CIG’05,
Colchester, UK, 2005, pp. 125–132.

[5] R. E. Korf, “Depth-first iterative-deepening: an optimal admissible tree
search,”Artificial Intelligence, vol. 27, no. 1, pp. 97–109, 1985.

[6] A. Reinefeld and T. Marsland, “Enhanced iterative-deepening search,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 16, pp. 701–710, 1994.

[7] N. Sturtevant and M. Buro, “Partial pathfinding using mapabstraction
and refinement,” inAAAI 2005, Pittsburgh, 2005.

[8] B. Stout, “Smart moves: Intelligent path-finding,”Game Developper
Magazine., pp. 28–35, October 1996.


