Monte Carlo Real Time Strategy

Tristan Cazenave
Laboratoire d’Intelligence Artificielle
Université Paris 8, Saint Denis, France

cazenave@ai.univ-paris8.fr

1 Introduction

We present a simple real time strategy game and five algo-
rithms that play this game. The algorithms are compared with
head to head confrontations. The best one performs Monte-
Carlo simulations associated to some goals of the game.

Monte carlo simulations have been used to select moves
in strategic games such as Go [Bruegmann, 1993; Bouzy and
Helmstetter, 2003].

2 A Simple Real Time Strategy Game

We have designed a simple real time strategy game for our
experiments. It is played on a 50 by 20 map. The two op-
ponents, Blue and Red, start each with a 5 by 3 base in the
upper and lower middle part of the map. They also own 10
units each, aligned below the upper base for Blue, and aligned
above the lower base for Red. The bases have a health of 100,
and each unit has a health of 30 at the beginning of the game.
Each unit occupies a one by one square on the map, and it can
move in any of the eight directions provided the goal neigh-
bor square is empty. Units can also shoot ennemies that are
located in the eight neighboring squares.

3 Move Selection Algorithms

The random move algorithm picks randomly one move out
of the nine possible moves (the eight directions and the stay
in the same place move). This strategy mostly serves as an
etalon for the other strategies. All strategies should perform
better than the random move strategy.

The nearest enemy unit strategy consists in moving toward
the nearest enemy unit and shooting at it as soon as it is in its
neighborhood.

The evaluation function adds the health of the friend base
and of all the friend units, and substracts the health of the
enemy base and of all the enemy units.

The Monte-Carlo moves strategy consists in performing a
given number of simulations, and to choose moves according
to the statistics collected on the final results of the simula-
tions. In each simulation, the first move of each unit is played
randomly. The subsequent moves are played with the nearest
enemy unit strategy for both sides.

The Monte-Carlo double moves strategy starts each simu-
lation as the Monte-Carlo moves strategy by playing random
moves for the units, and also continues the simulation using

Table 1: Sum of results for each algorithm.

Algorithm Sum of results
random -960
mc_double(100) -530
mec_moves(100) -185
nearest 530

mc_goals(100) 1145

the nearest enemy unit strategy. But instead of recording the
scores of each individual move, it records the scores of pairs
of moves for pairs of units. A score is maintained for each
possible pair of moves of each possible pair of units.

The Monte-Carlo goals strategy does for the goals of the
game what the Monte-Carlo moves strategy does for the
moves. The only kind of goal we have currently tested is to
attack an enemy unit or base. At the beginning of each simu-
lation, a target enemy unit is set for each friend unit. During
the simulation, the friend units will hunt for their target en-
emy unit. Once the target enemy unit is dead, the friend unit
reverts to a nearest enemy unit strategy. The enemy units use
the nearest enemy unit strategy during all the simulation.

A score is maintained for each possible goal of each pos-
sible unit. After a fixed number of simulations, the goal with
the highest score is chosen for each unit.

Table 1 is created summing for each move selection algo-
rithm its score against all the other algorithms. They have
been tested with 100 simulations before each move, enabling
a very fast move decision process.

One promising area for future work is to add higher level
tactical goals such as protecting the base, protecting an area or
helping another unit. Testing the strategies in a more complex
real time strategy game is also appealing.

References

[Bouzy and Helmstetter, 2003] B. Bouzy and B. Helmstetter.
Monte Carlo Go developments. In Advancesin computer
games 10, pages 159-174. Kluwer, 2003.

[Bruegmann, 1993] B. Bruegmann. Monte Carlo Go.
ftp://ftp-igs.joyjoy.net/go/computer/mcgo.tex.z, 1993.

