
Multi-Agent Retrograde Analysis

Tristan Cazenave?

LAMSADE
Université Paris-Dauphine

Abstract. We are interested in the optimal solutions to multi-agent
planning problems. We use as an example the predator-prey domain
which is a classical multi-agent problem. We propose to solve it on small
boards using retrograde analysis.

1 Introduction

The predator-prey problem is a classical multi-agent problem. It was introduced
in [3]. There are four predators and one prey and the goal of the predators is to
capture the prey. In this seminal work the predators can occupy the same location
and the prey moves randomly. In a posterior work the agents could not occupy
the same location [17]. Richard Korf proposed a simple pursuit strategy using
attraction between the predators and the prey and repulsion between predators
[10].

The predator-prey problem has been used to test multiple agent based al-
gorithms. For example it has been use to analyze a general model of multi-
agent communication with a message board, using a genetic algorithm to evolve
multi-agent languages [9]. It has also been used to test genetic algorithms with
lamarckian learning operators in multi-agent environments [7].

Genetic programming has also been used to co-evolve predators and preys
populations [8]. In this work the authors acknowledge that the approach fails and
claim that a simple prey algorithm is able to evade capture from the predators
algorithms. Another work evolving multi-agent teams for the predator-prey game
is presented in [11].

In a system evolving neural networks in separate subpopulations for different
agents, it was advocated that the learning is easier than with a single controller
and that communication is unnecessary and even detrimental in the predator-
prey problem [21].

The other topic we address in this paper is retrograde analysis. Retrograde
analysis computes the optimal solution to a large number of game states start-
ing from terminal positions and going up towards deeper positions. It was first
used in Chess and Checkers and related to dynamic programming [1]. Chess
endgames have been completely solved up to 6 pieces using retrograde analysis
[18, 19]. The 6 piece endgame tables requires 1.2 TB. Endgame tables have also
been instrumental in solving Checkers [16]. Awari was completely solved thanks

? cazenave@lamsade.dauphine.fr

to retrograde analysis [12] leading to an optimal and instantaneous player. Ret-
rograde analysis has also been applied to many other games such as Nine Men’s
Morris [6], Go [4], Fanorona [14], Chinese Chess [5] or Chinese Dark Chess [13]
among others.

Games can also be solved by search. A standard algorithm for solving games
is iterative deepening αβ with a transposition table [15]. Search was used to
solve Checkers [16], small board Go [20] and small board Atarigo [2].

The outline of the paper is to present the predator-prey game in the next
section, then to present retrograde analysis and search, followed by experimental
results.

2 The Predator-Prey Game

In the predator-prey game we have designed, three predators are trying to cap-
ture a prey. In our implementation there are five possible moves for each agent:
going up, down, left, right or staying on the same location. Predators cannot
occupy the same location and when a prey moves to a predator location it is
captured.

A state is terminal either if the prey is on the same location as a predator or
if the prey is blocked by the predators and cannot move to an empty location.

A state is legal if no two predators are on the same location.
In previous work, moves by the predators and the prey can be either simulta-

neous or sequential. We have chosen sequential moves with the prey moving after
the predators. When the prey is the second player he can choose the move the
most beneficial to him knowing the future locations of the predators. It should
be better for the prey but the evaluation must be made only after the prey move
so as to simulate simultaneous moves. If the predator moves to the location of
the prey, the prey can still escape since it can still move and that the evaluation
of a state is only made after the move of the prey.

In our implementation it is possible for the prey to swap locations with
a neighbor predator. It could also be possible to forbid such swaps. Enabling
swaps as we do should be beneficial to the prey.

Overall when we had to make choices for the design of the game we chose
the design the most beneficial to the prey.

3 Retrograde Analysis

In order to store the results of retrograde analysis in a table we have to design
a bijection between the states of the problem and the indices in the table. We
call the index associated to a state its code. A simple way to compute a code is
to number each agent and each cell on the board and to compute the code of a
board as:

code =
∑

agent cell(agent)×MaxCellagent

In this formula the agent variable is an integer between 0 and 3 that represents
an agent. Agent 0 is the prey and agents 1, 2 and 3 are the predators. The
function cell(agent) returns an integer that represents the location of the agent
on the board, each cell is associated to an integer between 0 and MaxCell − 1.

Using the previous code we consider that each agent is different from the
other ones. However we could consider that two predators can exchange their
locations and that it is still the same state. In this case the total number of
states and the greatest possible code are quite reduced [14], thus reducing the
size of the retrograde analysis table.

For this paper, we kept things simple and in our experiments we used the
simple code considering each agent different from the other ones.

The overall algorithm that performs retrograde analysis is given in algorithm
4. It calls two subsequent algorithms. The initialisation algorithm that is given
in algorithm 1 and which initializes the table with terminal states, and the step
algorithm that is given in algorithm 2 and which computes the states won by
the predators in currentDepth moves by the prey. The step algorithm performs
a one ply search in order to discover the states won at currentDepth given the
states won in less than currentDepth. This one ply search algorithm is given in
algorithm 3.

In the algorithms the constant MaxAgent is set to 4 and represents the num-
ber of agents including the prey. When the agent variables reaches MaxAgent it
means that either all the agents have been placed in the initialisation algorithm
or that all the predators have moved in the step and the one step lookahead
algorithms.

In the algorithm 3 the predators try to minimize the depth to the capture
and the prey tries to maximize it. The unknown states are initialized to∞ in the
init algorithm. If the prey can escape to an unknown state then the algorithm
returns ∞ and the predators have to keep trying other moves.

The table can be used to decide the predators moves that wins in the smallest
number of steps. It can also be used to decide the prey move that will take the
most number of steps before capture. In some Chess endgames, even in lost
states, computers using an endgame table can lure grandmasters and keep them
away from victory as the human players do not always play optimal moves.

4 Search

The worst branching factor for 4 agents and vertical and horizontal moves is
54 = 625. A simple depth 8 problem for size 5 × 5 can already visit at most
6258 = 2.33× 1022 leaves. In practice the exact number of leaves should be less
but still quite a large number. It would be clearly more than the state space size
of a 5× 5 problem which is 345,000. The state space complexity of the problem
is far lower than its game tree complexity.

A possible solution to avoid searching again the already visited states is to
use iterative deepening search with a transposition table as a search algorithm.
It avoids searching again the same state multiple times and it could significantly

Algorithm 1 The initialisation algorithm

init (agent)
if agent = MaxAgents then

if board is legal then
nbStates ← nbStates + 1
depth [board.code ()] ←∞
if board is terminal then

depth [board.code ()] ← 0
nbStatesDepth [0] ← nbStatesDepth [0] + 1

end if
end if

else
for cell in possible locations on board do

board.cell [agent] ← cell
init (agent + 1)

end for
end if

Algorithm 2 The step algorithm computing the next depth of retrograde anal-
ysis

step (agent)
if agent = MaxAgents then

if depth [board.code ()] = ∞ then
if board is legal then

if min (1) = currentDepth - 1 then
depth [board.code ()] ← currentDepth
nbStatesDepth [currentDepth] ← nbStatesDepth [currentDepth] + 1

end if
end if

end if
else

for cell in possible locations on board do
board.cell [agent] ← cell
step (agent + 1)

end for
end if

Algorithm 3 The one step lookahead algorithm

min (agent)
if agent = MaxAgents then

return max ()
end if
mini ← min (agent + 1)
for move in possible moves for agent do

make move for agent
eval ← min (agent + 1)
undo move for agent
if eval < mini then

mini← eval
end if

end for
return mini

max ()
if board is illegal then

return ∞
end if
maxi ← depth [board.code ()]
for move in possible moves for the prey do

make move for the prey
eval ← depth [board.code ()]
undo move for the prey
if eval > maxi then

maxi← eval
end if

end for
return maxi

Algorithm 4 The overall algorithm for retrograde analysis

nbStates ← 0
nbStatesDepth [0] ← 0
init (0)
currentDepth ← 1
while true do

nbStatesDepth [currentDepth] ← 0
step (0)
if nbStatesDepth [currentDepth] = 0 then

break
end if
currentDepth ← currentDepth + 1

end while

decrease the search time as there are many transpositions in the predator-prey
problem.

We have implemented a perfect transposition table. A perfect transposition
table is a table that has exactly one entry per possible state. When a state has
been searched the result can be stored in the corresponding entry and it can be
reused when reaching the state again. We use the code of the board as the index
in the transposition table.

The search algorithm for the predator-prey game is given in algorithm 5. It
uses a perfect transposition table and two functions. The minTT function tries
all the possible combinations of the predators moves and selects the one leading
to the capture of the prey if it exists. If no combination enables the capture in
depth steps it returns false. The maxTT function tries all possible moves for the
prey and selects the one that avoids capture. If all possible moves lead to capture
it stores the result in the transposition table and returns true.

The TT table contains the depth of the search that solved the state. It
contains ∞ if the state was not solved. If a state has already been solved with
a smaller or equal depth, the algorithm returns true. The other table is the
depthTT table, it contains the maximum search depth performed for the state.
If a state has already been searched with a greater or equal depth, the search is
cut as it is not necessary to search it again.

5 Experimental Results

The experiments were run on a 1.9 GHz computer running Linux and the algo-
rithms were written in C++.

The retrograde analysis algorithm was used to compute the depth to mate
of every state for various board sizes. The number of states for each depth to
mate is given in the table 1 for board sizes ranging from 4× 4 to 9× 9.

The table 2 gives the total number of states, the maximum code used and
the time to perform retrograde analysis for 4× 4 to 9× 9 boards.

We wrote an algorithm similar to the initialisation algorithm in order to
verify that all states are won for the predators. It is run after the retrograde
analysis is finished and verifies that the depth to mate is finite for every possible
state. We have found that it is the case for all the board sizes we solved.

A 7× 7 state with maximum depth 12 is the following state:

o....xx

......x

.......

.......

.......

.......

.......

Algorithm 5 The search algorithm

minTT (depth, agent)
if agent = MaxAgents then

return maxTT (depth− 1)
end if
if minTT (depth, agent + 1) then

return true
end if
for move in possible moves for agent do

make move for agent
eval ← minTT (depth, agent + 1)
undo move for agent
if eval = true then

return true
end if

end for
return false

maxTT (depth)
if board is illegal then

return false
end if
if prey is blocked then

return true
end if
if depth = 0 then

return false
end if
if TT [board.code ()] ≤ depth then

return true
end if
if depthTT [board.code ()] ≥ depth then

return false
end if
if depthTT [board.code ()] < depth then

depthTT [board.code ()] = depth
end if
if the prey is not on the same location as a predator then

if not minTT (depth, 1) then
return false

end if
end if
for move in possible moves for the prey do

make move for the prey
if the prey is not on the same location as a predator then

if not minTT (depth, 1) then
undo move for the prey
return false

end if
end if
undo move for the prey

end for
TT [board.code ()] ← depth
return true

Table 1. Number of states for each depth to mate and for different board sizes.

Depth 4× 4 5× 5 6× 6 7× 7 8× 8 9× 9

0 10,440 42,000 129,408 332,856 751,560 1,537,800
1 2,712 4,920 7,464 10,344 13,560 17,112
2 3,960 5,976 7,560 8,616 9,672 10,728
3 10,200 16,056 20,808 24,792 26,760 28,728
4 19,584 42,840 48,960 57,888 64,752 68,352
5 6,864 79,752 119,040 128,616 138,912 150,912
6 0 83,928 240,864 273,600 283,416 298,080
7 0 68,760 367,896 531,000 584,280 580,128
8 0 768 387,816 888,696 1,122,336 1,131,336
9 0 0 211,848 1,218,600 1,927,536 2,067,480
10 0 0 576 1,170,576 3,021,264 3,533,112
11 0 0 0 755,424 3,478,080 5,575,200
12 0 0 0 15,648 3,005,280 7,666,608
13 0 0 0 0 1,551,816 8,301,696
14 0 0 0 0 19,752 6,625,848
15 0 0 0 0 0 3,816,432
16 0 0 0 0 0 55,968
17 0 0 0 0 0 0

Table 2. Number of states, maximum code and time to solve with retrograde analysis
in seconds for different sizes

Size Number of states Maximum code Time to solve

4× 4 53,760 65,536 3.82
5× 5 345,000 390,625 56.16
6× 6 1,542,240 1,679,616 386.75
7× 7 5,416,656 5,764,801 1,900.91
8× 8 15,998,976 16,777,216 8,618.76
9× 9 41,465,520 43,046,721 27,002.54

The iterative deepening search for this state evolves as indicated in the table
3. The times indicated are the cumulative times, the times for all inferior depth.
The time to solve the corresponding 9 × 9 problem with search at depth 16 is
1714.53 seconds. This is only to solve one problem when retrograde analysis can
be computed offline in 1,900 seconds for size 7 × 7 and for all problems and
results in instantaneous and optimal moves.

Table 3. Times for searching a 7 × 7 depth 12 state with iterative deepening and a
perfect transposition table.

Depth Time

1 0.006094
2 0.006181
3 0.007001
4 0.013914
5 0.046882
6 0.162278
7 0.492648
8 1.453308
9 4.410059
10 12.724911
11 91.924769
12 164.675883

In order to illustrate the predators strategies, we give an example of the solu-
tion to the 7× 7 problem above of maximum depth 12, with the prey randomly
choosing among the moves leading to a maximum depth state:

o....xx o....x. o....x.x.. ...x... ..x....

......xxxxx. o..xx.. ..xx... .xx....

....... o......

....... o......

.......

.......

.......

12 11 10 9 8 7

.x.....

.x..... .x.....

..x.... .x..... .x.....

.o..... .ox.... .xx.... .x..... x...... x......

.......o..... oxx.... xx.....

....... o...... xx.....

....... o......

6 5 4 3 2 1

6 Conclusion

Retrograde analysis of the predator-prey problem is tractable in time and mem-
ory until 9 × 9 boards. It results in instantaneous decisions and optimal multi-
agent strategies.

A result from our research is that the predator-prey game is always lost for
the prey even when there are only 3 predators, when the prey knows the moves
of the predators before moving and when the prey is allowed to swap locations
with a neighbor predator. The maximum number of moves by the prey before
capture is 14 for size 8× 8 and 16 for size 9× 9.

Another result is that iterative deepening search with a perfect transposi-
tion table is slow even for small board sizes. It cannot compete with retrograde
analysis with respect to solving time.

In future work we will explore the use of abstraction so as to solve boards
of large sizes, learning of agents strategies, and compression of tables. Another
line of research is to solve a continuous version of the game.

There are multiple possibilities for learning using endgame tables. For exam-
ple, learning an evaluation function for a depth one search, learning the move
to make for an agent or learning a move ordering heuristic with an evaluation
of states or with an evaluation of moves.

Another line of research is to analyze endgames of multi-agent games with a
much larger state space.

References

1. Richard Bellman. On the application of dynamic programing to the determination
of optimal play in chess and checkers. Proceedings of the National Academy of
Sciences of the United States of America, 53(2):244, 1965.

2. Frédéric Boissac and Tristan Cazenave. De nouvelles heuristiques de recherche
appliquées à la résolution d’Atarigo. In Intelligence artificielle et jeux, pages 127–
141. Hermes Science, 2006.

3. M. Brenda, V. Jagannathan, and R. Dodhiawala. On optimal cooperation of knowl-
edge sources-an empirical investigation. Boeing Adv. Technol. Center, Boeing Com-
put. Services, Seattle, WA, Tech. Rep. BCSG2010-28, 1986.

4. Tristan Cazenave. Generation of patterns with external conditions for the game of
go. Advances in Computer Games, 9:275–293, 2001.

5. Haw-ren Fang, Tsan-sheng Hsu, and Shun-chin Hsu. Construction of chinese chess
endgame databases by retrograde analysis. In Computers and Games, pages 96–
114. Springer, 2001.

6. Ralph Gasser. Solving nine men’s morris. Computational Intelligence, 12(1):24–41,
1996.

7. John J. Grefenstette. Lamarckian learning in multi-agent environments. Technical
report, DTIC Document, 1995.

8. Thomas Haynes and Sandip Sen. Evolving behavioral strategies in predators and
prey. In Adaption and learning in multi-agent systems, pages 113–126. Springer,
1996.

9. Kam-Chuen Jim and C. Lee Giles. Talking helps: Evolving communicating agents
for the predator-prey pursuit problem. artificial life, 6(3):237–254, 2000.

10. Richard E. Korf. A simple solution to pursuit games. Working papers of the 11th
international workshop on distributed artificial intelligence, 1992.

11. Sean Luke and Lee Spector. Evolving teamwork and coordination with genetic
programming. In Proceedings of the 1st annual conference on genetic programming,
pages 150–156. MIT Press, 1996.

12. John W. Romein and Henri E. Bal. Solving awari with parallel retrograde analysis.
IEEE Computer, 36(10):26–33, 2003.

13. Abdallah Saffidine, Nicolas Jouandeau, Cédric Buron, and Tristan Cazenave. Ma-
terial symmetry to partition endgame tables. In Computers and Games, pages
187–198. Springer, 2014.

14. Maarten P. D. Schadd, Mark H. M. Winands, Jos W. H. M. Uiterwijk, H. Jaap
van den Herik, and Maurice H. J. Bergsma. Best play in fanorona leads to draw.
New Mathematics and Natural Computation, 4(3):369–387, 2008.

15. Jonathan Schaeffer. The history heuristic and alpha-beta search enhancements
in practice. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
11(11):1203–1212, 1989.

16. Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin
Müller, Robert Lake, Paul Lu, and Steve Sutphen. Checkers is solved. science,
317(5844):1518–1522, 2007.

17. Larry M. Stephens and Matthias B. Merx. Agent organization as an effector of
dai system performance. In Ninth Workshop on Distributed Artificial Intelligence,
Rosario Resort, Eastsound, Washington, pages 263–292, 1989.

18. Ken Thompson. Retrograde analysis of certain endgames. ICCA Journal, 9(3):131–
139, 1986.

19. Ken Thompson. 6-piece endgames. ICCA Journal, 19(4):215–226, 1996.
20. Erik C.D. van der Werf and Mark H.M. Winands. Solving go for rectangular

boards. ICGA Journal, 32(2):77–88, 2009.
21. Chern Han Yong and Risto Miikkulainen. Cooperative coevolution of multi-agent

systems. University of Texas at Austin, Austin, TX, 2001.

