
Reflexive Monte-Carlo Search

Tristan Cazenave

LIASD
Dept. Informatique

Université Paris 8, 93526, Saint-Denis, France
cazenave@ai.univ-paris8.fr

Abstract. Reflexive Monte-Carlo search uses the Monte-Carlo search ofa given
level to improve the search of the upper level. We describe the application to
Morpion Solitaire. For the non touching version, reflexive Monte-Carlo search
breaks the current record and establishes a new record of 78 moves.

1 Introduction

Monte-Carlo methods have been applied with success to many games. In perfect infor-
mation games, they are quite successful for the game of Go which has a huge search
space [1]. The UCT algorithm [9] in combination to the incremental development of
a global search tree has enabled Go programs such as CRAZY STONE [2] and MOGO

[11] to be the best on 9× 9 boards and to become competitive on 19× 19 boards.
Morpion Solitaire is a single-player complete-information game with a huge search

space. The current best algorithms for solving Morpion Solitaire are based on Monte-
Carlo methods. We present in this paper an improvement of theusual Monte-Carlo
method based on reflexivity.

In the next section we present Morpion Solitaire. In the third section we detail re-
flexive Monte-Carlo search. In the fourth section we give experimental results.

2 Morpion Solitaire

Morpion Solitaire was first published in Science & Vie in April 1974. It has also been
addressed in Jeux & Stratégie in 1982 and 1983. The current record of 170 moves has
been found by hand at this time.

2.1 Rules of the Game

Figure 1 gives the starting position for Morpion Solitaire.A move consists in adding a
circle and drawing a continuous line such that the line contains the new circle as well as
four other circles. A line can be horizontal, vertical or diagonal. The goal of the game
is to play as many moves as possible.

Figure 2 shows a game after five moves. In this figure only horizontal and vertical
moves are displayed, diagonal moves are also allowed when possible.



Fig. 1. Initial position.

Fig. 2. Position after five moves.



In the original version of the game, two different moves can share a circle at the end
of a line even if the lines of the two moves have the same direction. Another version is
the non-touching version where two different moves cannot share a circle at the end of
a line if their lines have the same direction.

2.2 Previous works on Morpion Solitaire

Hugues Juillé has described an algorithm that finds a 122 moves solution to the touching
version [7, 8]. The algorithm was made more incremental by Pascal Zimmer and it
reached 147 moves. The 170 moves record has been proved optimal for the last 109
moves [4, 5].

Concerning the non-touching version, the best human recordis 68 moves [3]. In
his thesis, B. Helmstetter describes a program that finds a 69-moves solution using
a retrograde analysis of the 68-moves human record [5]. In December 2006, the best
record was 74. It was found with a simulated-annealing algorithm [10, 6]. I found a 76-
moves record in December 2006 with Reflexive Monte-Carlo Search, and the 78-moves
record in May 2007.

2.3 The Mobility Heuristic

An heuristic for choosing the moves to explore is themobility heuristic. It consists
in choosing randomly among the moves that lead to boards thathave the maximum
number of possible moves. The moves that lead to board that have less possible moves
than the boards corresponding to the most mobile moves are discarded.

3 Reflexive Monte-Carlo Search

This section first presents Monte-Carlo search applied to Morpion Solitaire, then it is
extended to reflexive Monte-Carlo Search.

3.1 Monte-Carlo search

Monte-Carlo search simply consists in playing random gamesfrom the starting posi-
tion. The code for playing a random game is given in the functionplayGame():

int variation [200];

int playGame () {
nbMoves = 0;
for (;;) {
if (moves.size () == 0)

break;
move = chooseRandomMove (moves);
playMove (move);
variation [nbMoves] = move;



updatePossibleMoves (move);
nbMoves++;

}
return nbMoves;

}

Moves are coded with an integer, and thevariation array contains the sequence of
moves of the random game.

TheplayGame() function is used to find the best game among many random games
with the functionfindBestMove():

int nbPrefix = 0;
int prefix [200];
int previousBestScore = 0;
int bestVariation [200];

int findBestMove () {
int nb = 0, best = previousBestScore - 1;
for (int i = 0; i < best; i++)
bestVariation [i] = bestVariation [i + 1];

initialBoard ();
for (int i = 0; i < nbPrefix; i++)

playMove (prefix [i]);
memorizeBoard ();
while (nb < nbGames) {
retrieveBoard ();
if (moves.size () == 0)

return -1;
int nbMoves = playGame ();
if (nbMoves > best) {

best = nbMoves;
for (int i = 0; i < best; i++)

bestVariation [i] = variation [i];
}

}
previousBestScore = best;
return bestVariation [0];

}

Theprefix array contains the moves that have to be played before the random game
begins. In the case of a simple Monte-Carlo search,nbPrefix equals zero. In the case
of a Meta-Monte-Carlo search the prefix contains the moves ofthe current meta-game.

TheinitialBoard() function puts the board at the initial position of Morpion Soli-
taire. ThememorizeBoard() function stores the current board with the list of possible
moves, and theretrieveBoard() function restores the board and the list of possible
moves that have been stored in thememorizeBoard() function.



3.2 Meta Monte-Carlo Search

Reflexive Monte-Carlo search consists in using the results from Monte-Carlo search to
improve Monte-Carlo search. A Meta-Monte-Carlo search uses a Monte-Carlo search
to find the move to play at each step of a meta-game. A Meta-Meta-Monte-Carlo search
uses a Meta-Monte-Carlo search to find a move at each step of a meta-meta-game, and
so on for upper meta levels.

We give below theplayMetaGame() function which plays a meta-game:

int playMetaGame () {
previousBestScore = 0;
for (;;) {
int move = findBestMove ();
if (move == -1)

break;
prefix [nbPrefix] = move;
nbPrefix++;

}
return nbPrefix;

}

This function is used to find the best meta-move in a Meta-Meta-Monte-Carlo
search. We give below the code for thefindBestMetaMove() function that finds
the best meta-move:

int nbMetaPrefix = 0;
int metaPrefix [200];
int previousMetaBestScore = 0;
int bestMetaVariation [200];

int findBestMetaMove () {
int nb = 0, best = previousMetaBestScore - 1;
for (int i = 0; i < best; i++)
bestMetaVariation [i] = bestMetaVariation [i + 1];

while (nb < nbMetaGames) {
for (int i = 0; i < nbMetaPrefix; i++)

prefix [i] = metaPrefix [i];
nbPrefix = nbMetaPrefix;
int nbMoves = playMetaGame ();
if (nbMoves - nbMetaPrefix > best) {

best = nbMoves - nbMetaPrefix;
for (int i = 0; i < best; i++)

bestMetaVariation [i] = prefix [nbMetaPrefix + i];
}
nb++;

}
previousMetaBestScore = best;



if (best <= 0)
return -1;

return bestMetaVariation [0];
}

The code for the meta-meta level is similar to the code for themeta-level. In fact all
the meta-levels above the ground level use a very similar code. There is no theoretical
limitation to the number of levels of reflexive Monte-Carlo search. The only limitation
is that each level takes much more time than its predecessor.

4 Experimental Results

For the experiments, the programs run on a Pentium 4 cadencedat 2.8 GHz with 1 GB
of RAM. All experiments concern the non-touching version.

Table 1 gives the lengths of the best games obtained with sampling and random
moves for different numbers of random games. It correspondsto a simple Monte-Carlo
search.

Table 1.Best lengths for different numbers of games with sampling and random moves.

games 10 100 1,00010,000100,0001,000,00010,000,000
length 55 58 60 63 63 63 64

time 0.008s.0.12s. 1.0s. 9.8s. 98s. 978s. 17,141s.

Table 2 gives the lengths of the best games obtained with sampling and themobility
heuristic for choosing moves in the random games. We can observe that for a similar
number of random games, themobility heuristic finds longer games than the completely
random choices. However, it also takes more time, and for equivalent search times, the
two heuristic find similar lengths.

Table 2.Best lengths for different numbers of games with sampling and mobility.

games 10 100 1,00010,000100,0001,000,000
length 60 61 62 62 63 64

time 0.12s.1.05s.10.2s. 101s. 1,005s. 10,063s.

The UCT algorithm uses the formulaµi +
√

log(t)
C×s

to explore moves of the global
search tree,µi is the average of the games that start with the correspondingmove,t is the
number of games that have been played at the node, ands is the number of games that
have been played below the node starting with the corresponding move. We have tested
different values for theC constant, and the best results were obtained withC = 0.1.



Table 3 gives the best lengths obtained with UCT for different numbers of simula-
tions. The results are slightly better than with sampling.

Table 3.Best lengths for different numbers of games with UCT and mobility.

games 10 100 1,00010,000100,0001,000,000
length 60 60 61 64 64 65

time 0.16s.1.3s. 16s. 176s. 2,108s. 18,060s.

Reflexive Monte-Carlo search has been tested for different combinations of games
and meta-games, each combination corresponds to a single meta-meta-game. The length
of the best sequence for different combinations is given in Table 4. The first line gives
the number of meta-games, and the first column gives the number of games. Table 5
gives the time for each combination to complete its search.

Table 4.Best lengths for different numbers of games and meta-games.

1 10 100 1000
1 63 63 67 67

10 63 67 69 67
100 65 69 72

100071

Table 5.Times for different numbers of games and meta-games.

1 10 100 1,000
1 5s. 42s. 417s. 3,248s.

10 23s. 774s. 3,643s.27,688s.
100 253s.4,079s.26,225s.

1,0003,188s.

We have obtained sequences of length 76 with different configurations of the reflex-
ive search. The configuration that found the 78 moves record consists in playing 100
random games at the ground level, 1,000 meta-games at the meta level, and one game
at the meta meta level. The search took 393,806 seconds to complete. The sequence
obtained is given in figure 3.



1

2

3

4

5

6

7

8

9

10

11

1213

14 15

16

17

18

19 20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

35 36

37

38

39

40

4142

43

44

45

46

47

4849

50

51

5253

54 55

56

57

58

59

60

61

62 63

64

65

66

67 68

69

70

71

72

73 74

75

76

77

78

Fig. 3. 78 moves for the non-touching version.



5 Conclusion and Future Research

Reflexive Monte-Carlo search has established a new record of78 moves for the non-
touching version of Morpion Solitaire. This is four moves more than the best attempt
made by other programs, and it is ten moves more than the humanrecord for the game.
Concerning the touching version the human record of 170 is still much better than what
current programs can achieve.

Reflexive Monte-Carlo Search is a general technique that canbe applied in other
games. Also, future works include the parallelization of the algorithm and its application
to other games.

References

1. Bouzy, B., Cazenave, T.: Computer Go: An AI-Oriented Survey. Artificial Intelligence
132(1) (2001) 39–103

2. Coulom, R.: Efficient selectivity and back-up operators in monte-carlo tree search. In:
Proceedings Computers and Games 2006, Torino, Italy (2006)

3. Demaine, E.D., Demaine, M.L., Langerman, A., Langerman,S.: Morpion solitaire. Theory
Comput. Syst.39(3) (2006) 439–453

4. Helmstetter, B., Cazenave, T.: Incremental transpositions. In H. Jaap Herik, Yngvi Bjorns-
son, N.S.N., ed.: Computers and Games: 4th International Conference, CG 2004. Volume
3846 of LNCS, Ramat-Gan, Israel, Springer-Verlag (2006) 220–231

5. Helmstetter, B.: Analyses de dépendances et méthodes de Monte-Carlo dans les jeux de
réflexion. Phd thesis, Université Paris 8 (2007)

6. Hyyro, H., Poranen, T.: New heuristics for morpion solitaire. Technical report (2007)
7. Juillé, H.: Incremental co-evolution of organisms: A new approach for optimization and

discovery of strategies. In: ECAL. Volume 929 of Lecture Notes in Computer Science.
(1995) 246–260

8. Juillé, H.: Methods for statistical inference: extending the evolutionary computation
paradigm. Phd thesis, Brandeis University (1999)

9. Kocsis, L., Szepesvari, C.: Bandit based monte-carlo planning. In: ECML-06. (2006)
10. Langerman, S.: Morpion solitaire. Web page, http://slef.org/jeu/ (2007)
11. Wang, Y., Gelly, S.: Modifications of UCT and sequence-like simulations for Monte-Carlo

go. In: CIG 2007, Honolulu, USA (2007) 175–182


