Reflexive Monte-Carlo Search

Tristan Cazenave

LIASD
Dept. Informatique
Université Paris 8, 93526, Saint-Denis, France
cazenave@i . uni v-paris8.fr

Abstract. Reflexive Monte-Carlo search uses the Monte-Carlo searatgien

level to improve the search of the upper level. We descrileeatbplication to
Morpion Solitaire. For the non touching version, reflexivemtie-Carlo search
breaks the current record and establishes a new record obv8snm

1 Introduction

Monte-Carlo methods have been applied with success to mamgeg, In perfect infor-
mation games, they are quite successful for the game of Gohwias a huge search
space [1]. The UCT algorithm [9] in combination to the incesrtal development of
a global search tree has enabled Go programs suclRazYCSTONE [2] and MOGO
[11] to be the best on & 9 boards and to become competitive onx199 boards.

Morpion Solitaire is a single-player complete-informatgame with a huge search
space. The current best algorithms for solving MorpiontSok are based on Monte-
Carlo methods. We present in this paper an improvement otisiial Monte-Carlo
method based on reflexivity.

In the next section we present Morpion Solitaire. In thedlsiection we detail re-
flexive Monte-Carlo search. In the fourth section we giveeskpental results.

2 Morpion Solitaire

Morpion Solitaire was first published in Science & Vie in A@B74. It has also been
addressed in Jeux & Stratégie in 1982 and 1983. The cumentd of 170 moves has
been found by hand at this time.

2.1 Rules of the Game

Figure 1 gives the starting position for Morpion Solitaifemove consists in adding a
circle and drawing a continuous line such that the line dostthe new circle as well as
four other circles. A line can be horizontal, vertical orghaal. The goal of the game
is to play as many moves as possible.

Figure 2 shows a game after five moves. In this figure only bota and vertical
moves are displayed, diagonal moves are also allowed whesilpe.

O O

O O
O0O0O0O O0O0O0O
O O
O O
OO0O0O0O O00O0O

O O

O O

OO00O0O

Fig. 1. Initial position.

OO00O0O

O O

O O
o000 0000
O 0,
O O,
O0O0O0O D-O

O o

O

00O

Fig. 2. Position after five moves.

In the original version of the game, two different moves daars a circle at the end
of a line even if the lines of the two moves have the same dinecAnother version is
the non-touching version where two different moves canhatesa circle at the end of
a line if their lines have the same direction.

2.2 Previous works on Morpion Solitaire

Hugues Juillé has described an algorithm that finds a 122sw®ution to the touching
version [7,8]. The algorithm was made more incremental bycB®aZimmer and it
reached 147 moves. The 170 moves record has been provedabfiiimthe last 109
moves [4, 5].

Concerning the non-touching version, the best human reiso8& moves [3]. In
his thesis, B. Helmstetter describes a program that finds-e@&s solution using
a retrograde analysis of the 68-moves human record [5]. iceBder 2006, the best
record was 74. It was found with a simulated-annealing &lgaor[10, 6]. | found a 76-
moves record in December 2006 with Reflexive Monte-Carlo@gand the 78-moves
record in May 2007.

2.3 The Mobility Heuristic

An heuristic for choosing the moves to explore is thebility heuristic. It consists
in choosing randomly among the moves that lead to boardshtéhat the maximum
number of possible moves. The moves that lead to board thatlass possible moves
than the boards corresponding to the most mobile moves scardied.

3 Reflexive Monte-Carlo Search

This section first presents Monte-Carlo search applied tgpda Solitaire, then it is
extended to reflexive Monte-Carlo Search.

3.1 Monte-Carlo search

Monte-Carlo search simply consists in playing random gafrees the starting posi-
tion. The code for playing a random game is given in the fumgiiay Game():

int variation [200];

int playGane () {

nbMoves = 0;

for (;:) {
if (rmoves.size () == 0)

br eak;

nove = chooseRandonMove (noves);
pl ayMove (nove);
variati on [nbMoves] = nove;

updat ePossi bl eMoves (nove);
nbMoves++;

}

return nbMves;

}

Moves are coded with an integer, and theiation array contains the sequence of
moves of the random game.

TheplayGame() function is used to find the best game among many random games
with the functionfind Best M ove():

int nbPrefix = 0;

int prefix [200];

i nt previousBest Score = 0;
int bestVariation [200];

int findBestMve () {
int nb = 0, best = previousBestScore - 1;
for (int i =0; i < best; i++)
bestVariation [i] = bestVariation [i + 1];

initial Board ();
for (int i =0; i < nbPrefix; i++)
pl ayMove (prefix [i]);
menori zeBoard ();
while (nb < nbGanes) {
retrieveBoard ();
if (rmoves.size () == 0)
return -1,
i nt nbMoves = playGne ();
if (nbMoves > best) {
best = nbMoves;
for (int i =0; i < best; i++)
bestVariation [i] = variation [i];
}
}

previ ousBest Score = best;
return bestVariation [0];

Thepre fix array contains the moves that have to be played before tdemagame
begins. In the case of a simple Monte-Carlo seandl®re fixz equals zero. In the case
of a Meta-Monte-Carlo search the prefix contains the movéise€urrent meta-game.

Theinitial Board() function puts the board at the initial position of MorpioniSo
taire. ThememorizeBoard() function stores the current board with the list of possible
moves, and theetrieveBoard() function restores the board and the list of possible
moves that have been stored in themorizeBoard() function.

3.2 Meta Monte-Carlo Search

Reflexive Monte-Carlo search consists in using the restudta Monte-Carlo search to
improve Monte-Carlo search. A Meta-Monte-Carlo searcls assMonte-Carlo search
to find the move to play at each step of a meta-game. A Meta-Mietate-Carlo search
uses a Meta-Monte-Carlo search to find a move at each step efaameta-game, and
so on for upper meta levels.

We give below thelay M etaGame() function which plays a meta-game:

int playMetaGane () {

previ ousBest Score = 0;

for (;;) {
int move = findBest Move ();
if (move == -1)

br eak;

prefix [nbPrefix] = nove;
nbPref i x++;

}

return nbPrefix;

}

This function is used to find the best meta-move in a Meta-Névate-Carlo
search. We give below the code for tiiéndBestMetaMove() function that finds
the best meta-move:

int nbMetaPrefix = 0;

int metaPrefix [200];

i nt previousMet aBest Score = 0;
i nt bestMetaVariation [200];

int findBestMetaMve () {
int nb = 0, best = previ ousMet aBest Score - 1;
for (int i =0; i < best; i++)
best MetaVariation [i] = bestMetavariation [i + 1];
while (nb < nbMetaGanes) {
for (int i =0; i < nbMetaPrefix; i++)
prefix [i] = nmetaPrefix [i];
nbPrefix = nbMet aPrefi x;
i nt nbMoves = playMetaGane ();
if (nbMoves - nbMetaPrefix > best) {
best = nbMoves - nbMet aPrefi x;
for (int i =0; i < best; i++)
best MetaVariation [i] = prefix [nbMetaPrefix + i];
}
nb++;

}

previ ousMet aBest Score = best;

if (best <= 0)
return -1,
return bestMetaVariation [0];

}

The code for the meta-meta level is similar to the code fontk&a-level. In fact all
the meta-levels above the ground level use a very similage.cbdere is no theoretical
limitation to the number of levels of reflexive Monte-Carkmasch. The only limitation
is that each level takes much more time than its predecessor.

4 Experimental Results

For the experiments, the programs run on a Pentium 4 caden@8 GHz with 1 GB
of RAM. All experiments concern the non-touching version.

Table 1 gives the lengths of the best games obtained with Iszgngnd random
moves for different numbers of random games. It corresptmdsimple Monte-Carlo
search.

Table 1.Best lengths for different numbers of games with samplirdjmmdom moves.

games 10, 1001,00010,000100,0001,000,00(10,000,000
length 55/ 58 60 63 63 63 64
time|0.008s(0.12s| 1.0s| 9.8s 98s 978s| 17,141s.

Table 2 gives the lengths of the best games obtained withlgaggnd themobility
heuristic for choosing moves in the random games. We camrabseat for a similar
number of random games, thebility heuristic finds longer games than the completely
random choices. However, it also takes more time, and foivelgunt search times, the
two heuristic find similar lengths.

Table 2. Best lengths for different numbers of games with samplingyraobility.

game 10, 100 1,00Q010,000100,0001,000,000
lengt 60, 61 62 62 63 64
time|0.12s{1.05s|10.2s| 101s| 1,005s| 10,063s.

The UCT algorithm uses the formula + \/lg"% to explore moves of the global

search tregy; is the average of the games that start with the correspontiing ¢ is the
number of games that have been played at the nodes enithe number of games that
have been played below the node starting with the correspgmnaove. We have tested
different values for th€’ constant, and the best results were obtained @ith 0.1.

Table 3 gives the best lengths obtained with UCT for différermbers of simula-
tions. The results are slightly better than with sampling.

Table 3. Best lengths for different numbers of games with UCT and titgbi

game 10, 1001,00010,000100,0001,000,000
lengt 60, 60 61 64 64 65|
time|0.16s{1.3s| 16s| 176s| 2,108s| 18,060s.

Reflexive Monte-Carlo search has been tested for differ@mitinations of games
and meta-games, each combination corresponds to a sintdensta-game. The length
of the best sequence for different combinations is giveraibld 4. The first line gives
the number of meta-games, and the first column gives the nuailgames. Table 5
gives the time for each combination to complete its search.

Table 4.Best lengths for different numbers of games and meta-games.

1/10{100 100
1({63|63| 67| 67|
10/63|67| 69 67|
100/65|69 72
1004071

Table 5. Times for different numbers of games and meta-games.

1

10

100 1

,000

5s.

42s| 417s

3,248s|

23s

774s| 3,643s

27,6888,

10

253s

4,079s|26,225s|.

1,0003,188s|

We have obtained sequences of length 76 with different cordtgpns of the reflex-
ive search. The configuration that found the 78 moves recondists in playing 100
random games at the ground level, 1,000 meta-games at tlzelenet, and one game
at the meta meta level. The search took 393,806 seconds tplemThe sequence
obtained is given in figure 3.

78 32

48

28
C\ /) 37
) 4 0 \d40
(1 \49
DR D
(52 \J7 4
71 55)
56
76 14)
71 17) 30
§ 3OO
58
77

75

Fig. 3. 78 moves for the non-touching version.

5

Conclusion and Future Research

Reflexive Monte-Carlo search has established a new recor@ afoves for the non-
touching version of Morpion Solitaire. This is four movesmaohan the best attempt
made by other programs, and it is ten moves more than the hrenard for the game.
Concerning the touching version the human record of 17@lisratch better than what
current programs can achieve.

Reflexive Monte-Carlo Search is a general technique thabeaapplied in other

games. Also, future works include the parallelization efétgorithm and its application
to other games.

References

. Bouzy, B., Cazenave, T.. Computer Go: An Al-Oriented 8yrv Artificial Intelligence

132(1) (2001) 39-103

. Coulom, R.: Efficient selectivity and back-up operatararionte-carlo tree search. In:

Proceedings Computers and Games 2006, Torino, Italy (2006)

. Demaine, E.D., Demaine, M.L., Langerman, A., Langern®anMorpion solitaire. Theory

Comput. Syst39(3) (2006) 439-453

. Helmstetter, B., Cazenave, T.: Incremental transpositi In H. Jaap Herik, Yngvi Bjorns-

son, N.S.N., ed.: Computers and Games: 4th Internationafe@ance, CG 2004. Volume
3846 of LNCS, Ramat-Gan, Israel, Springer-Verlag (200€&)-231

. Helmstetter, B.: Analyses de dépendances et méthaslddodte-Carlo dans les jeux de

réflexion. Phd thesis, Université Paris 8 (2007)

. Hyyro, H., Poranen, T.: New heuristics for morpion sal@aTechnical report (2007)
. Juille, H.: Incremental co-evolution of organisms: Awnapproach for optimization and

discovery of strategies. In: ECAL. Volume 929 of Lecture &win Computer Science.
(1995) 246—260

. Juille, H.: Methods for statistical inference: exterglithe evolutionary computation

paradigm. Phd thesis, Brandeis University (1999)

. Kocsis, L., Szepesvari, C.: Bandit based monte-carlonitey. In: ECML-06. (2006)
10.
11.

Langerman, S.: Morpion solitaire. Web page, httpfi/stg/jeu/ (2007)
Wang, V., Gelly, S.: Moadifications of UCT and sequen&e-kimulations for Monte-Carlo
go. In: CIG 2007, Honolulu, USA (2007) 175-182

