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Sequential Halving applied to Trees
Tristan Cazenave

Abstract—Monte Carlo Tree Search (MCTS) is state of the art for multiple games and problems. The base algorithm
currently used for Monte Carlo Tree Search is UCT. We propose an alternative Monte Carlo Tree Search algorithm:
Sequential Halving applied to Trees (SHOT). It has multiple advantages over UCT: it spends less time in the tree, it uses
less memory, it is parameter free, at equal time settings it beats UCT for a complex combinatorial game and it can be
efficiently parallelized.

Index Terms—Monte Carlo Tree Search, Sequential Halving, SHOT, UCT, Nogo.
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1 INTRODUCTION

Monte Carlo Tree Search [7] has been very suc-
cessful in a number of games and single agent
problems [3], [4] such as Go [7], General Game
Playing [9], [12] and Morpion Solitaire [13]. The
standard Monte Carlo Tree Search algorithm is UCT
[11]. It uses the UCB bandit formula [2]. Alternative
algorithms have been designed for bandits. For
example Sequential Halving [10] allocates multiple
playouts to each move. It runs a few rounds and
it is given in advance the number of playouts it
will use. We propose to adapt Sequential Halving to
Monte Carlo Tree Search and to name the resulting
algorithm SHOT.

There is a number of reasons why SHOT is worth
considering:

• SHOT spends less time in the tree than UCT.
• SHOT uses less memory than UCT.
• At equal time settings SHOT beats UCT for a

typical combinatorial game.
• It can be parallelized efficiently.
• There is no need to tune a parameter.

SHOT differs significantly from the tradi-
tional UCT-like model of MCTS, as it does not
execute the usual selection-expansion-simulation-
backpropagation loop. Instead it allocates a budget
of playouts to each move, this is why it spends less
time in the tree and can be parallelized efficiently.

• T. Cazenave is at LAMSADE, Université Paris-Dauphine, 75016
Paris, France.
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SHOT does the opposite of usual pruning heuris-
tics for MCTS. Progressive widening [8] and pro-
gressive unpruning [5] start with only the most
promising moves and then extend the number of
moves under consideration at a node when the
number of playouts increase. On the contrary SHOT
starts with all the possible moves and gradually
decreases the number of moves under consideration.
SHOT does not use domain dependent knowledge
to prune the moves.

SHOT is parameter free as is Nested Monte Carlo
Search (NMCS) [4]. However SHOT develops a tree
near the root and performs simple playouts outside
of this tree whereas NMCS does search all along
the game with nested playouts, also searching near
the end of the game.

SHOT can be applied to single-player, two-player
and multi-player games. In this paper it is applied
to a two-player game.

The second section is about Sequential Halving,
the third section deals with SHOT, the fourth section
details experiments, the last section concludes.

2 SEQUENTIAL HALVING

Sequential Halving [10] is an algorithm that is based
on sequential elimination of moves. The algorithm
proceeds in rounds. In each round the remaining
moves are sampled uniformly. The number of play-
outs is fixed at the start of the algorithm. Parts of
the budget of playouts are allocated independently
to moves during the few sequential rounds. A round
consists of playing a fixed number of playouts for
each remaining move. After each round the number
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of moves under consideration is divided by two.
Only the best half of the moves with the largest
empirical averages are kept for the next round.
When there is only one move left, the algorithm
stops and sends back the move.

The number of playouts allocated to a move
in each round is given by the following formula:
⌊

budget

|S|×⌈log2(|possibleMoves|)⌉

⌋

where budget is the total
number of playouts that the algorithm will use,S
is the set of remaining moves andpossibleMoves

is the set of all possible moves.
Figure 1 gives an example of Sequential Halving

applied to a position with four moves and a budget
of sixty-four playouts. At the beginning of the
algorithm, all four moves have zero wins and zero
playouts. Then the algorithm decides to try each
move eight times since there are four possible moves
and the budget is sixty-four (

⌊

64
4×⌈log2(4)⌉

⌋

= 8). So
after the first round the four possible moves have
empirical averages of 2/8, 8/8, 6/8 and 7/8. The two
best moves (i.e. the moves that have the 8/8 and 7/8
empirical averages) are selected for the next round.
Then the algorithm allocates

⌊

64
2×⌈log2(4)⌉

⌋

= 16
playouts to each of these two remaining moves
for the second round. After the second round, the
resulting empirical averages are 18/24 and 20/24 so
the best move that has the 20/24 empirical average
is selected and as it is the only remaining move it
is returned as the best move by the algorithm.

Sequential Halving has interesting theoretical
properties. Instead of minimizing the regret as in
UCB [2], Sequential Halving maximizes the proba-
bility of choosing the best arm having the maximal
expected reward. In [10], they prove a bound on the
probability to erroneously eliminate the best arm. If
n is the number of arms, the multiplicative gap from
the lower bound on the number of required arm pulls
to reach a given probability is inlog log n while
in previous algorithms the gap was inlog n. The
exact theorem is: for succeeding with probability
at least1 − δ, the algorithm needs a total of at
mostT = O(H2 × log(n) × log( log(n)

δ
)) arm pulls.

WhereH2 = maxi 6=1(
i

∆2

i

) and ∆i = p1 − pi and
p1 ≥ p2 ≥ ... ≥ pn are the expected rewards of the
arms.

These results were established using previous
work on complexity measure [1].

Sequential Halving scales better than other algo-
rithms when the number of possible moves grows

[10]. The paper on Sequential Halving also ad-
dresses the fixed confidence setting in which the
number of arm pulls is not fixed but the error
probability is fixed.

Sequential Halving is given in algorithm 1.
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Fig. 1. Sequential Halving for four possible
moves and a budget of sixty-four playouts

Algorithm 1 Sequential Halving
SequentialHalving (budget)
S ← [possibleMoves]
while |S| > 1 do

for each move m inS do
play (m)
perform

⌊

budget

|S|×⌈log2(|possibleMoves|)⌉

⌋

playouts
undo (m)

end for
S ← set of

⌈

|S|
2

⌉

moves inS with the largest
empirical average

end while
return the move inS
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3 SEQUENTIAL HALVING APPLIED TO

TREES

Sequential Halving is adapted when there is a fixed
budget. When we use Sequential Halving in com-
bination with tree search, we may come back to an
already visited node with an increased budget. The
policy that SHOT uses in this case is to consider
the already allocated budget and the new budget as
a whole. The overall budget is distributed as if it was
given at first. The information on the node such as
the number of playouts and the number of wins for
each move are stored in the transposition table entry.
This information is used to allocate the new budget
so as not to give to a move more playouts than what
it would have been given if the allocated budget and
the new budget were considered as a whole. So the
algorithm looks in the transposition table entry at
the number of playouts that have already been given
to the move and gives it the difference between the
new budget for the move and the number of playouts
already given.

An example of the behaviour of SHOT coming
back to a previously explored node is given in
figure 2. During the previous exploration of the
node the four possible moves have been explored
using Sequential Halving with a budget of sixty-
four playouts. It resulted in empirical averages of
2/8, 18/24, 6/8 and 20/24 for the four possible
moves. Now, SHOT comes back to the node with a
budget of one hundred and twenty-eight playouts. It
considers the overall budget as the sum of the budget
previously spent at the node and of the budget still
to be spent. The overall budget is64 + 128 = 192.
It then calculates the budget to be allocated to
each move in the first round using the formula
⌊

t.budgetNode+budget

|S|×⌈log2(|possibleMoves|)⌉

⌋

where t.budgetNode is the
budget already spent at the node during previous
calls (64), budget is the budget to spend during the
current call (128), and S is the set of remaining
moves which is the set of all possible moves since
it is the first round. So each possible move is
allocated

⌊

64+128
4×⌈log2(4)⌉

⌋

= 24 playouts. However each
move has already used some playouts the last times
the node has been visited. So SHOT only gives
each move the difference between the number of
allocated playouts and the already used playouts. It
gives sixteen playouts to the first move that has 2/8
and to the third move that has 6/8, and no playout to
the other two moves that already have used twenty-

Algorithm 2 Sequential Halving applied to Trees
SHOT (board, budget, budgetUsed, playouts,
wins)
S ← possible moves
if board is terminalthen

updateplayouts, wins and return
end if
if budget = 1 then
result← playout(board)
updateplayouts, budgetUsed, wins and return

end if
if |S| = 1 then
u← 0, p← 0, w ← 0
SHOT (play(board,move), budget, u, p, w)
updateplayouts, budgetUsed andwins
returnmove

end if
t← entry in the transposition table
if t.budgetNode ≤ |S| then

for movem in S with zero playoutsdo
result← playout(play(board,m))
updateplayouts, budgetUsed, wins and t
return if budget playouts have been played

end for
end if
sort moves in S according to their mean
b← 0
while |S| > 1 do
b← b+max(1,

⌊

t.budgetNode+budget

|S|×⌈log2(|possibleMoves|)⌉

⌋

)
for movem in S by decreasing meando

if t.playouts[m] < b then
b1← b− t.playouts[m]
if at root and|S| = 2 andm is the first
move in Sthen
b1 ← budget − budgetUsed − (b −
t.playouts[secondMove])

end if
b1← min(b1, budget− budgetUsed)
u← 0, p← 0, w ← 0
SHOT (play(board,m), b1, u, p, w)
updateplayouts, budgetUsed, wins andt

end if
break if budgetUsed ≥ budget

end for
S ← sort

⌈

|S|
2

⌉

best moves in S
break if budgetUsed ≥ budget

end while
updatet.budgetNode

return first move ofS
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four playouts. After this first round we have the four
moves that each have 24 playouts and empirical
averages of 16/24, 18/24, 21/24 and 20/24. The
best two moves are selected for the second round.
This time they are allocated

⌊

64+128
2×⌈log2(4)⌉

⌋

= 48 more
playouts using the same formula as for the first
round. After the playouts have been played it results
in empirical averages of 58/72 and 60/72. The best
move is selected and the algorithm sends it back.

Due to the multiple visits of a node it happens
that the budget allocated to a node is not completely
used. In this case it is saved and reallocated to the
best move at the root during the last round. It helps
verifying the best move really has a better empirical
average than the second best move. However other
reallocation strategies can be thought of.

In order to avoid waste of memory, a new node is
inserted in the transposition table only if it contains
two playouts or more. It means that SHOT will
create much less nodes than the number of playouts
it will play. A memory saving strategy that consists
of creating a node only when it has a given number
of playouts can also be used for UCT so as to save
memory [6].

In order to avoid spending too much time sorting
the moves, moves are sorted only if the overall
budget is greater than the number of possible moves.
When this is not the case only moves that have zero
playouts are tried.

SHOT is given in algorithm 2. The variable
budget is the maximum number of playouts allowed
in the function,budgetUsed is set to zero at each
call of the function and counts the number of
playouts really played in the function. Similarly
playouts and wins count the number of playouts
and the number of wins. They are initialized to
zero at each call of the function (the variablesu,
p andw are set to zero and passed by reference).
t.budgetNode is the number of playouts already
used at the node during previous calls.b is the total
budget that each move inS should use including
the previous rounds and the current round.b1 is the
number of playouts that are allocated to a move
m in S for the current round givenb, the playouts
already allocated to the move in previous rounds
and the budget left for the node.

SHOT allocates possibly large numbers of play-
outs in parallel to the possible moves. It can there-
fore be efficiently parallelized since it decomposes
in independent parts that each take a significant

amount of time.
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Fig. 2. SHOT for four possible moves, a bud-
get of one hundred twenty-eight playouts and
a node where sixty-four playouts have already
been played.

4 EXPERIMENTAL RESULTS

SHOT and UCT have been implemented for Nogo
[6]. The resulting program is named Noname. Nogo
is a misere version of the game of Go. The first
player to capture a string has lost. Suicide is for-
bidden. The playouts are completely random.

A transposition table keeps nodes in memory. For
each index of the transposition table there is a list
of entries.

For all of the experiments 500 games are played,
250 with white and 250 with black.

The machine used for the experiments has an Intel
2.83 Ghz CPU, 4 GB of RAM and runs on Linux.

Table 1 gives the results of UCT with various
constants against SHOT with the same number of
playouts as UCT. For each board size and for all
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Constant 9× 9 Constant 9× 9 19× 19

0.1 41.2 % 0.001 28.2 % 63.8 %
0.2 50.0 % 0.002 33.8 % 60.6 %
0.3 50.6 % 0.004 33.0 % 65.4 %
0.4 50.8 % 0.008 32.6 % 59.0 %
0.5 46.8 % 0.016 37.0 % 64.2 %
0.6 39.6 % 0.032 36.6 % 66.6 %
0.7 37.8 % 0.064 37.6 % 63.8 %
0.8 33.2 % 0.128 46.8 % 62.4 %
0.9 28.0 % 0.256 46.6 % 50.0 %
1.0 20.2 % 0.512 44.0 % 18.4 %

TABLE 1
Tuning the UCT constant against SHOT with

the same number of playouts as UCT.

Playouts SHOT UCT SHOT UCT
9× 9 9× 9 19× 19 19× 19

100 0.001146 0.001317 0.004307 0.005735
1,000 0.008680 0.016917 0.042465 0.061266

10,000 0.083612 0.206828 0.405664 0.733465
100,000 0.846335 2.313721 3.975163 8.114172
500,000 3.670690 13.502008 17.725956

TABLE 2
Times of SHOT versus time of UCT for Nogo.

the remaining experiments the constants that gave
the best results are used: 0.4 for9×9 and 0.032 for
19× 19.

Table 2 gives the times used by UCT and SHOT
to perform a given number of playouts starting from
an empty board. We can see that even for very low
numbers of playouts SHOT takes less time than
UCT. When we reach 10,000 playouts SHOT takes
half the time of UCT, and approximately three times
less time for 500,000 playouts. There is no time for
19×19 UCT and 500,000 playouts because it took a
large time due to the use of a lot of memory. UCT
uses the same number of nodes as the number of

Playouts 9× 9 19× 19

100 1 1
1,000 62 47

10,000 363 449
100,000 3,803 2,319
500,000 17,239 9,262

TABLE 3
Number of nodes used by SHOT.

Playouts SHOT UCT SHOT UCT
9× 9 9× 9 19× 19 19× 19

1,000 vs 500 74.2 % 73.4 % 90.2 % 86.4 %
2,000 vs 1,000 72.6 % 76.4 % 91.8 % 88.6 %
4,000 vs 2,000 76.6 % 73.4 % 92.4 % 91.6 %
8,000 vs 4,000 76.4 % 80.4 % 93.4 % 90.4 %

16,000 vs 8,000 74.6 % 78.0 % 96.2 % 87.0 %
32,000 vs 16,000 72.4 % 79.4 % 94.8 % 86.6 %

TABLE 4
Scalability of SHOT versus scalability of UCT

for Nogo.

Playouts SHOT SHOT vs UCT SHOT vs UCT
9× 9 19× 19

1,000 75.6 % 83.8 %
10,000 75.8 % 90.0 %

100,000 66.8 % 100.0 %

TABLE 5
SHOT versus UCT with same thinking times.

playouts. SHOT uses less memory than UCT since
it does not create a node for each playout. Table
3 gives the number of nodes used by SHOT for
different number of playouts and different sizes.

Table 4 gives the percentage of wins for SHOT
and UCT when they play against themselves with
twice the number of playouts. Both SHOT and UCT
scale well with more playouts.

Table 5 gives the percentage of wins for SHOT
over UCT. The number of playouts of SHOT is
fixed and UCT takes at each move the same amount
of time as SHOT took at the previous move. We
can see that SHOT outperforms UCT at equal time
settings.

5 DISCUSSION

In [6] a modification of the UCT algorithm consist-
ing of creating a node in memory if it has been sim-
ulated at least five times is shown to reduce memory
consumption by a factor four while increasing the
winning rate to 77 % for Nogo. In comparison, the
SHOT algorithm reduces the memory consumption
by a factor twenty-five for9 × 9 Nogo (see table
3) while increasing the winning rate to 66.8 %. For
19× 19 Nogo, the memory consumption is reduced
by a factor forty while increasing the winning rate
to 100.0 %. It is also possible to add slow node
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creation to SHOT reducing even more its memory
consumption.

We have used a transposition table both in the
UCT and in the SHOT algorithms. So both algo-
rithms deal in fact with Directed Acyclic Graphs
and they both have inconsistent child visit counts.

It is possible that SHOT will work better for
games that are Monte Carlo perfect, i.e. increasing
numbers of playouts give increasingly accurate re-
sults, than for games that are Monte Carlo resistant,
i.e. increasing numbers of playouts can actually give
worse results. UCT can handle such cases as the tree
boundary grows to outweigh the inaccurate playout
estimates and revise the estimated value of moves
near the root. SHOT eliminates moves from the
search so this revision of previous move estimates
does not occur, hence it is possible that SHOT will
fail to handle games that are Monte Carlo resistant
where UCT can.

6 CONCLUSION

In conclusion, SHOT is a viable alternative to UCT.
It is parameter free. It scales well since the results
are better for19×19 Nogo than for9×9 Nogo and
that increased number of playouts increase the level
of play. It uses less memory than standard UCT and
beats standard UCT at Nogo for equal time settings.

Future works include parallelization on a multi-
core machine and on a cluster, applying it to other
games and problems and adapting the various im-
provements of Monte Carlo Tree Search to SHOT.
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[7] Rémi Coulom. Efficient selectivity and backup operators in
Monte-Carlo tree search. InComputers and Games, pages 72–
83, 2006.
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