
Mapping Maintenance in XML P2P Databases�

Dario Colazzo1 Carlo Sartiani2

1 LRI - Université Paris Sud - France
dario.colazzo@lri.fr

2 Dipartimento di Informatica - Università di Pisa - Italy
sartiani@di.unipi.it

Abstract. Unstructured p2p database systems are usually characterized by the
presence of schema mappings among peers. In these systems, the detection of
corrupted mappings is a key problem. A corrupted mapping fails in matching the
target or the source schema, hence it is not able to transform data conforming to
a schema Si into data conforming to a schema Sj , nor it can be used for effective
query reformulation.
This paper describes a novel technique for maintaining mappings in XML p2p
databases, based on a semantic notion of mapping correctness.

1 Introduction

The peer-to-peer computational model (p2p) is nowadays massively used for sharing
and querying data dispersed over the Internet. Peer-to-peer data sharing systems can be
classified in two main categories. Structured p2p systems [1] [2] distribute data across
the network according to a hash function, so to form a distributed hash table (DHT); sys-
tems in this class allows for a fast retrieval of data (O(logn), where n is the number of
peers in the system), at the price of very limited query capabilities (key lookup queries
and, in some systems, range queries). Unstructured systems, instead, leave peers free
to manage their own data, and feature rich query languages like, for instance, XQuery
[3]. Queries are executed by flooding the network and traversing the whole system.

Most unstructured p2p database systems (see [4], [5], and [6] for instance) are char-
acterized by the presence of schema mappings among peers. A schema mapping (e.g.,
a set of Datalog rules) describes how to translate data conforming to a source schema
Si into data conforming to a target schema Sj (or to a projection of Sj), and it can be
used to reformulate, according to the Global As View (GAV) and Local As View (LAV)
paradigms [7, 8], queries on Si into queries over Sj , and vice versa. Schema mappings,
hence, allow the system to retrieve data that are semantically similar but described by
different schemas.

A main problem in mapping-based systems is the maintenance of schema mappings,
and, in particular, the detection of corrupted mappings. A corrupted mapping fails in
matching the target or the source schema, hence it is not able to transform data conform-
ing to a source schema Si into data conforming to the target schema Sj . The presence
of such mappings can affect query processing: since queries are processed by flooding
the network and by repeatedly applying reformulation steps, a corrupted mapping may

� Dario Colazzo was funded by the RNTL-GraphDuce project and by the ACI project “Trans-
formation Languages for XML: Logics and Applications”. Carlo Sartiani was funded by the
FIRB GRID.IT project and by Microsoft Corporation under the BigTop project.

make the data of some peers unreachable; moreover, optimization techniques based on
mapping pre-combination can be vanished by the presence of corrupted mappings.

Nowadays, mapping maintenance is performed manually by the site administrator,
and quick responses to sudden mapping corruptions are not possible. To the best of our
knowledge, the only proposed technique for automatically maintaining mappings, in
the context of XML p2p database systems, has been described in [9]. This technique
is based on the use of a type system capable of checking the correctness of a query,
in a XQuery-like language [10], wrt a schema, i.e., if the structural requirements of
the query are matched by the schema. By relying on this type system, a distributed
type-checking algorithm verifies that, at each reformulation step, the transformed query
matches the target schema, and, if an error is raised, informs the source of the target
peers that there is an error in the mapping.

The technique described in [9] has two main drawbacks. First, it is not complete,
since wrong rules that are not used for reformulating a given query cannot be discov-
ered. Second, the algorithm requires that a query were reformulated by the system be-
fore detecting a possible error in the mapping; this implies that the algorithm cannot
directly check for mapping correctness, but, instead, it checks for the correctness of
a mapping wrt a given reformulation algorithm. Hence, mapping correctness is not a
query-independent, semantics-based property, but is strongly related to the properties
of the reformulation algorithm.

Our Contribution This paper describes a novel technique for maintaining mappings
in XML p2p database systems. As for [9], the technique relies on a type system for
an XML query language: while in [9] we exploited the type system to check for the
correctness of a query wrt a given schema, in the spirit of [10], in this paper we develop a
slightly different type system focused on type inference. The main idea is to compare the
inferred type of each mapping query with the target schema, so to verify the adherence
of the mapping to this schema.

Unlike [9], the proposed technique is independent from queries, does not require
a prior query reformulation, and it is complete, i.e., any error in a mapping will be
discovered.

The paper proposes a semantic notion of mapping correctness based on a simulation-
like form of type projection. Type projection brings the essence of the relational projec-
tion to XML, and it can be safely reduced to standard type-checking among weakened
types, as shown in Section 5. To minimize false-negatives, we provide quite precise type
inference techniques, inspired by those proposed in [10].

The proposed technique can be used in unstructured p2p database systems as well
as in structured systems, like [11], that combine the DHT paradigm with mappings.

Paper Outline The paper is structured as follows. Section 2 describes a reference sce-
nario for our technique, and briefly introduce the system model and the query language.
Section 3, then, defines our notions of mapping validity (no wrong rules wrt the source
schema) and mapping correctness (no wrong rules wrt the target schema). Section 4
describes the type system we use for inferring query types. Section 5, next, shows how
the definitions of Section 3 can be turned in an operational technique with the assistance
of our type system. Section 6, then, discusses some related work. In Section 7, finally,
we draw our conclusions.

2 Motivating Scenario

We describe our technique by referring to a sample XML p2p database system inspired
by Piazza [4]. The system is composed of a dynamic set of peers, capable of executing
queries on XML data, and connected through sparse point-to-point schema mappings.

Each peer publishes some XML data (db), that may be empty, in which case the
peer only submits queries to the system. Furthermore, each peer has two distinct schema
descriptions. The first one, U (the peer schema), describes how local data are organized.
The second one, V (the peer view), is a view over U , and has a twofold role. First, it
works as input interface for the peer, so that queries sent to peer p i should respect pi

view of the world. Second, it describes the peer view of the world, i.e., the virtual view
against which queries are posed: each peer poses queries against its peer view, since it
assumes that the outer world adopts this schema.

The peer schema and the peer view are connected through a schema mapping (in
the following we will use the expression “schema mapping” to denote any mapping
between types). The mapping can be defined according to the Global As View (GAV)
approach, or to the Local As View (LAV) approach. Our approach is based on GAV
mappings, where the target schema is described in terms of the source schema; nev-
ertheless, this approach applies to LAV mappings too, since, as noted in [12], a LAV
mapping from pi to pj can be interpreted as a GAV mapping from p j to pi.

In addition to (possibly empty) data and schema information, each peer contains a
set, possibly a singleton, of peer mappings {mij}j . A peer mapping mij from peer pi

to peer pj is a set of queries that show how to translate data belonging to the view of p i

(Vi) into data conforming to a projection of the view of p j (Vj).
Mapping queries are expressed in the same query language used for posing gen-

eral queries: this language, called µXQ, is roughly equivalent to the FLWR core of
XQuery, and will be described in Section 3. These mappings link peers together, and
form a sparse graph; queries are then executed by exploring the transitive closure of
such mappings.

Systems conforming to this architecture rely on schema mappings to process and
execute queries. The correctness of the query answering process for a given query de-
pends on the properties of the reformulation algorithm as well as on the correctness of
the mappings involved in the transformation: indeed, if the mapping fails in matching
the target schema, the transformed query will probably fail as well.

The evolution of the system, namely the connection of new nodes and the discon-
nection of existing nodes, as well as the changes in peer data and schemas, can dramat-
ically affect the quality of schema mappings and, in particular, lead to the corruption of
existing mappings. This will reflect on query answering and on existing optimization
techniques for p2p systems, such as the mapping composition approach described in
[13].

The following Example illustrates the basic concepts of the query language, pro-
vides an intuition of the mapping correctness notion (described in Section 3), and shows
how mapping incorrectness can reflect on query answering.

Example 1. Consider a bibliographic data sharing system, whose topology is shown in
Figure 1.

Assume that Pisa and New York use the following views.

PisaBib = bib[(Author)*]
Author = author[Name, Affiliation, Paper*]
Name = name[String]

Paris Melbourne

AucklandNew YorkPisa

Fig. 1. Bibliographic p2p network.

Affiliation = affiliation[String]
Paper = paper[Title, Year]
Title = title[String]
Year = year[Integer]

NYBib = bib[(Article|Book)*]
Article = article[Author*,Title,Year, RefCode]
Author = author[String]
Title = title[String]
Year = year[Integer]
Book = book[Author*,Title,Year, RefCode]
RefCode = refCode[String]

Suppose now that Pisa uses the following queries to map its view into the view of
New York.

NYBibliography <-
Q1($input): for $y in $input/year return $y
Q2($input): for $t in $input/title return $t
Q3($input): for $p in $input//paper,

$t in $p/title
return article[Q2($p), Q1($p),

for $aut in $input/author,
$pap in $aut/paper
$title in $pap/title

where $title = $t
return author[$aut/name/text()]]

Q4($input): for $bib in /bib return bib[Q3($bib)]

This mapping transforms data conforming to a large fragment of the PisaBib
schema (only affiliation elements are discarded) into data conforming to a fraction
of the NYBib schema. This is a quite common situation in data integration and p2p
data sharing systems, since usually only a fraction of semantically related heteroge-
neous schemas can be reconciled. Since this mapping is not a function from PisaBib
to NYBib (it does not produce refCode elements), standard result analysis based on
subtyping cannot be used to check its correctness.

Consider query Q3 in the Pisa → NY mapping. The outer for clause iterates over
paper element, and binds the $p and $t variables to paper and title elements respec-
tively. The outer return clause produces the results of the query; in this case, a nested
query changing the nesting of author and paper elements is invoked. The correlation
of the nested query with the outer query is given by the inner where clause, which filters
the variable bindings of the inner query.

As it can be noted, this mapping is correct since it transforms a data instance con-
forming to PisaBib into a data instance conforming to a projection of NYBib.

Assume now that New York slightly changes its view: in particular, the site ad-
ministrator changes the way author names are represented: instead of a simple author

element, information about author’s first name and second name is inserted into the
author element: Author = author[first[String],second[String]].

This change in the target schema makes the Pisa → NY mapping incorrect. Indeed,
a PisaBib data instance is transformed in a data instance having simple content author
elements, while the new New York view requires more complex author elements.

The incorrectness of the Pisa → NY schema mapping reflects on query answering.
Indeed, consider the query shown in Figure 2 (a). This query, submitted by a user in
Pisa, asks for all articles written by Mary F. Fernandez. The query is first executed
locally in Pisa. Then, the system reformulates the query so to match New York view;
this reformulation is performed by directly composing the query with the mapping from
Pisa to New York, relying again on standard algorithms for query unfolding [14, 13] 1.

At the end of the reformulation process, the reformulated query, shown in Figure
2 (b), is then sent to the New York site. Unfortunately, the transformed query does not
match the new view of New York, so the Pisa user cannot gather results from the New
York site.

articles Fernandez[
for $aut in $bib/author,

$pap in $aut/paper,
$t in $pap/title,
$n in $aut/name

let $mf := ‘‘Mary F. Fernandez’’
where $n = $mf
return article[$t, $pap/year]

(a) Pisa user query.

articles Fernandez[
for $a in $bib/article,

$aut in $a/author
let $mf := ‘‘Mary F. Fernandez’’
where $aut = $mf
return article[$a/title, $a/year]

(b) Transformed Pisa user query.

Fig. 2. Reformulation of a user query.

3 Mapping Validity and Correctness

In this Section we describe the notions of mapping validity (no wrong rules wrt the
source schema) and mapping correctness (no wrong rules wrt the target schema). These
notions are central to our approach, and allow for the definition of an operational check-
ing technique, as shown in Section 5.

To define mapping properties, we have to formally present the query language used
for expressing both user queries and mapping rules, as well as the type language used
for describing schemas and views.

3.1 Query Language

User queries and mapping rules are expressed in the µXQ query language [10], whose
grammar is shown in Table 3.1. µXQ is a minimal core language for XML data, roughly
equivalent to the FLWR core of XQuery. We impose two further restrictions wrt this
grammar: first, we forbid the navigation of the result of a nested query by the outer
query; second, we restrict the predicate language to the conjunction, disjunction, or
negation of variable comparisons. These restrictions, also present in Piazza, allow for
a better handling of errors at the price of a modest decrease in the expressive power of
the language.

1 We show a minimal transformed query, obtained by minimizing the original transformed query
and by deleting all redundant subqueries.

The semantics of the language and the required auxiliary functions are shown in
Tables 3.2 and 3.3. There, ρ is a substitution assigning a forest to each free variable in
the query; also, dos is a shortcut for descendant-or-self. All the rest is self explicative.

Note that our data model is unordered, so that we consider a tree l[f 1, f2] as equiv-
alent to l[f2, f1]. As in Piazza, this assumption is motivated by the non feasibility of
imposing a global document order over XML data dispersed over a p2p network.

Table 3.1. µXQ grammar

Q ::= () | b | l[Q] | Q, Q | x child :: NodeTest | x dos :: NodeTest
| for x in Q return Q | let x ::= Q return Q
| for x in Q where P return Q | let x ::= Q where P return Q

NodeTest ::= l | node() | text()

P ::= true | χ δ χ | empty(χ) | P or P | not P | (P)

χ ::= x | x

δ ::= = | <

Table 3.2. µXQ semantics

�b�ρ
�
= b �x�ρ

�
= ρ(x)

�x�ρ
�
= ρ(x) �()�ρ

�
= ()

�Q1, Q2�ρ
�
= �Q1�ρ, �Q2�ρ �l[Q]�ρ

�
= l[�Q�ρ]

�x child :: NodeTest�ρ
�
= childr(�x�ρ) :: NodeTest

�x dos :: NodeTest�ρ
�
= dos(�x�ρ) :: NodeTest

�let x ::= Q1 return Q2�ρ
�
= �Q2�ρ,x�→�Q1�ρ

�for x in Q1 return Q2�ρ
�
=

Q
t∈trees(�Q1�ρ)�Q2�ρ,x�→t

�let x ::= Q1 where P return Q2�ρ
�
= if P (ρ, x �→�Q1�ρ) then �Q2�ρ,x�→�Q1�ρ else ()

�for x in Q1 where P return Q2�ρ
�
=

Q
t∈trees(�Q1�ρ)(if P (ρ, x �→ t) then �Q2�ρ,x�→t else ())

3.2 Type Language

We adopt, essentially, XDuce’s type language [15], with two exceptions. First, we ex-
clude (vertical) recursive types. This is motivated by the fact that FLWR queries are not
powerful enough to transform trees with arbitrary depth, hence we can restrict the type
language to types that describe trees with limited and finite depth. As we will see, this
restriction will allow us to introduce rather precise type-inference techniques, that will
minimize false negatives returned while checking for mapping correctness.

Second, we consider commutative product types. In other words, we do not assume
any order on sequence types, so that T, U ∼ U, T . This is motivated by the fact that
in distributed environments is almost impossible to reach a common agreement about

Table 3.3. Auxiliary functions

dos(b)
�
= b childr(b)

�
= ()

dos(l[f])
�
= l[f], dos(f) childr(l[f])

�
= f

dos(())
�
= () dos(f, f ′) �

= dos(f), dos(f ′)
b :: l

�
= () l[f] :: l

�
= l[f]

() :: l
�
= () (f, f ′) :: l

�
= f :: l, f ′ :: l

m[f] :: l
�
= () m �= l

b :: node()
�
= () () :: node()

�
= ()

m[f] :: node()
�
= m[f] (f, f ′) :: node()

�
= f :: node(), f ′ :: node()

b :: text()
�
= b () :: text()

�
= ()

m[f] :: text()
�
= () (f, f ′) :: text()

�
= f :: text(), f ′ :: text()

ordering, so some peer may assume that title elements precede author elements in the
document order, while other peers may assume the contrary. Hence, we must adopt
types that abstract from ordering. This aspect will affect the notions of type projection
as well.

Following XDuce notation, types are defined as follows:

Types T ::= () | B | l[T] | T, T | T | T | T∗
Base Type B ::= String

Here, () is the type for the empty sequence value; B denotes the type for base values
(without loss of generality, we only consider string base values); types T, U and T | U
are, respectively, product and union types, while T ∗ is the type for repetition. In the
following, an element type with empty content l[()] will always be abbreviated as l[].

Type semantics is standard: � � is the minimal function from types to sets of forests
that satisfies the following monotone equations:

�()�
�
= {()} �B�

�
= {b | b is a string} �l[T]�

�
= {l[f] | f ∈�T �}

�T1 | T2�
�
= �T1� ∪ �T2� �T1, T2�

�
= {f1, f2 | fi∈�Ti�} �T∗� �

= �T �∗

In the following we will use f : T as shortcut for f ∈ �T �. Type semantics induces
the following subtyping relation:

T < U ⇔def �T � ⊆ �U�

3.3 Correctness of Schema Mappings

In this Section, we introduce and formalize our notion of mapping correctness. The
notion is semantic and is not related to any particular type system.

Definition 1 (Mapping). A mapping m from the peer view of pi to the peer view of pj

is a set of queries m = {qk}k on data (possibly) conforming to pi’s view and returning
data (possibly) conforming to pj’s view.

The previous definition states that a mapping is just a set of queries that may match
the source and/or the target schema. Unlike [16], where mappings must match both the
target and the source schema, we do not impose constraints on mappings. This allows
for capturing mappings that are imprecise or that become incorrect because of a change
in the system status.

The following definition introduces the notion of mapping validity.

Definition 2 (Mapping validity). A mapping m = {qk}k from pi’s view to pj’s view
(Vi → Vj) is valid if and only if, for each query qk, qk is correct wrt Vi, in the sense
that, for each non-empty subquery q of qk, there exists a data instance d of Vi such that,
when evaluated on d, q will return a non-empty result.

Mapping validity implies that a valid mapping must be correct wrt the source schema,
i.e., it matches the structure and the constraints of the source schema. We adopt the
query correctness notion described in [18, 10] and [9]. Mapping validity 2 allows for
identifying mappings that are obsolete, i.e., that contain rules referring to fragments of
the source schema that have been changed or deleted. From now on, we will assume
that each mapping is valid, and focus on the detection of errors wrt the target schema.

Definition 3 (Mapping correctness). A mapping m = {qk}k from pi’s view to pj’s
view (Vi → Vj) is correct if and only if, for each query qk, for each data instance dh

conforming to Vi, there exists a data instance dl conforming to Vj , such that, qk(dh) �
dl, where � is defined as shown in Definition 4.

Definition 4 (Value projection). The value projection relation � is the minimal rela-
tion such that:

() � f f1, f2 � f3, f4 if (f1 � f3 ∧ f2 � f4)
b1 � b2 f1 � f3 if ∃f2 : f1 � f2 ∧ f2 � f3

f � f, () l[f1] � l[f2] if f1 � f2

f1, f2 � f2, f1

The above definitions state that a mapping from V i to Vj is correct if and only,
for each rule in the mapping, the result of each query on V i is mapped, according to
the � relation, into a value conforming to V j . � is an injective simulation relation
among values, inspired by the projection operator of the relation data model. Intuitively,
d1 � d2 if there exists a subterm d3 in d2 such that d3 matches d1; this is very close
(up to simulation) to the relational projection, where r1 = πAr2 if r1 is equal to the
fragment of r2 obtained by discarding non-A attributes. This notion of projection for
XML trees is a generalization of that introduced in [17], where leaf values are taken
into account too.

Our correctness notion is semantic, in the sense that it depends on the semantics of
queries and types rather than on a set of type-checking rules; this implies that errors are
independent from the type-checking rules, so that our correctness notion can be adopted
in any context and with any type language.

4 Type System

Our type system is a variation of the type systems shown in [18][10][9]. While those
type systems focus on the detection of errors in a query wrt a source schema, this type
system focuses on type inference.

2 Validity can be checked by algorithms proposed in [18][10][9]; these algorithms are polyno-
mial in most practical cases.

4.1 Judgments and Type Rules

To infer the output type of a µXQ query, we adopt rules, shown in Tables 4.1 and 4.2,
that prove judgments of the form Γ � Q : T , where the environment Γ provides
information about the types of Q free variables, while T is an upper bound for all
possible values returned by Q, when evaluated under a valid substitution, that is an
assignment of free variables that respects type constraint in Γ . Variable environments
and valid substitutions are defined below.

Variable Environments Γ ::= () | x : T, Γ | x : T, Γ

A variable environment Γ is well-formed if no variable is defined twice, and if every
for-variable x (i.e., a variable bound by a for clause) is associated to a tree type (l[T ′]
or B).

Definition 5 (Valid substitutions R(Γ)). For any well-formed environment Γ , we de-
fine the set of valid substitutions wrt Γ as follows:

R(Γ) = {ρ | χ �→f ∈ ρ ⇒ (χ : T ∈ Γ ∧ f ∈ �T �)}

A first basis for a good level of precision is given by a particular technique we use to
infer types for for queries. Given a query for x in Q1 return Q2, in order to infer a
type for it, the rules first infer a type T1 for Q1, and then they simulate a sort of abstract
iteration over T1, in order to type the body Q2. This is done by means of the auxiliary
judgment Γ � x in T1 → Q2 : T2.3

For example, if T1 = S1, S2, to type for x in Q1 return Q2 we recursively prove
Γ � x in Si → Q2 : S′

i, for i = 1, 2, and then combine the results to obtain
T2 = S′

1, S
′
2. The recursive process is still purely structural for union and * types, and

stops when a tree type is finally encountered.
Similar comments hold for queries with where conditions, where we use an auxil-

iary judgment Γ � x in T → Q where P : T . Type correctness of where clauses is
proved by rules over judgments Γ � P which are quite standard (and omitted in this
abstract for reasons of space).

More in details, case analysis for iterations is performed by (TYPEIN) rules. In par-
ticular, termination is ensured by rule (TYPEINTREE), which stops the case-analysis,
since a tree type T=B or T=m[T ′] is reached, inserts the assumption x : T in Γ , starts
the analysis of the where condition P , and falls back to standard type-checking. Ob-
serve here that we use an operator Split(T); for the moment just assume that Split(T) =
{T }. Later we will modify this operator in order to improve precision of type inference.
Rule (TYPELETSPLITTING) is standard, since we are assuming that Split(T) = {T }.

Rule (TYPECHILD) requires the type of x to be a tree type m[T ′], and uses � T ′ ::
NodeTest ⇒ U to restrict the content type T ′ to the tree types with structure satisfying
NodeTest. Rules to prove judgments � T ′ :: NodeTest ⇒ U are straightforward, and
their meaning is stated in the following lemma.

Lemma 1 (Type Filtering Checking). For any T :

� T :: NodeTest ⇒ U ⇔ �U� = {f :: NodeTest | f ∈ �T �}
3 This technique was first formalized in [19], where no properties about the system were proved.

Rule (TYPEDOS) is similar, and is strictly inspired by the technique adopted in the
current W3C XQuery type system. Instead of using the content type T ′, it extracts all
the node types {U1, . . . , Un} that are reachable from T , using the function Trees(T)
defined later, and defines a new type U ′ = (U1 | . . . | Un)∗. U ′ is the type of any forest
that contains only nodes whose type is one of the U i’s, hence is an appropriate type
for the forest of all descendants of a tree of type T . The type of x dos :: NodeTest is
obtained by restricting U ′ to the tree types with structure satisfying NodeTest.

We can now define the auxiliary function Trees(T):

Definition 6 (Subtrees Type Extraction).

Trees(())
�
= ∅ Trees(T, U)

�
= Trees(T) ∪ Trees(U)

Trees(B)
�
= {B} Trees(T∗) �

= Trees(T)

Trees(l[T])
�
= {l[T]} ∪ Trees(T) Trees(T | U)

�
= Trees(T) ∪ Trees(U)

Table 4.1. Query Type Rules

(TYPEEMPTY)
WF(Γ
 () : ())

Γ
 () : ()

(TYPEATOMIC)
WF(Γ
 b : B)

Γ
 b : B

(TYPEVAR)
χ : T ∈ Γ WF(Γ
 χ : T)

Γ
 χ : T

(TYPEELEM)
Γ
 Q : T

Γ
 l[Q] : l[T]

(TYPEFOREST)
Γ
 Qi : Ti i = 1, 2

Γ
 Q1, Q2 : T1, T2

(TYPELETWHERESPLITTING)
Γ
 Q1 : T1 Split(T1) = {A1, . . . , An}
Γ, x : Ai
 P Γ, x : Ai
 Q2 : Ui i = 1 . . . n

Γ
 let x ::= Q1 where P return Q2 : U1 | . . . | Un | ()

(TYPEFORWHERE)
Γ
 Q1 : T1 Γ
 x in T1 → Q2 where P : T2

Γ
 for x in Q1 where P return Q2 : T2 | ()

(TYPELETSPLITTING)
Γ
 Q1 : T1 Split(T1) = {A1, . . . , An}
Γ, x : Ai
 Q2 : Ui i = 1 . . . n

Γ
 let x ::= Q1 return Q2 : U1 | . . . | Un

(TYPEFOR)
Γ
 Q1 : T1

Γ
 x in T1 → Q2 where true : T2

Γ
 for x in Q1 return Q2 : T2

Lemma 2 (Soundness of DOS). For any T :

{U1, . . . , Un} = Trees(T) ∧ U = (U1 | . . . | Un)∗ ⇒ ∀f ∈ �T �. dos(f) ∈ �U�

4.2 Soundness of the Type System

We provisionally assumed that Split(T) = {T }, which results in a completely standard
LET-RETURN type rule. This is sufficient to obtain the canonical ‘soundness’ property
(Theorem 1): types are upper bounds for the set of all possible results.

Table 4.2. Query Type Rules: Rules for Iteration, Child and Dos.

(TYPEINEMPTY)
WF(Γ
 x in () → Q where P : ())

Γ
 x in () → Q where P : ()

(TYPEINUNION)
Γ
 x in Ti → Q where P : T ′

i i = 1, 2

Γ
 x in T1 | T2 → Q where P : T ′
1 | T ′

2

(TYPEINTREE)
(T = m[T ′] ∨ T = B) Split(T) = {A1, . . . , An}
Γ, x : Ai
 P Γ, x : Ai
 Q : Ui i = 1 . . . n

Γ
 x in T → Q where P : U1 | . . . | Un

(TYPEINCONC)
Γ
 x in Ti → Q where P : T ′

i i = 1, 2

Γ
 x in T1, T2 → Q where P : T ′
1, T

′
2

(TYPEINSTAR)
Γ
 x in T → Q where P : U

Γ
 x in T∗ → Q where P : U∗

(TYPECHILD)

WF(Γ
 x child :: NodeTest : U)
x : T ∈ Γ ∧ (T = m[T ′′] ∨ T = B)
T ′ = if T = m[T ′′] then T ′′else ()

 T ′ :: NodeTest ⇒ U

Γ
 x child :: NodeTest : U

(TYPEDOS)
WF(Γ
 x dos :: NodeTest : U)
x : T ∈ Γ ∧ (T = m[T ′′] ∨ T = B)
{U1, . . . , Un} = Trees(T)
U ′ = (U1 | . . . | Un)∗

 U ′ :: NodeTest ⇒ U

Γ
 x dos :: NodeTest : U

Theorem 1 (Upper Bound). For any well-formed Γ and query Q:

Γ � Q : U ∧ ρ∈R(Γ) ⇒ �Q�ρ ∈ �U�

The proof of this theorem is essentially the same as the one given in [18] [10], since
considered XPath-like paths do not match the horizontal structure of sequences, so their
typing does not depend on ordering.

This theorem is crucial to guarantee soundness of mapping correctness checking.
Indeed, if Q is a mapping from Si to Sj , and Γ � Q : U , then thanks to the above
theorem, we can compare U wrt Sj in order to verify whether the semantics of Q
conforms to Sj . In the next section we will formalize how this comparison can be done
in order to agree to the notion of mapping correctness (Definition 3).

The system cannot be made complete: as for any type system based on regular
expression types, the presence of queries that may produce sets of trees that are not
regular languages makes completeness impossible. However, we will see later how the
precision of the type system may be improved, and why more precision is desirable in
our context.

5 Correctness Checking

Definitions 3 and 4 describe our notion of mapping correctness, but they cannot directly
be used to check whether a mapping is correct or not. To obtain a constructive definition,
we need to switch from values to types.

Definition 7 (Type projection). Given two type T1 and T2, we say that T1 is a projec-
tion of T2 (T1 � T2) if and only if: ∀d1 : T1 ∃d2 : T2.d1 � d2.

As for the value projection relation, the type projection relation is semantics, and
states that a type T1 is a projection of a type T2 if, for each data instance d1 conforming
to T1, there exists a data instance d2 conforming to T2 such that d1 is a projection of d2.

Type projection is quite different from standard subtyping, since it is based on the
idea that T1 � T2 if T1 matches a fragment of T2, while T1 < T2 implies that T1 is
more specific than T2.

To use type projection in mapping correctness checking, we must correlate type
projection and mapping correctness. To this aim, we can rely on the result type of a
query as inferred by our type system, as shown in the following theorem.

Theorem 2 (Completeness of type projection). Given a mapping m = {qk}k from
Vi to Vj , m is correct if ∀qk. Γ � qk : T and T � Vj , where Γ is an environment
obtained from Vi.

The previous theorem states that, if one can establish a projection relation between
the inferred type and the target schema of a mapping, the correctness of the mapping is
proved.

The type projection relation is still not operational, since its definition involves a
universal quantification on the data instances of the source schema. To overcome this
problem and obtain a practical way of checking type projection, we introduce the no-
tion of type approximation. Type approximation weakens types by enriching base and
element types with a union with the empty sequence type; this allows one to relate
type projection to standard subtyping for unordered types, whose decidability has been
proved in [20].

5.1 Type Approximation

Type approximation is based on the idea of weakening types by introducing unions with
the empty sequence type.

Definition 8 (Type approximation). Given a type U , we indicate with U � the type
obtained by U just by replacing each subexpression U ′, corresponding to a tree type
l[] or B, with U ′? (that is (U ′ | ())). Formally

()� �
= () T | U� �

= T � | U� l[T]�
�
= l[T �]?

B� �
= B? T, U� �

= T �, U� T∗� �
= T �∗

It is easy to prove that T < T �. To prove the main results about type approxima-
tion, we have to introduce the notion of contexts, whose grammar is shown below.

Contexts C ::= x | () | C, C | l[C] | b
A context is a partially specified forest, where variables indicate arbitrary forests. Vari-
ables are always assumed to be unique, and context instantiation is indicated as C ρ,
where ρ is a set of variable assignments x �→ f . We indicate with C() the forest ob-
tained by C by replacing each variable with the empty sequence.

If we indicate with f f ′ the fact that the two forests are equal up to ordering
among children and values at leafs, we can state the following lemma.

Lemma 3. Given two forests f1 and f2, the following relation holds:

f1 � f2 ⇔ ∃C.∃ρ. C() f1 ∧ f2 Cρ

The following theorem correlates T � with T .

Theorem 3.
T � � T

Lemma 4. For each type U :

1. ∀f : U�. (f �= () ⇒ ∃C, ρ, f ′ : U. C() = f ∧ f ′ = Cρ)

2. ∀f : U, C, ρ. (f = Cρ ⇒ C() : U�)

3. ∀C. (C() �= () ∧ C() : U� ⇒ ∃f : U.∃ρ. f = Cρ)

The previous lemma serves to prove the following main theorem.

Theorem 4 (Type projection as sub-typing).

T � U ⇔ T < U�

The previous theorem states that type projection between T and U can be checked
by weakening U and, then, by checking for the existence of a subtyping relation be-
tween T and U�. This theorem proves the decidability of type projection, since de-
cidability of subtyping for a superset of our type language has been proved in [20].
For what concerns the complexity of type projection, we recently proved that, for our
type language, type projection can be checked in polynomial type, hence making our
maintenance approach more effective.

5.2 Improving Precision of Type Inference

As already observed, inferred types cannot precisely capture query semantics. How-
ever, there is some space for gaining more precision, which implies less false-negative
in checking mapping correctness. This is typical of every approach based on result anal-
ysis, including those of languages of the XDuce family.

As shown in [18][10], by tuning the operator Split(T), we may improve the pre-
cision of the type system. Under the assumption Split(T) = {T }, the presented type
system is not precise enough when, for example, there are variables that occur more than
once (non-linear variables) and with a union type. For example, consider the (artificial)
type X = data[mbl[]+ | phn[]+], and the sequence query (x/mbl, x/phn). When
x has type X , this query yields either a sequence of elements mbl[] or a sequence of
elements phn[]. Instead, as in XQuery, our type system infers a type (mbl[]∗, phn[]∗),
which also contains sequences with both mbl[] and phn[] elements. If this type is com-
pared with (mbl[]∗ | phn[]∗), in order to check whether the query output conforms to
this expected type, the checking will fail thus producing a false negative.

We solve these problems by using in the rules a finer Split() function, which pro-
duces more precise types. For example, if the input type X = data[mbl[]+ | phn[]+] is
split in the two types data[mbl[]+] and data[phn[]+], and, then, two separate analysis
are performed, we obtain the types data[mbl[]∗] and data[phn[]∗]. Then the query type
is the union of these two types, and thus a subtype of the previous expected type, thus
avoiding a false negative.

The definition of Split(T) is non-trivial in the presence of recursive types. In [18][10]
we propose a solution that works under a mild restrictions over the use of recursion.
Here, we propose the same definitions without making any restriction as recursive types
have already been excluded.

Definition 9 (Split(T)).

Split(())
�
= {()} Split(T | U)

�
= Split(T) ∪ Split(U)

Split(B)
�
= {B} Split(l[T])

�
= {l[A] | A ∈ Split(T)}

Split(U∗) �
= {U∗} Split(T, U)

�
= {(A, B) | A ∈ Split(T) ∧ B ∈ Split(U)}

Splitting stops when a *-type is met. As shown in [10], this ensures acceptable
complexity for a very wide class of cases, while ensuring good precision at the same
time, as in schemas most union types are the form (T | U)∗, which are not split.

To have an idea of the precision that we gain by splitting, we have that a query Q
without where conditions always evaluates to (), under well-typed substitutions, if and
only if its inferred type is (); as shown in [10], this does not hold without splitting.
As a second example, the reader can run the rules over Example 1, and realize that the
inferred type is quite precise and is a projection of the target type.

To conclude, since we are considering non recursive types, we believe that an alter-
native typing for x dos :: NodeTest expressions, based on the abstract execution of the
descendant-or-self operator over the type bound to x, by possibly using splitting, may
further improve precision. We leave this issue as future work.

6 Related Work

To the best of our knowledge, the only alternative technique for detecting corrupted
mappings in XML p2p systems is the one described in [9]. We have already discussed
differences between the present approach and that work. Other works on p2p systems
[16] [5] do not address the problem of checking mapping correctness: they always as-
sume mappings to be correct, with a correctness notion very close to our semantic cor-
rectness. Starting from correct mappings, [16] proposes a correct and complete query
answering algorithm for p2p data integration systems.

Our type system is a variation of the type systems of [10] and [9], obtained by
dropping error-checking in favor of a better precision in type inference. In these works
we have already outlined advantages of these type systems wrt to the W3C XQuery
type system [21].

7 Conclusions and Future Work

This paper presented a novel technique for detecting corrupted mappings in XML p2p
data integration systems. This technique can be used in any context where a schema
mapping approach is used, and it is based on a semantic notion of mapping correctness,
unrelated to the query transformation algorithms being used. This form of correctness
works on the ability of a mapping to satisfy the target schema, and it is independent
from queries.

To check mapping correctness, we introduced a notion of type projection for XML
types. By reducing type projection to standard subtyping among weakened types, it
follows that type projection is decidable [20]. We recently proved that type projection
can be checked in polynomial time.

We proved that mapping correctness can be reduced to type projection between the
inferred result type of the mapping and the target schema, and showed that our approach
is complete, i.e., all errors will be detected. To decrease false negatives, we augment the
precision of type inference through type splitting.

Although this work is not in its infancy, much work remains to do as it forms the
basis for a massive future work. In particular, we plan, in the near future, to implement
this technique in a centralized, logical p2p system, so to verify its applicability in a
background maintenance activity. Finally, we plan to enrich our approach with some
form of self-healing technique, so to suggest to the user possible corrections for any
detected wrong mapping.

References

1. Dabek, F., Brunskill, E., Kaashoek, M.F., Karger, D.R., Morris, R., Stoica, I., Balakrishnan,
H.: Building peer-to-peer systems with chord, a distributed lookup service. In: HotOS.
(2001) 81–86

2. : (The FreePastry System. www.cs.rice.edu/cs/systems/pastry/freepastry/)
3. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Siméon, J.: XQuery 1.0:

An XML Query Language. Technical report, World Wide Web Consortium (2003) W3C
Working Draft.

4. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: data management infrastructure for
semantic web applications. In: Proceedings of the Twelfth International World Wide Web
Conference, WWW2003, Budapest, Hungary, 20-24 May 2003, ACM (2003) 556–567

5. Franconi, E., Kuper, G.M., Lopatenko, A., Zaihrayeu, I.: Queries and updates in the codb
peer to peer database system. In: VLDB. (2004) 1277–1280

6. Goasdoué, F., Rousset, M.C.: Answering queries using views: A krdb perspective for the
semantic web. ACM Trans. Internet Techn. 4 (2004) 255–288

7. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume I. Computer
Science Press (1988)

8. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume II. Computer
Science Press (1989)

9. Colazzo, D., Sartiani, C.: Typechecking Queries for Maintaining Schema Mappings in XML
P2P Databases. In: Proceedings of the 3th Workshop on Programming Language Technolo-
gies for XML (Plan-X), in conjunction with POPL 2005. (2005)

10. Colazzo, D., Ghelli, G., Manghi, P., Sartiani, C.: Types for Path Correctness of XML Queries.
In: Proceedings of the 2004 International Conference on Functional Programming (ICFP),
Snowbird, Utah, September 19-22, 2004. (2004)

11. Abiteboul, S., Manolescu, I., Preda, N.: Sharing Content in Structured P2P Networks. Tech-
nical report, INRIA (2005)

12. Tatarinov, I.: Semantic Data Sharing with a Peer Data Management System. PhD thesis,
University of Washington (2004)

13. Tatarinov, I., Halevy, A.Y.: Efficient query reformulation in peer-data management systems.
In: SIGMOD Conference. (2004) 539–550

14. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In: VLDB. (2003)
572–583

15. Hosoya, H., Pierce, B.C.: XDuce: An XML Processing Language (1999) Preliminary Report.
16. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Logical foundations of peer-to-

peer data integration. In: PODS. (2004) 241–251
17. Marian, A., Siméon, J.: Projecting xml documents. In: VLDB. (2003) 213–224
18. Colazzo, D.: Path Correctness for XML Queries: Characterization and Static Type Checking.

PhD thesis, Dipartimento di Informatica, Università di Pisa (2004)
19. Fernandez, M., Siméon, J., Wadler, P.: A Semi-monad for Semi-structured Data. In: ICDT.

(2001) 263–300
20. Dal-Zilio, S., Lugiez, D., Meyssonnier, C.: A logic you can count on. In Jones, N.D., Leroy,

X., eds.: POPL, ACM (2004) 135–146
21. Draper, D., Fankhauser, P., Fernandez, M., Malhotra, A., Rose, K., Rys, M., Siméon, J.,

Wadler, P.: XQuery 1.0 and XPath 2.0 Formal Semantics. Technical report, World Wide
Web Consortium (2005) W3C Working Draft.

22. Benzaken, V., Castagna, G., Frisch, A.: Cduce: an xml-centric general-purpose language. In:
ICFP. (2003) 51–63

