Optimization in Finance

project for groups of maximum 3 students – due date: January 11th – sent your project to: fabio.furini@dauphine.fr

Construction of an Index Fund

Index fund – Definition Given a target population of n stocks, select q stocks and their weights in the index fund (a portfolio), to represent the target population as closely as possible.

- consider the following ILP model aiming at aggregating a broad market index of n securities into a representative index fund:

\[
\begin{align*}
\text{max} & \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_{ij} \\
\sum_{j=1}^{n} y_{j} &= q \quad (2) \\
\sum_{j=1}^{n} x_{ij} &= 1 \quad i = 1, \ldots, n \quad (3) \\
x_{ij} &\leq y_{j} \quad i = 1, \ldots, n, j = 1, \ldots, n \quad (4) \\
x_{ij} &\in \{0, 1\} \quad i = 1, \ldots, n, j = 1, \ldots, n \quad (5) \\
y_{j} &\in \{0, 1\} \quad j = 1, \ldots, n \quad (6)
\end{align*}
\]

- where the decision variables represent:

\[
\begin{align*}
y_{j} &= \begin{cases}
1 & \text{if stock } j \text{ is in the index fund} \\
0 & \text{otherwise}
\end{cases} \\
x_{ij} &= \begin{cases}
1 & \text{if } j \text{ is the most similar stock to stock } i \text{ in the index fund} \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]

- q represents the number of securities in the index fund and

\[
\alpha_{ij} = \text{similarity between stock } i \text{ and stock } j \quad (7)
\]
Case Study – Investigate the performance of the model

- Consider the securities and the historical data provided by email. Compute the covariance matrix (positive semidefinite)

\[Q_{ij} = \frac{1}{T} \sum_{t=1}^{T} (r_{ti}^t - r_{ai}^t)(r_{tj}^t - r_{aj}^t) \]

correlation matrix

\[\rho_{ij} = \frac{Q_{ij}}{\sigma_i \sigma_j} \]
of these securities.

- Set up the ILP model and solve it with CPLEX for different values of \(q \) using the covariance and the correlation matrix as a proxy of similarity between the stocks. Analyse which are the securities selected according to different values of \(q \) and similarity measure. Determine a portfolio using the selected stocks and justify your choice.

- Compare the portfolio performance constructed in period \(t \) (based on historical data up to period \(t \)) with the market performances by observing the portfolio performances in period \(t + 1 \) (repeat the analysis for different periods).

- Discuss the advantages and the disadvantages of the index funds constructed in this manner and propose possible solutions for the principal problems.

- Determine a good index fund and a portfolio analyzing the trade off between \(q \) (index funds with small \(q \) are in general preferable) and the performances.

Business game:

- Construct an index fund considering one of the national markets (S&P 500 index, NASDAQ index) using the previous ILP model. Present and motivate the adopted strategy.

- The dimension and the computational complexity of the model increase with the total number of stocks and the value of \(q \). Analyse the variation in the computational time according to the total number of stocks and the value of \(q \). Determine the maximum dimension of instances which can be solved to proven optimality (within an acceptable computing time of 10 minutes).

- Discuss the results as you were in a financial consulting lab trying to convince the management to adopt (or not) the proposed portfolios.