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Abstract: In an upstream supply chain dedicated to the mass production of customized products, many sources create 
production instability: the level and structure of production in the final assembly line, variability of lead times, quality 
issues, packaging and loading constraints on transportation, demand anticipation, and the synchronization of the flows 
of components sent, received, and produced. For periodic replenishment systems, each member of the supply chain 
must have two different safety stocks to prevent some sources of fluctuations: a safety stock of produced components to 
meet the demand of downstream links and a safety stock of supplied components to ensure its own production. 
Procedures must take the organizational framework of information and products exchanges into account. The 
relevance of supply and production rules depends on the relevance of structural information broadcast along the 
supply chain. 
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1. Introduction 
For the mass production of customized products 
(Anderson & Pine, 1997) using a build-to-order supply 
chain (BTO-SC, Gunasekarana & Ngaib, 2005, 2009), 
as exemplified by the automotive industry, 
differentiation results from the combination of n 
optional components (e.g., sunroofs) or alternative 
components (e.g., gearboxes). These components are 
taken from n different sets and are assembled on n 
different workstations of an assembly line. The 
upstream supply chain (USC) then consists of units that 
contribute to the production of the vehicles assembled 
by the company. The various links of the chain are 
connected by flows of products and information. 
Eventually, the production decisions made by the last 
production link (i.e., the assembly line) pull production 
from the USC. 
Two obstacles prevent centralized control of the USC 
by assembly lines: Many units belong to independent 
companies, and a link might belong to several supply 
chains (e.g., the supply chains monitored by PSA and 
Renault have many common links). The behavior of the 
chain, and thus its global performance, depends on the 
information and product exchanges that take place 
among the links, as well as the control rules used to 
make provisioning and production decisions. 

The pernicious effects of decisions based on local 
information are well-known in the downstream supply 
chain, especially for low-cost, standardized, mass 
products (e.g., beer). They propagate oscillations of 
increasing amplitude along the supply chain, as 
highlighted by Forrester (1958) and later identified by 
name as the bullwhip effect. 
Oscillations of production occur in USCs dedicated to 
the mass production of customized products too, but 
their causes and mechanisms are relatively unknown. 
For example, a car is assembled at the request of final 
customers or car dealers committed by commercial 

objectives. Because of the high price, each car is subject 
to individual tracking, which means the amplification 
effects observed in the distribution networks of low-
cost, mass products are unlikely to occur. Upstream, 
production is organized to meet the demands of a single 
customer, final assembly line. However, studies of the 
bullwhip effect generally ignore this type of situation, 
understanding the mechanisms that promote oscillations 
along the USC is a prerequisite for improving supply 
chain performance in terms of efficiency and 
effectiveness.  
Whatever the stochastic sources of oscillation in the 
USC (e.g., random demand, quality problems, random 
lead times, packaging constraints, restricted transport 
capacity), an exploitation of demand characteristics is 
possible. Therefore, the appropriate local application of 
the principles of periodic replenishment policies, based 
on a judicious exploitation of the known and stochastic 
characteristics of demand, keeps stock-outs under 
control for each link of the USC. Thus, appropriate 
safety stocks divide the supply chain into independent 
subsystems, and each entity retains its managerial 
autonomy, which prevents the propagation of 
disturbances. 
Depending on the position of an order penetration point 
(OPP), a link can produce to order. If it produces a set 
of alternative components, using a synchronous 
production approach (Giard and Mendy 2008) can 
provide robust rules to face (even fast) modifications of 
the demand structure. It also offers better control over 
the problems caused by defective quality in production 
processes. 
This article contains a formal analysis of the exchange 
mechanisms for information and goods between two 
links of the USC. This exchange is similar to a 
customer–supplier relationship, such that each actor is 
autonomous in its decision making. The production of 
each link is random, which does not pose a problem if 



the links of the supply chain all have sufficient capacity 
(Camisullis and Giard, 2009). 
In this article, we investigate the steady state of periodic 
provisioning policies in the supply chain. The second 
article presented at this conference, reveals the 
conditions in which it is possible to use pertinent 
information to adapt steady-state policies, preserve their 
performance, and detect the transformations of the 
demand structure. Because ignoring such rules may 
disturb the functioning of the USC, decentralized 
management in the supply chain rests on information 
sharing and the use of consistent management rules 
across its various links. 
In the type of USC studied herein, the costs induced by 
a stock-out are so high that the use of an analytical 
model based on some expected cost function is useless. 
This article examines the impact of parameters that arise 
from organizational decisions about provisioning 
policies. Specific factors distinguish the periodic 
replenishment policies of supplied components from 
those of produced components. However, they depend 
on the same general approach and common factors. We 
examine analytically how some parameters influence 
the appropriate probability distribution for determining 
the order-up-to level. The order-up-to level can be 
defined as the percentile associated to a stock-out risk 
This distribution should include, simultaneously, 
several random factors (e.g., demand, lead time, quality) 
and provision constraints (e.g., conditioning, transport 
capacity). A Monte Carlo simulation provides an 
answer to this complex issue, as we illustrate herein. 
After a brief survey of existing literature on safety 
stocks in supply chains, we outline the common 
characteristics of all safety stocks. Then we 
successively analyze the periodic replenishment policies 
of supplied and produced components, before we 
conclude with some operational implications. 

2. Literature Review 

Prior research offers several reasons to maintain safety 
stock in a supply chain. In general, safety stock 
mitigates stock-out risks due to random variations of the 
demand or production that occur between 
replenishments. Uncertainty due to production reflects 
various events that might occur, such as breakdowns 
and setup and repair times (Ho et al. 1995; Vargas and 
Dear, 1991). Provision uncertainly might relate to 
delivery lead times (Chiu and Huang, 2003) or quality 
(Koh et al. 2002). Uncertainty about demand relates to 
its random patterns (Guide and Srivastava, 2000), 
potential forecast errors (Lowerre, 1985, Krupp, 1997), 
and the occurrence of occasional peaks (Miller, 1979). 
In addition, several approaches can determine the order-
up-to level value of a periodic replenishment policy. 
Implicitly, the order-up-to level defines the safety stock. 
Analytical models rely on cost functions and provide as 
many optimal formulae as there are decision variables 
in the model. Most of these studies relate to downstream 
supply chains; for example, Axsater and Zhang (1999) 

deal with the relationship between the warehouse and 
distributors, and Diks and De Kok (1998) and Rau et al. 
(2003) consider multistage systems. In an upstream 
supply chain study, So and Zheng (2003) consider two 
contributors to variability in ordered quantities: the 
supplier’s delivery lead time, which is assumed to be 
variable and depend on the quantities ordered, and 
updates of the demand forecast.  
The simulation approach instead applies to systems that 
are too complex to derive an analytical solution. Some 
authors study supply chains that consist of more or 
fewer levels. For example, Liberopoulos and 
Koukoumialos (2005) simulate a two-level production 
supply chain with scheduled lead times, whereas Ng et 
al. (2003) work with an n-stage system that contains 
random lead times. 
Finally, some studies mix analytical and simulation 
approaches to achieve resource pre-calibration and 
search for potential efficiency or effectiveness 
improvements in the same study. For example, Mohebbi 
et al. (1998) use stochastic lead times to study 
customer–suppliers relations in an USC, and Moinzadeh 
(2002) uses constant lead time. Tang and Grubbström 
(2003) also analyze a two-stage assembly system, with 
stochastic lead times to minimize total carrying and 
stock-out costs. 
Traditionally, these studies distinguish three decision 
times: short, medium, and long run. Yet many articles 
assert demand is purely stochastic (e.g., Graves 1996; 
Cachon and Fisher 2000), so they consider the long run 
from the point of view of structure stability but the short 
term for defining operational decision rules. In some 
cases, demand is partly known (firm orders) and partly 
stochastic. For example, in Bourland et al.’s (1996) 
study, customers place their orders each week for the 
three next weeks and also forecast for the five or six 
following weeks. These two levels need safety stocks to 
offset the uncertainty that affects both orders and 
deliveries. 

3. General Analysis of Safety Stock Needs 

First, we introduce the reasons to create safety stocks by 
adopting a demand propagation perspective along the 
supply chain (Camisullis and Giard, 2008). Second, we 
consider the characteristics of the distribution to 
calibrate the safety stock and specify the factors that 
influence it. Third, we reveal the relationship between 
safety stock and stock-out probability. Fourth, we study 
the analytical relationship between safety stock and 
expected stock prior to delivery. 
 

3.1. Location of and justification for safety stocks  

A replenishment policy includes safety stock to address 
unknown demand. The stock might include products 
ordered to meet the needs of a production (or 
distribution) unit, as well as those manufactured by a 
production unit when that unit cannot build to order 
completely because its customers’ OPP does not go far 



enough into its productive process (Giard and Mendy 
2007). 
A basic periodic replenishment policy places a periodic 
order equal to the difference between its order-up-to 
level R and the inventory position observed at the time 
of the order. The order interval is θ, and R depends on 
the target stock-out probability α prior to the delivery, 
which might be given by economic calculations. The α 
can lead to negative safety stock, which is meaningless 
from an operational point of view. Safety stock equals 
the difference between R and the average demand over 
the same period. Safety stock also appears in 
replenishment policies of the type “order quantity q – 
reorder point r,” in which r behaves like R. 
In periodic replenishment policies, the safety stock 
definition therefore depends on the order-up-to level R. 
Inventory models use cost functions to propose 
analytical optimal relations to determine R, which 
always corresponds to the percentile of the demand 
distribution associated with an optimal value of the 
stock-out probability α, which in turn depends on the 
cost structure in the cost function. Generally, for 
members of the USC, unsatisfied demand is delayed, 
and α is very low. Two observations emerge: 
1. For the supplier, the ordered quantity, which 

corresponds to a sum of random demands, is a 
random variable. It reflects the demands that its 
customer must satisfy. 

2. This property is not valid if some supplied parts are 
rejected for quality reasons. It is then necessary to 
add to the number of rejected components to the 
demand since the last order. 

With a relevant calibration of safety stock in the various 
stages, a supply chain can operate without significant 
fluctuations. The quality of the calibration mainly 
depends on the propagation of appropriate information 
from downstream to upstream. We analyze the safety 
stocks of stage B in the sub network A → B → C in a 
supply chain. Stage B might hold two kinds of safety 
stocks, because of its upstream and downstream 
relationships. 
First, production safety stocks include the components i 
produced by B to be sold to its customer (stage C) when 
the OPP of C in its production system does not allow B 
to entirely build-to-order. These safety stocks are held 
by the supplier. We assume customer C transmits an 
order of qit components i to its supplier B at the 
beginning of day t. The delivery occurs at the beginning 
of day i , and the lead time is λi ( iiDt + D≤λ ). The 
next order is placed at the beginning of day t + θ, after 
which supplier B has iiD λ−

F>

 days to fulfill the order. If 
this duration is lower than the manufacturing lead time 
Fi of component i, the supplier fills the order by taking 
the needed quantities from its stocks. The process 
depends on the random characteristics of customer 
demand, as well as the accepted stock-out risk. In the 
opposite case ( iiiD − λ ), B can build to order. If 
the interv iial D λ−  is greater than the order interval θ, 
C uses the information from its production schedule. 
The anticipation of a requirement enables B to move 

from a build-to-stock to a build-to-order production 
system. Furthermore, it can allow supplier A, producing 
for B, to build to order. This propagation increases 
effectiveness (fewer stock-outs) and efficiency (less 
safety stock) at the same time. However, the assertion 
cannot hold if product quality is not guaranteed.  
Second, the provisioning safety stocks relate to 
component j acquired from a supplier (A) to be used in 
production by  B. These stocks are held by the customer 
(here, stage B), in contrast with the preceding case. The 
order qjt of the component j sent by B to its supplier A 
at the beginning of day t is delivered at the beginning of 
day j  with a delivery lead time λj ( jjDt + D≤λ ). If A 
and B synchronize their orders, B gains more 
knowledge of the requirements but does not need it. 
When B sends A an order, B has already defined the 
production program for using component j up until the 
beginning of day j . If the scheduling time Pj is 
higher than or equal to the provision time Dj, the order 
corresponds exactly to the forecast consumption, and no 
safety stock should be held. However, if the order is 
based entirely on statistical knowledge of needs, 

Pt +

θ>− jPj , and if it relies partly on firm demand and 
partly on statistical knowledge of needs, 
D

θ<− jj PD .  

3.2. Determination of the probability distribution  

Several factors combine for the determination of the 
probability distribution of a demand for one period. It 
requires the use of a simulation approach to calculate 
the distribution empirically. 
An alternative component i always has the same 
probability pi of being included in one of the products. 
Demand for that component therefore is a random 
variable that comprises three sources of variation: 
1. The size of the set to consider, or the product of a 

daily production n by a number L of production 
days. L can be certain or random. A priori, L can be 
random only for the components from a supplier. 

2. In the steady state, the demand to satisfy XiL defined 
on L days. This demand follows a binomial 
distribution B (nL, pi).  

3. If a delivered product has a positive probability πi 
of being defective, XiL demand has little chance of 
being satisfied entirely. 

The demand to consider therefore includes the four 
elements in Table 1, which we illustrate in Table 2.  

Quality of delivered products Li constant Li random
Always good (πi=0) → use of XiL Case 1 Case 2 

Not always good (πi>0) → use of YiL Case 3 Case 4 

Table 1. Characterization of demand to take into account 
In addition, demand can be the sum of demands from 
several customers, each of which represents one of the 
four cases. The probability distribution of that 
compounded demand is more complex. 
Consider case 1 (constant lead time, guaranteed 
quality). The binomial distribution is not continuous, 
nor is its cumulative distribution. The definition of a 
percentile RiLα implies a convention: We retain the 



lowest value of RiLα, such that demand XiL has a 
probability lower than α of being exceeded. 
If the lead time L is random and quality is guaranteed 
(case 2), the demand XiL follows a binomial distribution 
B (nL, pi). The number of trials is a random variable, so 
the determination of this probability distribution is 
analytically complex. It can be achieved empirically 
with the Monte Carlo method. These distributions 
present a multimodal pattern that becomes more 
accentuated as the probability pi increases. 
In cases 3 and 4, lead time is certain or random, but 
quality is not guaranteed, so a delivered component is 
defective with a probability πi. To meet XiL demand, it is 
necessary to attain an extra quantity ziL and make XiL + 
ziL components available. The number of defective parts 
in this case follows the binomial distribution B (XiL + 
ziL, πi). The ziL quantity is an occurrence of the random 
variable ZiL, which follows the negative binomial 
distribution NB (XiL, πi), whose cumulative probability 
P(ZiL ≤ ziL) corresponds to the probability of a maximum 
of ziL defective parts in a batch of XiL + ziL parts. It is 
thus necessary to use the probability distribution of the 
number of parts available, YiL = XiL + ZiL, to determine 
the value of the percentile  that, with a probability 
α, cannot cover demand, taking into account the three 
sources of random factors. 

α
iLY

The demand for a component c to cover L production 
days may be the sum of independent demands. Two 
cases require the use of a Monte Carlo simulation to 
define the reference probability distribution:  
- ia ′ units of component c appear in a part i′  that 

belongs to a subset E of alternative parts that can be 
mounted in a station of the car assembly line. This 
presence is the result of the mechanism of the BOM 
explosion. , well-known in MRP. For example, 
gears provided to replenish stock get used in the 
production line of gearboxes that are mounted on the 
car assembly line. Demand icLV ′  for component c of 
an alternative part i′  follows a binomial distribution 
B ( Lnai ⋅⋅′ ; ip ′ ); the probability distribution of the 
total demand ∑ ∈′ ′Ei icL  can be obtained by 
simulation. If iaai ′∀=′ , , then cLV  follows the 
binomial distribution B ( Lna ⋅⋅ , ∑ ′ p ). 

=cL VV

∈ ′Ei i
- Demand for component c might come from several 

assembly lines. If each line l that uses component c 
has a daily production nl, the generalization of the 
previous assertions is immediate: Demand 

licLV ′  
issued for alternative part li′  follows the binomial 
distribution B ( Lna lil

⋅⋅′ ;
li

p ′ ), and the probability 
distribution of total demand E  can 
be obtained by simulation. 

∑ ∑= ∈′ ′l i icLcL ll l
VV

If a problem of quality arises for component c, we use 
the distribution of YcL = cLV  + ZcL, where ZcL follows a 
negative binomial distribution BN ( , πc). A 
simulation again is mandatory. 

cLV

3.3. Influences of stock-out probability and demand 
variability on safety stock 

Generally, safety stock varies in the same direction as 
the coefficient of variation (ratio of the standard 
deviation of the demand distribution to its average) and 
in the opposite direction of accepted risk. Safety stock 
relations can be established  when  the order-up-to level 
is defined to meet the needs of an alternate or optional 
component  in a BOSC, in the steady state. Then a 
binomial distribution B (nL, pi) is used. In certain 
conditions (Giard 2003a), which exist when nLpi has a 
sufficiently high value, an approximation of this 
distribution can be given by the normal distribution N 
( nLppnLp iii )1(, − ). The definition of the standard 
normal variable tα is associated with a stock-out 
probability α, so the percentile  relates to tα  
according to the expected value of the demand 
distribution and its standard deviation by relation [1]. 

αiLR

)1( iiiiL pnLptnLpR −+= αα . [1] 

The safety stock  is then defined by iiLiL nLpRSS −= αα

)1( iiiL pnLptSS −= αα . [2] 

In an industry, the concept of a safety coefficient is 
more common, that is, the constant to multiply with the 
demand average to calculate safety stock. We can 
express it as a function of the coefficient of variation, or 

iii nLpnLpp /)1( − = )/()1( ii nLpp− . The value of 

this safety coefficient is )/()1( ii nLppt −α , which 
leads to relation [3]. 

)
1

1()1(
i

i
iiiiiL nLp

p
tnLppnLptnLpR

−
+=−+= αα .[3] 

The frequent use of a rule that fixes safety stocks 
according to an empirical coefficient imposed for a 
large set of references mechanically leads to variable 
stock-out probability for the same production.  
Table 2 illustrates the four cases numerically, with n = 
962, pi = 54.46%, L fixed to 12 or random (discrete 
uniform DU (10, 14)), and α = 0.01%. With compound 
demand, V is the sum of V1 and V2, where V1 ~ B (962L, 
0,5446) and V2 ~ B (962.4.L, 0,0513), L ~DU  (10, 14), 
and π = 1%. 

 Case 1 Case 2 Case 3 Case 4 Compoun
d Demand 

V 
L 12 U 12 U  U

π 0% 0% 1% 1% 1% 

iLY  6287 6287 6350 6350 8743 

Ri 6486 7525 6553 7602 10461 
SSi 199 1238 203 1252 1718 

Table 2. Numerical determinations of Ri and SSi. 



3.4. Safety stock and average residual stock prior to 
delivery 

If the probability of stock-out prior to delivery is low, 
the expected value of the component shortage Ir( αiL ) 
also is low. The safety stock therefore approaches the 
expected value of residual stock prior to delivery. 
Generally speaking, the expectation Ip( αiL ) of residual 
stock at the end of a period with demand X is given by 
relation [4] (Giard 2003b): 

R

R

)(I)(E)(I rp ααα iLLiLiL RXRR +−= . [4] 

The order-up-to level αiL  has to meet demand X, and 
Equation 4 is valid, regardless of the probability 
distribution of XL. 

R

When stock-out probability is negligible, Ir( αiL ) is 
close to 0. The average residual stock prior to delivery 
Ip( αiL ) is close to safety stock iL . The 
average residual stock and average stock-out vary in 
opposite directions and generate, respectively, carrying 
costs and stock-out costs for the company. 

R

)LXR (ER −α

In the case of a normal distribution, the expectation 
Ir( αiL ) of a stock-out, without indices i, L, and α, is 
given by (Giard 2003b): 

R

[ ])(P)f()(I RRRr ttttR >−= σ ,  

where σ/)( xRtR −= , and π2/)f( 2/2
Rt

R et −= . [5] 

For example, with the data from case 1, we find that 
when α = 0.01%, RILα = 6486, IR(RILα) = 0.001, and 
IP(RILα) = 199.14 

4. Safety Stock of Supplied Components  

The order qjt for component j sent by B to A at the 
beginning of day t gets delivered at the beginning of 
day j , because the “due date” is Dj, and the lead 
time is λj ( jjλ ). The stock level PSjt at the 
beginning of day t is the sum of the stock observed Sjt 
and the kj expected delivery, as well as backorders. If 
the stock-out probability is low, we can ignore the 
impact of unsatisfied demand (backorders or lost sales). 
No kj expected deliveries exist if the periodic 
replenishment review period is longer than the due date 
time ( j ), but this number is positive otherwise, 
such that

Dt +

θ >

D≤

jλ
)/max(arg= jjj . The inventory 

position when ordering is defined by the relation [6]. 
DKK θ≤k

 

∑ = −+= jk
h htjjj qSPS 1 , θ ,  

where )/max(arg jjj DKKk θ≤= . [6] 

If the planning time Pj of B is less than or equal to the 
due date time Dj negotiated with supplier A ( jj ), 
the order is based on statistical knowledge of 
anticipated demand. Customer B has no interest in 
negotiating a due date superior to the lead time, because 
doing so, even with a similar risk, increases safety 
stock. 

DP ≤

When jj , if jjjDP > DP −>θ , the sent order can be 
based partially on known demand. If jjj DP −≤θ , the 
order is determined by known requirements, and no 
safety stock is needed. 
If no batch constraint needs to be taken into account 
when determining the order to send, supply therefore is 
unit-based. Batch based supply is a little more 
complicated to define. In  both case , transport capacity 
limitation may be to take into account.  

 In all cases, we suppose that the accepted stock-out risk 
α is predetermined and very low. 

4.1. Unit-based supplies: Stochastic demand 

The probability distribution is defined for the period 
θ + λ, so it follows the law B [ jjj p),n( λθ + ]. If the 
normal approximation is possible, we use the 
distribution N [ jjj pn )( λθ + , )1() pp −λ( +θn jjjj ]. In 
this context, we can adapt Equations 1 and 2 to define 
the order-up-to level and safety stock: 

(), jjj ntpR ++++ θλ αλθ (, jn
j

= θα )1() jjj pp −λ   [7] 

)1()(
,, jjjjj ppntSS −+=

+
λθααλθ . [8] 

If the lead time is random or quality is not guaranteed, we 
need a distribution generated by the Monte Carlo method 
(from Section 3.1) to determine the order-up to level 
associated with risk α. 
For example, suppose that θ = 2,  λ = 10, n = 962, and 
pi = 54,46%. For α = 0.01%, Ri = 6486.  
From a supply chain control perspective, two important 
observations emerge. First, if all alternative components 
assembled on the same workstation of end customer C 
are supplied by B, the total daily demand of alternative 
components is constant (n), due to its multinomial 
distribution. Therefore, the quantities ordered 
periodically equal θ.n. Plant B may need alternative 
components j for its production, but if they are all 
provided by the same supplier, the property of constant 
total requirement remains valid. A supply of alternative 
components shared across several suppliers instead 
induces a periodic random total demand for each. This 
periodic load fluctuation may make the capacity 
commitment difficult for the supplier and induce 
additional costs. 
Second, B might supply C with only a subset of what it 
needs, which creates a random amount of parts ordered 
from that supplier. But B can also supply other clients 
with the same parts, which increases the variability of 
the demand to be satisfied by B. We cannot determine 
the demand distribution of component j used by 
different customers of B analytically, but we can solve 
it using Monte Carlo methods. Simulation is essential 
for cases 2, 3, and 4. Moreover, with a quality problem, 
the generation of the random variable Z must be based 
on the sum of the demands generated for these 
customers. 

4.2. Unit-based supplies: Stochastic and 
deterministic demands 



We now consider the situation defined by a planning 
time Pj for customer B, which exceeds the due date time 
Dj negotiated with supplier A of less than θj days 
( 0>−> jjj DPθ ). The due date time Dj is constant 
and can be equal to lead time λj. There is no quality 
problem. When an order is placed at the beginning of 
day t, to be delivered at the end of day , B knows 
with certainty its needs for periods j  to 

, which are the needs of  days. 

jDt +
+t

jD
1−D

1−+ jPt jP −
The order sent on day t is the sum of (1) a known 
quantity ∑ , equal to the demand of jj  
days, after delivery at the end of day j , and (2) a 
quantity equal to the difference between an order-up-to 
level determined to meet a random demand with risk α 
and the inventory position. This demand is defined for a 
period that covers j  and increases by the period 
during which demand is not known, 

−+= 1Pth
−+= 1

j
jDth jhx

D

DP −
Dt +

( ))D(P− jjj −θ . 
The fact that we have no firm information on the days 
prior to the delivery rather than after it,  has no impact. 
The period to cover is . The order-up-to 

level is the percentile  of a distribution of 

probabilities defined over 

jjj PD −+ 2θ

αθ ,2, jj PDjR −+

jj D −+ 2 jPθ , which leads 

to the distribution B ( )jpjP ),jj Dn 2( −+θ . If the 
normal approximation is possible, we can use 
N [ , jpjjj PDn )2( −+θ )1() jj p2(n D+θ

jjj DP +−

jp−j P− ] 

, and Equation 9. If we exclude the possibility of lost 
sales, this difference equals the sum of observed 
demand on the last θ  days prior to day t,  

. In Equation 10, we summarize the 

determination of the order to send, in the steady state, 
with a mix of stochastic and deterministic demand: 

∑ −=
−+−=

1th
DPth jhjjj

xθ

)1()2()2(,, jjjjjjjjjPDj ppPDntpPDnR
jj

−−++−+=−+ θθ ααθ

, if a normal approximation is possible, and 0>−> jj DPθ .[9]  

∑∑ −=
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−+=
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Pth
Dth jhjt jjj

j
j

xxq θ . [10] 

To take quality into account (case 3), we must use the 
simulation to obtain the probability distribution and 
thereby determine the percentile. To define variable j , 
we assume the quality problem exists for all orders and  
sum random demand with firm orders. In a steady state, 
these firm orders are random variables that follow a 
binomial law with the same probability used to deal 
with the random needs taken into account in the order. 
It is therefore necessary to use the distribution given by 
Equation 11 to determine the percentile : 

Z

αθ ,2, jjj PDjR −+

jjj ZXY += ,  

where ~B jX ( )jjjj pPDn ),2( −+θ ,  

and ~ BN ( , πj). [11] jZ jX

For example, if  , and 10=jD , 12=jP 5=θ , an order sent at the 
beginning of day  will be delivered at the end of day . It 
satisfies needs during  to . The needs for days 11 and 12 are 
known, but those for the next three days are unknown. The reference 
period is 13 days,  = 7091, and  = 212.  

1=t
11=t

%01.0;13;1R

10=t
15=t

%01.0;13;1SS

Next suppose that the lead time jλ is random and that 
the quality of the delivered items is guaranteed (case 2). 
The order sent at the beginning of day t still covers the 
needs for days  to t1−+ jDt 1−j+θ . The demands for 

jj  days are perfectly known. In a steady state, 
these demands correspond to a sum of daily demands, 
following the same distribution used for the other days 
(i.e., B (n,pj)). The random period of the distribution 
reveals the order-up-to level as the sum of the random 
lead time j

DP −

λ  and the period during which demand is 
not known between two deliveries, ( ))( jj DP −−jθ . 
For example, if jλ ~ U (4; 8), qj = 8, Pj = 14, and Dj = 12. The random 
period to cover is Lj = j + 6 ~ U (10; 14). With n = 962, pi = 
54.46%, and α = 0.01%, we find that RiL = 7525. If π1 = 1%, then RiL = 
7602. 

λ

4.3. Batch-based supplies 

External supply often depends on batch constraints. Each 
order sent is a multiple of the number κ of units used in 
transport, as models of stock determination note. The 
analytic solution is characterized by a double inequality 
for the cumulative probability of two successive discrete 
values, multiples of κ. They enclose an optimal target 
probability, depending on the structure of the costs used 
in the objective function of the model. To supply an USC, 
we cannot exceed risk. The propositions we offer next are 
valid in the four cases in Table 1. 
First, if the order sent corresponds to the smallest 
multiple of κ, respecting the condition of a stock-out 
probability inferior to α (i.e., 

)/)(min(arg κκ jj PSRKK −≥⋅ ), the protection 
against stock-out risk is excessive. 
Second, if the order sent corresponds to the greatest 
multiple κ, respecting the condition of a stock-out 
probability superior to α (i.e.,  

)/)(max(arg κκ jj PSRKK −≤⋅ ), the protection 
against stock-out risk is insufficient.  
The multiple to choose depends on a reasonable risk β, 
greater than α and sometimes due to batch limitations. 
Based on case 1, we assume the transport container contains κ = 18 
units. With α = 0.01%, we find RiL = 6486. Suppose we accept risk β = 
0.015%. Then P(Xi > Ri) ≤ 0.015% is equivalent to Ri = 6480. 
Although )/)min(arg. κκ jj PSRKKq −≥−  is less than 6, the 
choice of )/)(min(arg κκ jPSjRKK −≥⋅  leads to risk not greater 
than β. 

4.4. Incurred risk and transport capacity limitations 

Means of transport usually have limited capacity, G. 
The ordered quantity cannot exceed this limit 
(⇒ ). The incurred stock-out risk 
thus will be higher than desired, unless there is virtually 
no chance that demand exceeds this capacity. In this 
case, transport may be less efficient. To preserve the 
target risk level α, it is necessary to increase the order-
up-to level, which we can do easily with a dichotomy 
method. 

)G,(Max jj PSR −

Therefore, if n = 962, pi = 54.46%, θ = 2, λ = 10, and α = 0.01%, we 
find Ri = 6486 (see Table 2). If G = 1060, a simulation of this periodic 
replenishment policy for 5 million iterations leads to a risk of 
0.0774%. To keep α = 0.01%, it is necessary to fix Ri to 6530. The 
safety stock then increases from 199 to 233.  



This simulation widens the scope of the analysis from a 
local optimization to a more global one that includes 
transport, carrying, set-up, and stock-out costs. A batch 
limitation is more complicated to take into account; the 
transport capacity limitation is necessarily a multiple of 
packaging size. 

5. Safety Stock of Produced Components 

We focus on the production of a product i by unit B, in 
response to demand from customer C. In this context, 
the lead time iλ  between the start of production and the 
component’s appearance in stock is assumed to be 
constant. The lead time corresponds to cycle time or 
production time, as appropriate. 
Customer C sends B its orders for i at the beginning of 
the day, every iθ  days. The order received at the 
beginning of day t must be sent at the end of day i . 
With a lead time 

Dt +
iλ , B has iiD λ−  days to produce and 

send the order ( iiD λ≥ ). Component i gets integrated 
into the production cycle of H days. The production of 
component i finishes Fi days after the beginning of the 
cycle. If this cycle includes only component i, it is 
obvious that H = Fi, and there is no reason to 
synchronize deliveries (all iθ  days) or launches in 
production (all H days). 
We first consider a make-to-stock production, then 
study a make-to-order production, and finally a 
combined production process. 

5.1 Make-to-stock production 

We assume the production cycle H is shorter than the 
replenishment cycle θ )( iH θ≤→  and that the order 
from customer C is immediately executable ( iiD λ− = 
0) or else that the time remaining before delivery is less 
than the replenishment cycle θ ( iiiD θλ ≤−→ ). The 
distribution to determine the order-up-to level is the 
binomial law B ( inθ , pi). In a steady state, the quantity 
that B launches into production is equal to the quantity 
sent to C; it is a random variable. However, if the 
supplier produces all alternative references assembled 
on the workstation of the customer assembly line at the 
same time ( θθ =i→ ), the sum of ordered quantities is 
constant ( θn ), because demand for alternative 
components follows a multinomial distribution. 

If H > iθ  and the time remaining before delivery is less 
than the production cycle, we can distinguish two cases. 
1. If product i is the only one to be manufactured in 

this production cycle, H = Fi. When the order is 
sent at the beginning of day t, the inventory 
position PSit of component i increases by the 
quantity launched qit (= Rit – PSit) and should meet 
demand until the end of the next production cycle, 
on day t + 2H. The number of deliveries during a 
period of 2H days must be between 

)/2max(arg1 θη HKK <=  and 
)/2min(arg2 θη HKK >= . For example, with H 

= 5 and θ = 4, the number of deliveries is either 2 
or 3. If 2H is a multiple of θ, the number of 

deliveries during a 2H-day period is constant. The 
distribution to determine the order-up-to level is 
binomial B ( inηθ , pi), with 1ηη =  or 2ηη = . It 
often can be approximated by 
N( )1(ηθ2; nnηθ ii pp − ). 
For example, if B receives orders every 4 days from C and Fi = 
5 days, the distributions are B (962 x 2 x 4; 0.5446) and B 
(962 x 3 x 4; 0.5446). When α = 0.01%, the order-up-to level is 
4373 (two deliveries) or 6486 (three deliveries). 

A lack of synchronization between cycles H and θ 
leads to periodic variation in the production. The 
quantity to be launched in production by B equals 
the sum of quantities previously shipped to C only 
if the order-up-to level used for the production 
launch is the same as that used previously. The 
sum of the quantities launched varies strongly 
when the number of deliveries since the previous 
launch changes (due to the change in η). This sum 
equals ηθn  only if the order-up-to levels have not 
changed since the previous launch and B produces 
all alternative components.  

2. If several components successively launch into 
production, an order sent at the beginning of day t 
increases the stock level PSit of component i by the 
quantity launched in production qit (= Rit – PSit), to 
be delivered at the beginning of day t + H. It should 
meet demand until the next delivery, at the 
beginning of day t + H + Fi. The number of 
deliveries during H + Fi days must be between 

)/)max(argν KK= (1 θiFH+<  and 
)/)min(argν KK= (2 θiFH+> . If iF  = 2 and H = 5, the 

number of deliveries is either 1 or 2. If (H + Fi) is a 
multiple of θ, the number of deliveries over H + Fi 
days is constant. The distribution for determining 
the order-up-to level is binomial B ( inνθ , pi), with 

1νν =  or 2νν = . The distribution can be 
approximated by N ( )1( ii ppn − ) in 
many cases. The previous remarks about the 
variability of production remain valid. 

2nνθ

)

;νθ

In our example, the distributions are laws, B (962 x 2 x 4; 
0.5446) and B (962 x 1 x 4; 0.5446), which lead to order-up-to 
levels for α = 0.01% of 4373 (two deliveries) or 2211 (one 
delivery). 

5.2. Make-to-order production 

We suppose the production cycle is shorter than the 
replenishment cycle i( H θ≤→  and the supplier 
anticipation is greater than the replenishment cycle 
( iiiD θλ >−→ ). Then, production can be made to 
order, and a production launch involves no more than 
one delivery. The maximum number of canceled 
consecutive launches is )/) Hλ(Di −<

D
max(arg KK i

For example, if H = 5, θi = 12, and ii

. 
λ− = 14, the 

maximum number of null consecutive launches is 2.  
If H > θi and supplier anticipation is greater than twice 
the production cycle ( HD ii 2>−→ λ ), production 
also can be made to order. In this context, it is possible 
to launch a production quantity that should be delivered 
during the following production cycle, as well as one or 
more subsequent deliveries if anticipation is sufficient. 



However, it is preferable to smooth the load and launch 
only the deliveries for the following production cycle. 
Again, the number of deliveries to consider can vary 
between two production cycles: at least 1 and no more 
than )/)(max(arg θλ HDKK ii −−> . If H = 5, θI = 3, 
and iiD λ−  = 11, we would launch no more than the 
quantity of two successive deliveries. 

The irregularity of the number of launches and the 
quantities launched leads to disorganization. However, 
it can be eliminated if the production cycle equals the 
periodic replenishment review period but remains less 
than suppliers’ anticipation ( θλ >−→ iiD ). Quantities 
vary from order to order, because they correspond to 
quantities consumed, whose distribution is binomial. 
However, if the supplier produces all alternative 
components for the customer’s assembly line, the sum 
of ordered quantities is constant (nθ). If this supplier 
has multiple customers for all or some produced 
components, the condition extends to each customer. 

5.3. Mixed production 

If )iH( θ≤
ii

, production is to made to stock if 
iD θλ ≤−  and made to order otherwise 

( iiiD θλ >− ). If iH θ>
H

, production is to made to 
order if Di-λi > 2H. If iθ>  and HDH ii 2≤−< λ , 
production may be a combination. The analysis of these 
possible configurations is similar to that in Section 5.1, 
except that only μ deliveries to the customer on iiD λ−  
days after the production launch of component i on day 
t are known. They can be covered by made-to-order 
production. The number μ is either 

)/) θλ−(D<max(arg1μ K= ii  or K )/)(min(arg2 ii . 
The difference, possibly null, between η and μ therefore 
corresponds to deliveries that can be covered by a 
made-to-stock production. 

θλ−μ DKK >=

Suppose , θ = 4, and H = 5. The inventory 
position updates with a decision to integrate known firm 
orders from the customer and deliveries for later orders. 
In this example, quantities launched in production at the 
beginning of the second production cycle are made to 
order. Quantities launched in production cycles 1 and 4 
are made to stock and include one delivery only. The 
production of the third cycle is partly made to order and 
partly made to stock (two deliveries produced). 

7=− iiD λ

As in Section 5.1, we again face a possible change in 
production across cycles, related to the variable number 
of orders from the customer. Safety stock decreases, or 
even disappears, when we can produce to order. 

6. Conclusion 

This study focuses on a supply chain dedicated to the 
mass production of customized products, controlled by 
periodic replenishment policies. The analysis of the 
relations between the successive units of the supply 
chain show that safety stocks of produced and supplied 
components are needed. The importance of these stocks 
depends simultaneously on the level and structure of the 
production of the final assembly unit, lead time 

variability, levels of quality control, lot sizing 
transportation rules, and transport capacity constraints. 
In addition, the variability of the periodically exchanged 
quantities between two successive units depends on the 
demand anticipation available for decision making. This 
variability in turn depends on the level of 
synchronization of delivered, produced, and replenished 
flows that can lead to or avoid the creation of 
production cycles. A plant has more variable total 
activity if it does not produce all the diversity demanded 
at its level by the alternative components it assembles. 
The relevance of periodic replenishment rules or 
production launch rules depends on the structural 
information propagated along the supply chain. To 
highlight the conditions for efficient control, we 
postulate a stable, steady state, which may be attained 
even if the characteristics of the steady state are 
periodically disrupted. However, a high level of 
performance requires the circulation of information in 
time, all along the supply chain. This goal in turn 
demands a proactive attitude from the owner of the final 
assembly plants. 

7. Appendix: Summary of Notations 

Constants 
θ, θi, θj 
α 
 
β 
Di, Dj 
Fi 
Pj 
n 
tα 
κ 
G 
H 

Replenishment cycle 
Target stock-out probability (stock-out 
risk) 
Stock-out maximum accepted risk 
“Due date” time of component i, j 
Production time of component i 
Planning horizon of component j 
Daily production 
Standard normal variable value for risk α 
Packaging unit used in transport 
Transport capacity 
 Production cycle time 

Decision variables 
RiLα 
 
qit, qjt 
 
SSiLα 

Order-up-to level for component i, on L days, 
with risk α 
Order for produced component i or supplied j 
at the beginning of day t 
Order-up-to level for a component  
Safety stock for component i 

Random variables 
λi, λj 
L 
pi 
πi, πj 
XiL 
ZiL 
 
YiL 
PSjt 
 
Sjt 
SSiLα 
kj 

Lead time of component i, j 
Number of days of demand to cover 
Assembly probability of component i 
Defective probability of component i, j 
Demand to satisfy of component i on L days 
Components i held to cope with quality 
issues 
Components i available 
Inventory position of component i at the 
beginning of day t 
Observed stock of component j on day t 
Safety stock of component i  
Number of expected orders for component j 



Functions and operators 
Ir(RiLα) 
E(XL) 
IP(RiLα) 

Expected stock-out 
Expected demand 
Expected residual stock 
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