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Abstract—Handling vessels within the agreed time limits at a 
port with an optimal exploitation of its quays plays an important 
role in the improvement of port effectiveness as it reduces the 
stay time of vessels and avoids the payment of contractual 
penalties to shipowners due to the overrun of laytimes. In this 
paper, we propose a mixed zero-one linear model for a new 
problem called the integrated Laycan and Berth Allocation 
Problem with dynamic vessel arrivals in a port with multiple 
continuous quays. The model aims, first, to achieve an optimal 
berth plan that reduces the late departures of chartered vessels 
by maximizing the difference between their despatch money and 
demurrage charges, considering water depth and maximum 
waiting time constraints and the productivity that depends on 
berth positions and, second, to propose laycans for new vessels to 
charter. Only one binary variable is used to determine the 
spatiotemporal allocations of vessels and the spatiotemporal 
constraints of the problem are covered by a disjunctive 
constraint. An illustrative example and several numerical tests 
are provided. 

Keywords—laycan allocation; berth allocation; mixed zero-one 
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I.  INTRODUCTION 

Ports play an important role in integrated supply chains 
requiring maritime transport. This is the case with OCP 
Group, world leader in the phosphate industry. Port 
management performance is related to both the respect of 
contractual clauses and the optimal use of port resources 
(quays, equipment, manpower, etc.). These two aspects are 
linked: the first comes from laycan negotiations between 
shipowners and charterers whose result becomes a constraint 
to the second.  

Laycan is an abbreviation for the "Laydays and Canceling" 
clause in a charterparty (maritime contract between a 
shipowner and a charterer for the hire of a vessel). This clause 
establishes the earliest date, when the vessel is required by the 
charterer, and the latest date for the commencement of the 
charter when the charterers have the option of canceling the 
charter. Once the vessel arrives at the port of loading, the 
charterer should be ready to start loading its cargo in order not 
to exceed the laytime.  

Laytime is the amount of time allowed by the shipowner to 
the charterer for loading and / or unloading the cargo. It equals 

the cargo volume divided by the contractual rate of loading or 
unloading. If the charterer exceeds the laytime, a 
predetermined penalty called "demurrage" is incurred. This 
penalty equals the time exceeded multiplied by the demurrage 
rate. Otherwise, if the whole period of laytime is not needed, a 
refund called "despatch" may be payable by the shipowner to 
the charterer. This refund equals the time advanced multiplied 
by the despatch rate. Despatch is normally paid at 50% of the 
demurrage rate "Despatch half Demurrage", but this depends 
on the terms of the charterparty. The vessel may thus be able 
to leave port early. These chartering terms are shown in Fig. 1. 

 
Fig. 1. Comparison between the contractual and the actual parameters 

The Laycan Allocation Problem (LAP) refers to the 
problem of assigning berthing time windows to vessels within 
a medium-term planning (several weeks), by taking into 
consideration commercial, logistical and production 
constraints like sales forecasts, availability of cargo and 
production planning, due dates and quays availability, hence 
its interaction with the Berth Allocation Problem. 

The Berth Allocation Problem (BAP) refers to the problem 
of assigning berthing positions and times to every vessel 
projected to be served within a short-term planning horizon 
(several days), such that a given objective function is 
optimized. The assignment must respect the constraints of the 
problem (vessels’ drafts and lengths, expected arrival times 
and projected handling times, etc.).  



 

The integrated Laycan and Berth Allocation Problem 
(LBAP) considers the LAP and the BAP together. The 
combined problem aims to find an efficient schedule for 
berthing chartered vessels and new vessels to charter. It has to 
be noted that the freight transport is hardly predictable as 
many disturbances may occur (e.g., vessel delays, bad 
weather, etc.), thereby disabling the scheduled berth plan. 
Therefore, the LBAP should be solved on a rolling  horizon. 
Indeed, each time a change occurs in the inputs of the problem 
(e.g., arrival and handling times of vessels, etc.), the model 
must be run again.  

The paper is organized as follows. A literature review of 
the BAP and the LAP is presented in Section 2. The 
characteristics and the description of the mathematical model 
of the LBAP are presented in Section 3. An illustrative 
example and several numerical tests are provided in Section 4. 
Finally, in Section 5, we draw some conclusions and indicate 
future research.  

II. LITERATURE REVIEW 

The BAP has been widely studied by the scientific 
community. However, bulk terminals have received less 
attention than container terminals in the operational research 
literature. According to Bierwirth and Meisel [1], [2], the BAP 
models can be classified within four attributes: spatial, 
temporal, handling time and performance measure. We can 
add a fifth attribute that concerns the modeling of the BAP 
like the type of spatial and temporal constraints and the 
number and the type of variables used in the model (discrete, 
continuous, binary or a mix of these variables).  

Most of authors solve the BAP using exact methods 
ranging from MILP formulations combined with standard 
solvers to highly sophisticated branching-based algorithms, 
heuristics like Genetic and Evolutionary Algorithms [3], and 
metaheuristics like Tabu Search [4] and Simulated Annealing 
[5]. 

Regarding the LAP, Lorenzoni et al. [6] proposed a tool 
based on a mathematical model of the LAP as a multi-mode 
resource-constrained scheduling problem. The tool determines 
laycans to vessels under the condition that once the vessels 
have arrived at the port, they have to be attended in first come 
first served order. They solved the problem using a heuristic 
procedure based on the Differential Evolution Algorithm. 
However, they only proposed a temporal allocation of port 
resources in general. 

To the best of our knowledge, in the previous studies, the 
LAP and the BAP are solved separately. In this paper, we 
propose a mixed zero-one linear model for solving a new 
problem that combines the LAP and the BAP: the LBAP. 

III. MATHEMATICAL MODEL FOR THE INTEGRATED LAYCAN 

AND BERTH ALLOCATION PROBLEM 

A. Characteristics of the Model 

1) Spatial attribute 
We consider a continuous berth layout (partitioned into a 

set of short length sections) with water depth restrictions (i.e. 

all the sections of a quay can have the same water depth or the 
water depth increases seaward). We also take into 
consideration the technical constraints of vessels that prohibit 
their berthing at some quays or oblige them to berth at a 
specific quay. 

2) Temporal attribute 
We assume dynamic vessel arrivals with a maximum 

waiting time in harbor for each vessel (i.e. maximum berthing 
date of the vessel after its arrival to the port). 

3) Handling time attribute 
Handling times of vessels depend on their berthing 

positions. This variation can be due to the characteristics of 
the available equipment at the occupied sections (quay cranes, 
conveyors for bulk, internal transfer vehicles for containers, 
etc.). If a quay is divided into zones that have equipment with 
different productivities, we will consider that a vessel must 
berth at sections with equal productivities. In this case, the 
berth layout becomes almost hybrid in the sense that more 
than one vessel can berth at the same zone of the quay 
(without overlapping) but a vessel cannot berth at two 
different zones at the same time. This simplifying assumption 
can be subsequently withdrawn. 

The laytime of a vessel is considered as its longest 
handling time in the port. The vessels which are already 
berthed in the port have fixed berthing times and positions and 
residual handling times. 

4) Performance measure attribute 
The objective is to achieve an optimal berth plan that 

reduces the late departures of chartered vessels by maximizing 
the difference between their despatch money and demurrage 
charges, while favoring their berthing as close as possible to 
the port yard. Furthermore, laycans are proposed for the new 
vessels to charter by making them leave the port as early as 
possible and berth as close as possible to the port yard without 
impacting the economic results of the chartered vessels.  

B. Description of the Model  

1) Input data 
We consider a planning horizon divided into T periods 

( 1,...,T)t   (e.g., days) and a port with Q quays ( 1,...,Q)q   
partitioned into a set of short length sections (e.g., 10 m) in 
order to be in the continuous berth layout case. Each quay has 
a length of Sq  sections ( 1,...,S );q qs   by convention, the first 

section is the section that is closest to the port yard.  

A vessel can berth at a section if the water depth is greater 
than its draft. We hence define H water depth and draft 
classes ( 1,..., H);h  by convention, the water depth of sections 

increases as h increases. The water depth of the section qs  is 

J qs

q .  

Because the vessel handling times depend on the vessel 
berthing positions, we also define K productivity classes to 
sections ( 1,...,K);k  by convention, the productivity of 
sections increases as k increases. The productivity of the 
section qs  is L .qs

q   



 

We consider 1V  berthed vessels 1( 1,..., V ),v   2V  

chartered vessels to berth 1 1 2( V 1,..., V V )v     and 3V  new 
vessels to charter (vessels with unfixed laycans) 

1 2( V V 1,..., V),v     where 1 2 3V=V V V .   The berthing 
of a vessel v at a quay q is subject to its technical constraints 
defined by the Boolean parameter Fv

q  (1 if vessel v can berth 

at quay q, 0 otherwise). Each vessel is characterized by an 
estimated time of arrival Av  (expressed as a number of 

periods), a length λv  (expressed as a number of sections) and 

a draft Iv .  

The handling time θv
k  of a vessel v depends on the 

productivity class L qs

qk   of the berthing position of its bow at 

the section qs  (
L

θ sq
q

v ). The 1V  berthed vessels have residual 

handling times, and fixed berthing times and positions. Each 
of the 2V  chartered vessels has a laytime B max (θ )v

v k k , a 

daily despatch rate 1α v , a daily demurrage rate 2α v , and a 

maximum waiting time in harbor av  provided that: 

A a B 1 Tv v v    . The role of this latter parameter is to 
reduce the solution space of berthing times in the planning 
horizon T. Therefore, the length of T does not influence the 
computation time of the model and its results. 

Finally, the 3V  vessels with unfixed laycans are handled as 
follows in the model: we assume that they have estimated 
times of arrival equal to availability dates of cargo to be 
exported. The number of days dv  of the laycan of vessel v is 
included in its handling time. They also have fictitious daily 
despatch and demurrage rates equal to one and high maximum 
waiting times in harbor, so as not to affect the economic 
results of the 2V  chartered vessels (despatch and demurrage). 

2) Decision variables 
Each vessel v arriving in the port can wait in the harbor 

before berthing at a time and a position. So we define the 
binary decision variable qs

vtqx  that equals one if the vessel v 

berths at the beginning of the period t and occupies the 
sections of the quay q from qs  to λ 1q vs   , where qs  is the 

section occupied by its bow. The existence of the decision 
variable qs

vtqx  is subject to five conditions: 

 The vessel v should berth after its estimated time of 
arrival Av  within the maximum waiting time in harbor, 

denoted a :v  A A av v vt   . 

 The vessel v should be able to berth at the quay q: 
F 1.v

q   

 The length of the vessel v, denoted λv , should not 

exceed the limits of the quay q: S λ 1q q vs    . 

 The draft of the vessel v, denoted Iv , should not exceed 
the water depth of the section of the berthing position 

of its bow qs : I J qs

v q . If this condition is verified for 

the first section qs , it will be implicitly verified for the 

other sections occupied by the vessel because the water 
depth of sections increases seaward.  

 All sections occupied by the vessel v should have the 
same productivity class. Hence, the productivity 
classes of the two sections that have the berthing 
positions of the vessel’s bow and stern should be equal: 

λ 1L L .q q vs s

q q

   

The logical condition of the existence of the decision 
variable qs

vtqx  is the following one: 
λ 1

A A a 1 S λ 1 I J LF L ,q q q v

v v q q v v

s s sv
v q q q qt s v               V

 

Conditioning the existence of the decision variable qs

vtqx  to 

the respect of the five conditions described above improves 
significantly the computational performance of the model 
since it is no longer necessary to introduce them as constraints 
in the model. 

To determine if a demurrage is incurred or a despatch 
money is to be collected,  we need to know if a vessel is late 
or in advance, regarding its contractual departure time. 
Therefore, we introduce two variables: vu  for the delay of a 

vessel v (i.e., end of handling time > end of laytime) and vw  
for its advance (i.e., end of handling time < end of laytime). 

3) Constraints 
If a vessel v berths at the quay q, it can only have one 

berthing time t and one berthing position of its bow qs . 

Constraint (1) makes it possible that the problem might not 
necessarily lead to a solution where all vessels berth, as a strict 
equality enforces the berthing of all vessels. 

λ 1
a F 1 S λ 1 I J L L

1,  (1)q
s s sv q q q v

v v v q q q q v v q q q

s

vtqt A t A q s s
x v           

     V

 

As mentioned before, the 1V  berthed vessels will have 

residual handling times and fixed berthing times  1t   and 

positions with 11, .qs
vtqx v  V  

If a vessel v berths at the beginning of the period t, at the 
quay q and its bow occupies the section qs  that has a 

productivity class L qs

qk   ( 1)qs

vtqx  , this vessel will occupy 

the sections from q qs s   to λ 1q q vs s     during the periods 

from t t   to 
L

θ 1sq
q

vt t    .  

The constraint expressed in (2) and illustrated in Fig. 2, on 
the next page, is a spatiotemporal disjunctive constraint. It 
guarantees that a section cannot be occupied by more than one 
vessel at the same time by preventing overlap among the 
spatiotemporal rectangles representing vessels, which are 
located between λ 1q q vs s     and q qs s   on the spatial 

dimension, and between 
L

θ 1sq
q

vt t     and t t   on the 

temporal dimension.  



 

 
Fig. 2. Illustration of constraint (2). 

To define the constraints of the variables vu  and vw , we 

use an intermediate variable, v , which gives the expected end 
of handling time for a vessel v proposed by the model:  

λ 1
A A a F 1 S λ 1 I J L L L

( θ 1)q
s s s sv q q q v q

v v v q q q q v v q q q q

s v
v vtqt t q s s

x t  
          

       

The difference between the end of handling proposed by 
the model and the contracted handling deadline for vessel v 
can be written as (A B 1).v v v    The variables vu  and vw  
should verify the constraints (3), (4) and (5) in order to 
determine the delay or the advance of each vessel. 

(A B 1)

0

( (A B 1))

0

(A B 1)

v v v v

v

v v v v

v

v v v v v

u

u

w

w

u w







   



    



               

(3)

(4)

(5)  

4) Objective function 
If (A B 1) 0v v v     , the vessel is overdue, the 

charterer will have to pay demurrage to the shipowner that is 
equal to 2α v vu ; otherwise, the vessel is in advance, the 
shipowner will have to pay despatch money to the charterer 
that is equal to 1α v vw . Indeed, the charterer can benefit from 
a despatch money if the vessel berths as early as possible at 
sections with high productivity. In this case, the vessel’s 
handling time will be lower than its laytime.  

The objective function expressed in (6) at the bottom of 
this page aims to maximize the difference between the 
despatch money and the demurrage of each chartered vessel, 
favors their berthing as close as possible to the port yard and 

proposes laycans for new vessels to charter by making them 
leave the port as early as possible and berth as close as 
possible to the port yard without impacting the economic 
results of the chartered vessels.  

The role of  
2 3

1 2(α α )v v v vv
Max w u

 
   V V

 is to favor 

despatch money over demurrage charges for the 2V  chartered 

vessels and to make the 3V  new vessels to charter leave the 
port as early as possible. The role of Z in 

  λ 1
2 3 A A a F 1 S λ 1 I J L L

Z 1/q
s s sv q q q v

v v v q q q q v v q q q

s
vtq qv t t q s s

Max x s 
            

    V V

is to force berthing of all vessels (if possible), and the role of 
1/ qs  is to make vessels berth as close as possible to the port 

yard in order to select one of the optimal economical 
solutions.  

The laycan of the vessel v has a start date equal to its 
berthing time t proposed by the model and an end date equal 
to ( d 1) :vt     , d 1 .vlaycan t t    The maximum waiting 

time in harbor av  to negotiate with the shipowner should be 
greater than or equal to the waiting time in harbor proposed by 
the model: a A .v vt   Thereafter, we can assign daily 
demurrage and despatch rates not equal to one to each new 
vessel to charter in order to see their impact on the economic 
criteria of the objective function. Therefore, it’s the decision-
maker who will see how much he can accept the deterioration 
of the economic results. 

IV. ILLUSTRATIVE EXAMPLE AND NUMERICAL TESTS 

A. Illustrative Example 

We consider a planning horizon divided into T 50  days 
and a port of Q 3  quays. Each quay has a maximum length 

1(S 40,  2S 50  and 3S 60  sections of 10 meters each). 
We define K 3  productivity classes to sections and H 3  
draft and water depth classes to vessels and sections.  

We consider 1V 2  berthed vessels 1

1, 1, 1( 1qs

v t qx 
     and 

21

1, 1, 3 1),qs

v t qx 
     2V 16  vessels to berth and 3V 2  vessels 

with unfixed laycans. The daily despatch rates are half the 
daily demurrage rates 1v 2(α α / 2)v  and the constant 
Z  10 000. The detailed characteristics of sections and 
vessels are shown in Table I and Table II on the  next page. 

In this example, the LBAP model uses 4 826 variables and 
5 750 constraints. It’s computation time with Xpress in a PC 
of these characteristics (Intel® Xeon® CPU E3-1 240 v5 @ 
3.50 GHz - 64 Go RAM) is 1 s.  

 

      

λ 1

λ 1

L

S λ 1 I J L L A a

F 1 θ 1 Aλ 1 1 I J L L

1 2 S λ 1 I J L

1, , , s

α α (Z 1/ )

s s sq q q v
q q q q v v q q q v v q

v vs s sq q q v
q s vqq q v q v q q q

q

q
sq

q q q v v q

s s s t t t s

vt q qv t t ts s s

s

v v v v vtq qs s

x t q

Max w u x s

    

    

            
             

     

   

     

  V

λ 1
2 3 A A a F 1 L

s sv q q v
v v v q q qv t t q

       

  
    
   V V

     

(2)

(6)



 

TABLE I.  CHARACTERISTICS OF SECTIONS 

1 2 3 1 2 3

1 - 10 11 - 25 26 - 40  1 - 13 14 - 27  28 - 40

1 - 15 16 - 30 31 - 50  16 - 35 36 - 50  1 - 15

1 - 20 21 - 40 41 - 60 41 - 60  1 - 20 21 - 40Range of sections of quay q =3

                 Water depth                  Productivity

Class

Range of sections of quay q =1

Range of sections of quay q =2

J qs

q L qs
q

 

TABLE II.  CHARACTERISTICS OF VESSELS 

k =1 k =2 k =3 q =1 q =2 q =3

01 1 0 x 8 1 x x 10 8 7 1 0 0
02 1 0 x 10 1 x x 7 6 5 0 0 1
1 1 4 121 17 1 11 x 11 9 8 1 1 1
2 1 4 35 7 1 10 x 10 8 7 1 1 1
3 2 3 26 14 2 7 x 7 6 5 1 0 1
4 2 4 26 16 3 9 x 9 8 7 1 1 1
5 3 4 131 18 1 9 x 9 8 7 1 1 1
6 3 4 79 15 1 9 x 9 8 7 1 1 1
7 3 4 63 11 1 10 x 10 8 7 1 1 1
8 4 5 84 9 2 13 x 13 11 9 1 1 1
9 6 4 53 13 1 10 x 10 8 7 1 1 1

10 6 4 81 14 1 10 x 10 8 7 1 1 1
11 7 4 55 9 3 9 x 9 8 7 1 1 1
12 8 3 102 12 2 7 x 7 6 5 1 1 1
13 9 4 104 10 3 9 x 9 8 7 0 1 1
14 9 4 134 11 1 9 x 9 8 7 1 1 1
15 10 4 35 10 1 10 x 10 8 7 1 1 1
16 11 4 96 13 3 9 x 9 8 7 1 1 0

001 8 20 1 9 1 11 2 11 9 8 1 1 1
002 12 20 1 18 1 10 4 10 8 7 1 1 1

v Av α2v λv Iv Bvav dv

θv
k Fv

q

 

For the 2V  chartered vessels, the sum of demurrage equals 
442 against a sum of despatch equal to 843.5 and the sum of 
1/ qs  is 5.4599. For the 3V  vessels with unfixed laycans, the 

sum of 1 2α αv v v vw u    is 2  and the sum of 1/ qs  is 

0.09375.  

Fig. 3 shows the disposition of the 1V  berthed vessels, the 

2V  chartered vessels, and the 3V  vessels with unfixed 
laycans, and the detailed results are shown in Table III. 

 

TABLE III.  RESULTS OF THE LBAP 

v Av t Bv
Av +Bv 

.
q s q λv

Demurrage 
vs Despatch

Laycan

01 1 1 x 10 x 1 8 x x
3 2 2 7 6 1 14 14 13 x
7 3 3 10 7 3 28 11 94.5 x

12 8 8 7 6 1 14 12 51 x
15 10 11 10 10 -1 1 10 -35 x

16 11 11 9 7 2 28 13 96 x

2 1 1 10 8 2 36 7 35 x
5 3 3 9 9 0 16 18 0 x
6 3 3 9 7 2 1 15 79 x

10 6 10 10 7 -1 1 14 -81 x
13 9 9 9 8 1 36 10 52 x

002 12 12 10 10 0 16 18 x [12,15]
02 1 1 x 5 x 21 10 x x
1 1 1 11 9 2 1 17 121 x
4 2 2 9 9 0 41 16 0 x
8 4 4 13 9 4 32 9 168 x
9 6 10 10 8 -2 1 13 -106 x

11 7 11 9 9 -4 41 9 -220 x
14 9 9 9 7 2 21 11 134 x

001 8 13 11 8 -2 32 9 x [13,14]

1

2

3

- -θv
kt

θv
k

 

B. Numerical Tests 

Most instances for the BAP published in the literature 
consider just one quay and do not have the same problem 
characteristics mentioned here. Frojan et al. [7], for instance, 
solved the BAP with multiple quays, but they considered fixed 
handling times for vessels and they did not consider water 
depth restrictions. Due to such differences, the comparison 
with the existing literature is difficult and can only be done for 
the simplified settings, which would lack relevance regarding 
this study. In order to evaluate the quality of the LBAP model, 
we have generated a set of instances with different sizes: 

   2 1 3V 20,30,40,50 V 2 V 0,2    3(V 0 BAP)   and 

 Q 1,3,5 . For all the instances, we consider a planning 

horizon T 60  days and quays with different lengths 
discretized in units of 10 meters. 

Fig. 3.    Disposition of vessels at quays 1 to 3. 



 

The data relating to each vessel are drawn randomly from 
uniform distributions as follows:  1,30U for arrival times, 

 7,20U  for lengths,  7,13U  for laytimes,  2, 4U for 

laycan periods,  1,3U  for drafts and  20,150U  for daily 

demurrage rates. The Boolean parameter F 0v
q   for some 

vessels.  The maximum waiting time in harbor is determined 
by applying this criterion: a 0.5 min θ ,v

v k k   rounded up to 
the next integer (inspired by the criterion of the desired 
departure time sets by Bierwirth and Meisel [8]). The 3V  
vessels with unfixed laycans have fictitious despatch and 
demurrage rates equal to one and high maximum waiting 
times in harbor (a 20).v   The handling time of vessels 

decreases by 20% from the productivity class k  to 1k  , 
rounded up to the next integer.  

TABLE IV.  RESULTS OF THE NUMERICAL TESTS 

Q V2 CPUa (s) Gapb (%) Traffic densityc Time (s) Gap (%) Traffic density

20 1.1 0 0.54 2.5 0 0.57

30 9.5 0 0.91 14.3 0 0.94

40 300 2.02 1.15 300 1.72 1.19

50 300 3.18 1.43 300 2.67 1.46

20 0.6 0 0.29 1.2 0 0.30

30 1.7 0 0.49 2.6 0 0.50

40 11 0 0.61 13.1 0 0.63

50 19.9 0 0.76 26.4 0 0.78

20 1.1 0 0.17 2.2 0 0.18

30 2.8 0 0.28 4.5 0 0.29

40 8 0 0.35 8.8 0 0.36

50 26.9 0 0.44 22 0 0.45

V1=2, V3=2 (LBAP)

1

3

5

V1=2, V3=0 (BAP)

 
a. Computation time is limited to 300 s. 

b. Gap ( ) 100 / ,ub lb ub   where ub is the value of the best upper bound obtained by considering all 

the decision variables as continuous, and lb is the value of the objective function corresponding 
to the best integer solution achieved within the time limit. 

c. Traffic density = ( λ B ) / (T S ).v qv qk   This indicator measures the maximum spatiotemporal 

occupations of vessels within the planning horizon and quay spaces (but does not include the 
arrival times of vessels which have a significant impact on the computation time). A traffic 
density higher than one means that the port cannot handle all vessels during the predefined 

planning horizon. 

V. CONCLUSION 

In this paper, we propose a mixed zero-one linear model to 
solve a new problem called the integrated Laycan and Berth 
Allocation Problem. So, we combined the Laycan Allocation 
Problem and the Berth Allocation Problem which is one of the 
most important problems confronted at the quayside of ports. 
We apply the model in a port with multiple quays. Each quay 
has a continuous berth layout. We take into consideration 
quays’ water depths and vessels’ drafts and their technical 
constraints that prohibit the berthing of vessels in some quays 
or oblige them to berth at a specific quay. We also consider 
dynamic arrival times of vessels with a maximum waiting time 
in harbor for each vessel. Handling times of vessels depend on 
their berthing positions and the objective function aims to 
achieve an optimal berth plan that reduces the late departures 
of chartered vessels by maximizing the difference between 
their despatch money and demurrage charges, while favoring 

their berthing as close as possible to the port yard, and to 
propose laycans for the new vessels to charter by making them 
leave the port as early as possible and berth as close as 
possible to the port yard without impacting the economic 
results of the chartered vessels.  

The LBAP model uses one binary variable to determine 
the spatiotemporal allocations of vessels and two continuous 
variables that have integer values to determine if a demurrage 
is incurred or a despatch money is to be collected, and the 
spatiotemporal constraints are covered by a disjunctive 
constraint. The model is applied on a dataset where all the 
constraints are verified and its solving with Xpress is fast. This 
preliminary test enables us to validate the model. Other 
numerical experiences on instances with different sizes were 
done in order to evaluate the performance of the model and 
identify its limits.  

It has to be noted that the optimal solutions proposed by 
the model may be unfeasible because of the unavailability of 
cargo to be exported in vessels (phosphate and its derivatives 
in the case of OCP Group): in practice, there is a strong 
interaction between vessels’ loading and production, unless an 
important decoupling of these problems is done by high stock 
levels, which is an expensive solution. So as a perspective, we 
will develop a decision support system (DSS) to integrate the 
different port problems of allocation and scheduling, all in 
taking into account the constraints of the upstream supply 
chain. This DSS would follow an approach that combines 
optimization and simulation.  
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