
Optimal sequen
ing of mixed models withsequen
e-dependent setups and utility workerson an assembly lineMay 22, 2009Abstra
tThis paper presents an integer programming formulation for the sequen
-ing problem in mixed-model assembly lines where the number of temporarilyhired utility workers and the number of sequen
e-dependent setups are to beoptimized simultaneously through a 
ost fun
tion. The resultant model o�ersan operational way to implement the utility work needed to avoid line stop-pages, unlike previous papers addressing the goal of smoothing the workload.The present resear
h has an immediate appli
ation to the automotive industry,namely to the 
ar-sequen
ing problem. Simulation results show that the pro-posed formulation leads to the optimum in a reasonable time for instan
es upto 15 items and to satisfa
tory feasible solutions for some of the larger problemswe 
onsidered within a moderate time limit.Keywords: Mixed-model assembly lines; Sequen
ing; Spa
ing 
onstraints;Sequen
e-dependent setups; Utility workers; E
onomi
 evaluation.1 Introdu
tionPast resear
h on the sequen
ing problem in a mixed-model assembly line has pri-marily fo
used on two goals. Prior to the 1980's, the main goal was (1): to smooththe workload at ea
h workstation through the line. This goal seeks to redu
e linestoppages or ine�
ien
ies like work 
ongestion or utility work (see Mitsumori, 1969or Xiaobo and Ohno, 1997 for optimal models and for heuristi
s, see Thomopoulos,1967; Ma
askill, 1973; Sumi
hrast et al., 1992; Smith et al., 1996 and Gottlieb et al.,2003).The emerging JIT 
on
ept by the mid 1980's has raised a se
ond goal that 
onsistsin keeping a 
onstant rate of part usage to avoid large inventories. Goal (2) may bea
hieved by: (2a) syn
hronizing the produ
tion of ea
h model with its demand and(2b) levelling the usage of ea
h part at ea
h level of the manufa
turing pro
ess. Ea
hgoal (2a) and (2b) is usually expressed as an obje
tive of minimization of the variation(squared deviations) of the a
tual produ
tion/usage from the desired amount. Goals(2a) and (2b) are stri
tly equivalent when all produ
ts require the same number andmix of parts (see Miltenburg, 1989). Under this assumption, Goal (2) is optimallyaddressed in Miltenburg et al., 1990 and heuristi
ally solved in Miltenburg, 1989;1



Ding and Cheng, 1993 and Korkmazel and Meral, 2001. Without this hypothesis,Goal (2a) is optimally solved by Kubiak and Sethi, 1991 and by Bautista et al., 2000;heuristi
 methods to handle Goal (2b) may be found in Bautista et al., 1996; Leu etal., 1996 and Monden, 1998.Goals (1) and (2) are simultaneously addressed in optimal formulations by Kork-mazel and Meral, 2001 and by Drexl and Kimms, 2001 who also provide a heuristi
solution approa
h to the problem by using 
olumn-generation te
hniques to solve the
orresponding LP-relaxation. Goals (1) and (2) are heuristi
ally 
onsidered throughbi-
riteria approa
hes by Choi and Shin, 1997; Tamura et al., 1999 and by Korkmazeland Meral, 2001.The additional obje
tive of minimizing the set-up 
ost, namely Goal (3), is rarelyexamined, possibly be
ause it 
on�i
ts with both previous goals: a sequen
e thatsmooths the workload neither ensures a 
onstant rate of part usage nor a minimumnumber of model swit
hes (see Burns and Daganzo, 1997 for a dis
ussion). Aheuristi
 approa
h handling both Goals (2) and (3) is developed by Mansouri, 2005.Multi-obje
tive models in
luding the three goals are quite s
ar
e (Hyun et al., 1998).The present paper 
onsiders Goals (1) and (3) in an optimal formulation of theproblem where the obje
tive fun
tion is a 
ost fun
tion asso
iated with hiring tempo-rary/utility workers to avoid line stoppages and with model swit
hes in the sequen
e.The resear
h presented here di�ers from earlier studies in the sequen
ing area in sev-eral ways. First, as an e
onomi
 
ost fun
tion is asso
iated with the goals, the
hallenging task of assigning weights to the di�erent obje
tives�whose measuringunits are not identi
al�is avoided (see Tamura et al., 1999 or Murata et al., 1996 fora dis
ussion on methods to set weights to multi-obje
tive fun
tions). Se
ond, papersthat address the goal of smoothing the workload often express it as an obje
tive ofminimization of the total utility work (see for instan
e Hyun et al., 1998). This latterobje
tive 
onsists in minimizing the number of hours that additional workers shouldhandle to avoid line stoppages so no indi
ation on when and how many workers musttemporarily be hired is provided. By 
ontrast, our formulation leads to assigningutility workers to stations so as to pro
ess some items in the sequen
e. Spa
ing
onstraints are utilized here to a

ount for workstations 
apa
ity limitations, like infew papers (Smith et al., 1996; Choi and Shin, 1997; Drexl and Kimms, 2001; Got-tlieb et al., 2003) although they are more intuitive and operational than pro
essingtime-based rules.Our work has a dire
t appli
ation to the 
ar sequen
ing problem that 
onsistsin �nding a sequen
e of vehi
les that minimizes the set-up 
osts while satisfying
apa
ity 
ontraints along the assembly line. The set-up 
osts of swit
hing from onemodel to another involve the 
ost of tuning up the ma
hines and �possibly� the
ost of 
leaning sprayguns if the 
olour is 
hanged. As solvent pur
hase 
onstitutes amajor expense for automotive body shops, there is a strong in
entive to group same-
oloured vehi
les to minimize the number of purges. In our experimental study,we 
onsider this type of appli
ation to generate instan
es on whi
h we apply theproposed formulation that is solved using the 
ommer
ial software MIP solver ILOG-Cplex 9.0. Considering the option of hiring utility workers in su
h a 
ontext 
reatesan interesting trade-o� as utility workers allow for violations of spa
ing 
onstraints2



whi
h result in more 
olour grouping possibilities.The next se
tion provides a general des
ription of the sequen
ing problem aswell as the usual 
onstraints relative to the demand satisfa
tion and the 
apa
itylimitations. Se
tion 3 presents the integer programming formulation designed toa
hieve Goals (1) and (3). Se
tion 4 summarizes the optimization problem and theassumptions we made. The se
tion also in
ludes a useful table of notations the readermay refer to. In Se
tion 5 we des
ribe the experimental framework and we 
ommentthe simulation results. We 
on
lude in Se
tion 6.2 Problem statementThis se
tion is dedi
ated to a general des
ription of the sequen
ing problem. Con-straints relative to demand satisfa
tion and 
apa
ity limitations are then provided.The notations we will use throughout are summarized in Tables 8 and 9 (see Se
tion4).2.1 General des
riptionIn the mixed-model assembly line, some models of items have to be assembled overa horizon T (usually a day) for whi
h a total demand of N items must be satis�ed.The 
y
le time θ is de�ned as θ = ⌊T/N⌋ whi
h means that items are laun
hed in�xed θ time intervals to the assembly line.The line is partitioned into K stations of three types. Subset KC groups thestations with a �xed 
apa
ity and subset KF is 
omposed of �exible stations whose
apa
ity 
an be extended with utility workers temporarily hired. Stations that nei-ther belongs to KC nor KF are those for whi
h pro
essing times never ex
eed the
y
le time. Operations on su
h stations involve doing exa
tly the same thing to allitems (installing safety belts on all vehi
les is an example).A model or variant results from a 
ombination of options. Ea
h option maybe fully pro
essed on a single station or may undergo several operations on di�erentworkstations to be 
ompleted. In the following, we will 
onsider ea
h item separatelyby letting yi,h be a binary variable that takes a value of 1 if item i is in position h inthe sequen
e, and 0 otherwise. Our in
entive is to allow any 
ombination of optionsfor the 
ustomer so the spa
e of 
hoi
es is not limited to a predetermined number ofvariants.Solving the sequen
ing problem involves �nding an arrangement of the items inthe sequen
e, say a 0−1 matrix Y = {yi,h} of dimension N ×N so as to meet severalobje
tives like minimizing the number of utility workers and the setups, levelling theutilization rate, subje
t to a set of 
onstraints relative to the demand satisfa
tionand 
apa
ity limitations.2.2 Usual 
onstraints: demand satisfa
tion and spa
ing require-mentsWe �rst provide the 
onstraints relative to the demand satisfa
tion. We then give thegeneral form of the spa
ing 
onstraints. We �nally derive analyti
ally the spa
ing3




onstraints in the parti
ular 
ase of stations hosting a single permanent worker.2.2.1 Demand satisfa
tionThe following 
onstraints ensure that the demand is satis�ed over horizon T (ea
hitem is sequen
ed) and that exa
tly one produ
t is assigned to ea
h position in thesequen
e (see for instan
e Drexl and Kimms, 2001)
N
∑

h=1

yi,h = 1, i = 1, . . . , N, (1)
N
∑

i=1

yi,h = 1, h = 1, . . . , N.2.2.2 General form of the spa
ing 
onstraintsSpa
ing 
onstraints are spe
i�ed to avoid line stoppages. They di
tate the spa
ing(i.e. the number of items without option) between two 
onse
utive items with option.The spa
ing 
onstraint νo : ηo stipulates that `there must be at most νo items withoption o in any sequen
e of ηo 
onse
utive items'.A spa
ing 
onstraint for option o is required as soon as its pro
essing time onone station k, denoted by θo,k is su
h that θo,k > λk · θ, where λk is the numberof permanent workers dedi
ated to station k. When the previous inequality holdsfor several stations k, the spa
ing 
onstraint for option o is di
tated by the most
apa
itated station ko pro
essing this option o, with ko ∈ arg maxk∈KC∪KF
{θo,k},and we usually have νo = λko

and ηo = νo/do, where do is the average rate ofdemand for option o.Consider for instan
e one option o = 1 and 3 stations k = 1, 2, 3. The 
y
letime is θ = 60 se
. The number of permanent workers on ea
h station is given by
λ1 = 2; λ2 = 4; λ3 = 3. We assume the demand rate for option 1 equal to 20%.Table 1 provides for ea
h station k the pro
essing time θ1,k and the value of λk · θ.Station k Pro
ess. time θ1,k λk · θ Spa
ing 
onstraint ν1 : η1

1 127 120
2 200 240
3 190 180 3 : 15Table 1: Spa
ing 
onstraints for an option o - illustrationTwo stations k = 1 and k = 3 are su
h that θ1,k > λk · θ, indeed for k = 1 wehave 127 > 120 and for k = 2,we have 190 > 180. Among these two stations, station

k1 = 3 is the station for whi
h θ1,k is maximum. With λ3 = 3 we have ν1 = 3. Sin
e
d1 = 1/5 then η1 = 15. For option 1, the most 
apa
itated station is station 3 andthe spa
ing 
onstraint is ν1 : η1 = 3 : 15 meaning that there must be at most 3 itemswith option 1 in any sequen
e of 15 items.When a station k provides the tightest spa
ing 
onstraint for more than oneoption, these options are grouped in a subset and the tightest of the tightest spa
ing4




onstraints applies for any option in this subset. This reasoning substantiates the
ommon assumption that ea
h option is fully pro
essed on a single station onlydedi
ated to the installation of this option. Thus, in the following, we will make nodi�eren
e between option o and the station k on whi
h the option is treated and wewill keep the notation k to designate the option pro
essed on station k.For instan
e, following the previous example, if a se
ond option o = 2 is also su
hthat station 3 is the most 
apa
itated station with a spa
ing 
onstraint ν2 : η2 = 3 : 4,we thus will 
onsider option 1 or 2 as a single `arti�
ial' option o pro
essed on station
k = 3 with a spa
ing 
onstraint of νo : ηo = 3 : 15 (sin
e this is tighter than
ν2 : η2 = 3 : 4).Letting δi,k be a parameter that takes a value of 1 if option k is required by item
i and 0 otherwise, the spa
ing 
onstraint is written as

h
∑

l=h−ηk+1

N
∑

i=1

δi,k · yi,l ≤ νk, h = 1, . . . , N ; k ∈ KC ∪ KF . (2)The spa
ing 
onstraint (2) applies for any �exible station as long as no utility workeroperates on this station. This 
onstraint 
an also iteratively be de�ned as
mk,h = mk,h−1 +

∑N
i=1 δi,k · yi,h −

∑N
i=1 δi,k · yi,h−ηk

≤ νk,
h = 1, . . . , N ; k ∈ KC ∪ KF ,

(3)where mk,h is the total number of items with option re
orded in the set of positions(or window) {h − ηk + 1, . . . , h} . For the sake of 
larity, we will use expression (3)when we adapt the spa
ing 
onstraint to the 
ase of �exible stations hosting utilityworkers (see paragraph 3.1.1, p. 8).As an illustration, 
onsider N = 6 items to be produ
ed during horizon T .Four models are produ
ed: A,B,C,D and models B and D require option k = 1.The spa
ing 
onstraint is ν1 : η1 = 1 : 2. Table 2 provides a sequen
e of models,where h = −1, 0 are negative indi
es 
hosen for the previous horizon T − 1. Indi
es
h = 1, ..., 6 represents items'position during horizon T. For ea
h position h, thevalue of ∑N

i=1 δi,k · yi,h is simply equal to 1 if item in position h requires option k(with k = 1 in our example) and zero otherwise. Constraint (2) 
onsists in 
ountingthe number of options k in any window of ηk items and 
he
king if this numberis inferior to νk. In 
onstraint (3), the number of items with option in the window
{h − ηk + 1, . . . , h} equals the number of items with option in the previous windowto whi
h we add the last element of the new window and from whi
h we subtra
tthe �rst element of the former window, as windows roll. Considering h = 1, we haveitem D in the window {0, 1} thus m1,1 = 1. For h = 2, we 
onsider window {1, 2},we add ∑N

i=1 δi,k · yi,2 = 1 (last element of the new window) to m1,1 and sustra
t
∑N

i=1 δi,k · yi,0 = 0 (�rst element of the former window) to obtain m1,2 = 2. Note thespa
ing 
onstraint is not satis�ed.
5



Horizon T − 1 T

h ... −1 0 1 2 3 4 5 6Item D C D B A B D C
∑N

i=1 δi,k · yi,h 1 0 1 1 0 1 1 0Table 2: Che
king the spa
ing 
onstraints2.2.3 Deriving the spa
ing 
onstraint for stations with a single dedi
atedworkerFor the stations designed to host a single permanent worker (λk = 1), spa
ing 
on-straints 
an be derived from 
apa
ity limitations de�ned in terms of operation time.We note θi,k the pro
essing time of item i on station k. The operation time of the
hth item on station k is ∑N

i=1 θi,k · yi,h. We 
an reasonably assume that there areonly two possible values for the pro
essing time on station k: θmax
k and θmin

k whi
hrespe
tively designates the operation time when option k is installed on any item iand when it is not, with θmin
k < θ < θmax

k . Th e pro
essing time 
an therefore bewritten as ∑N
i=1 θi,k · yi,h = θmax

k

∑N
i=1 δi,k · yi,h + θmin

k

∑N
i=1(1 − δi,k) · yi,h, re
alling

δi,k = 1 if item i has option k and zero otherwise. Utilizing 
onstraint (1), we have
∑N

i=1 θi,k · yi,h = (θmax
k − θmin

k )
∑N

i=1 δi,k · yi,h + θmin
k . Thus, if item i has option k,its pro
essing time on station k equals θmax

k ; it equals θmin
k otherwise.Let Rmax

k be the di�eren
e between the total time dedi
ated to operations per-formed on station k and θ. This represents the extra time that 
an be spent onstation k, 
ompared to the average θ. To pro
ess one item with option on station k,this extra time Rmax
k must be su
h that Rmax

k ≥ θmax
k − θ. The ex
ess working time
ompared to the 
y
le time, Rk,h, after 
ompletion on station k of operations on the

hth item is given by
Rk,h = max

{

Rk,h−1 + (θmax
k − θmin

k )

N
∑

i=1

δi,k · yi,h + θmin
k − θ, 0

}

. (4)The 
apa
ity of station k is violated by the item in position h as soon as Rk,h >
Rmax

k and Rk,h−1 ≤ Rmax
k , ∀ k ∈ KC ∪ KF |λk = 1 and h = 1, . . . , N.To illustrate, 
onsider a station k hosting a single dedi
ated worker with θmax

k =
80 se
., θmin

k = 50 se
., θ = 60 se
. and Rmax
k , the extra time that 
an be spent onstation k is Rmax

k = 40 se
. As option k 
onsumes an additional time of θmax
k −θ = 20se
. then 2 items with option k may be produ
ed 
onse
utively. To 
at
h up these

40 extra se
onds, it is then ne
esary to produ
e 4 items without option, sin
e theunderuse of su
h items on station k is θ − θmin
k = 10 se
.More formally, let us 
onsider the situation in whi
h option k is required bythe �rst item in the sequen
e (

∑N
i=1 δi,k · yi,1 = 1) and Rk,0 = 0. From (4) we have

Rk,1 = θmax
k −θ. A se
ond item with option may follow if Rk,2 = 2(θmax

k −θ) ≤ Rmax
k .Finally, the maximum number νk of 
onse
utive items with option k is su
h that

(θmax
k − θ)νk ≤ Rmax

k , whi
h gives 6



νk =

⌊

Rmax
k

θmax
k − θ

⌋

. (5)After νk 
onse
utive items with option, we have Rk,νk
= Rmax

k and a number µk ofitems without option must follow before sequen
ing on
e again νk 
onse
utive itemsrequiring the option. This number µk is su
h that (θ−θmin
k )µk ≥ (θmax

k −θ)νk whi
h�nally leads to
µk =

⌈

νk ·
θmax
k − θ

θ − θmin
k

⌉

. (6)The spa
ing 
onstraint (2) or (3) still applies with νk as determined by (5) and
ηk = νk + µk with µk de�ned by (6) for all stations k su
h that λk = 1. It should benoted that this spa
ing 
onstraint is a ne
essary and su�
ient 
ondition not to ex
eedthe 
apa
ity only when νk = 1 or equivalently when Rmax

k < 2 ·(θmax
k −θ). Otherwise,the spa
ing 
onstraint is only a su�
ient 
ondition: a window {h−ηk +1, . . . h} may
ontain more than νk items with the option without violating the 
apa
ity 
onstraintof the station, Rk,l ≤ Rmax

k for all l ∈ {h − ηk + 1, . . . h}, with Rk,l de�ned by (4).Let us 
onsider again the example of a station k hosting a single dedi
ated workerwith θmax
k = 80 se
., θmin

k = 50 se
., θ = 60 se
. and Rmax
k = 40 se
. From (5) and(6), we get νk = 2 and µk = 4 leading to ηk = 6. The spa
ing 
onstraint statesin a stri
t sense that after 2 
onse
utive items with option, 4 items without optionmust be sequen
ed so as to get a zero ex
eeding pro
essing time whi
h allows againfor the sequen
ing of 2 
onse
utive items with option and so on. The su�
ient
ondition not to ex
eed the 
apa
ity limitation is to sequen
e at most 2 vehi
les withoption out of 6 vehi
les. Table 3 displays a sequen
e of items for whi
h the spa
ing
onstraint 
an be 
he
ked for h = 6 and h = 7. For h = 6, 
onstraint (2) gives

∑6
l=1

∑N
i=1 δi,k · yi,l = 2 ≤ 2. For h = 7, we get ∑7

l=2

∑N
i=1 δi,k · yi,l = 2 ≤ 2. Notethe values of Rk,l never ex
eed Rmax

k = 40, meaning that the 
apa
ity limitation isnot violated. However, pla
ing an item with option in position 7 would have led to
Rk,7 = 40 ≤ Rmax

k , with a number of 3 items with option in the window {2, . . . , 7}.This illustrates the fa
t that the spa
ing 
onstraint is a su�
ient 
ondition to meetthe 
apa
ity 
onstraint but it is not a ne
essary 
ondition when νk > 1.Position l 1 2 3 4 5 6 7
∑N

i=1 δi,k · yi,l 0 1 0 0 0 1 0
Rk,l 10 30 20 10 0 20 10Table 3: Spa
ing 
onstraint with no utility worker3 Optimal formulation of the sequen
ing problemThe obje
tive fun
tion 
onsidered here is a 
ost fun
tion involving two elements: the
ost asso
iated with additional utility workers and the setup 
ost. There is a trade-o�7



between these two 
osts as utility workers allow for violations of spa
ing 
onstraintswithout entailing line stoppages, so more grouping possibilities are available, hen
eredu
ing the number of setups.We �rst provide the analyti
al des
ription of the problem of optimizing the num-ber of utility workers to be temporarily hired. We then turn to the formal des
riptionof the problem relative to the minimization of the number of setups in the sequen
e.3.1 Obje
tive and 
onstraints relative to utility workersPast studies have 
onsidered the obje
tive of minimizing total utility work expressedas a global working time and minimized as su
h, without evaluating its e
onomi
 im-pa
t as no wage 
osts are introdu
ed (see for instan
e Hyun et al. 1998). We handlethe obje
tive di�erently: our in
entive is to minimize the number of utility workersrequired to implement sequen
ing de
isions taken for horizon T . The resultant for-mulation gives the optimal assignment of utility workers on stations and items. We�rst provide an adaptation of 
onstraints (3) to the 
ase of �exible stations (fromthe set KF ). We then derive the optimal number of utility workers.3.1.1 Spa
ing 
onstraints for stations with utility workersWe assume that ea
h �exible station hosts a single dedi
ated worker (λk = 1) so thespa
ing 
onstraint νk : ηk is de�ned by using Eq. (5) to determine νk and Eq. (6)to get the value of ηk = νk + µk. Ea
h �exible station k ∈ KF is 
on
eived to host asingle utility worker by 
y
le time.Let wk,h be a binary variable that takes a value of 1 if a utility worker is requiredon station k for the item in position h and 0 otherwise. We assume that workers donot 
ollaborate on the same task: the item in position h is fully pro
essed by theutility worker while the regular worker �nishes the operations on the (h− 1)th item.A utility worker is required on station k to pro
ess the item in position h inorder to avoid a violation of 
apa
ity whi
h o

urs when Rk,h−1 + θmax
k − θ > Rmax

k .The item in position h is ne
essarily an item with option (see Eq. (4)). We assumethe regular worker 
at
hes up on the total ba
klog Rk,h−1 (while the utility workerfully handles the item in position h). This assumption makes possible an adaptationof the spa
ing 
onstraints otherwise a reasoning in terms of ex
ess working timemust be adopted and spa
ing 
onstraints must be abandoned. Formally, we assume
Rk,h−1 ≤ θ (the ex
ess working time 
an not be superior to the `average' time forprodu
ing an item). As a straightforward upper bound for Rk,h−1 equals (θmax

k −θ)νk,we �nally assume (θmax
k −θ)νk ≤ θ. This implies that the presen
e of a utility workeron station k for item in position h leads to a redu
tion of the ex
ess working timeby an amount of (θmax
k − θ)(νk + 1) where (θmax

k − θ)νk is handled by the regularworker and θmax
k − θ is absorbed by the utility worker himself. This is equivalent to`
an
elling' νk +1 items with option in the window {h−ηk +1, . . . , h} sin
e the nextitem in position h+1 may be 
hosen as if there was no item with option in positions

h − ηk + 1 to h.To illustrate the reasoning, 
onsider a station k with θmax
k = 80 se
., θmin

k = 40se
., θ = 60 se
. and Rmax
k = 20, so the spa
ing 
onstraint is νk : ηk = 1 : 2. Let8



us assume a �rst item with option is produ
ed and no ex
ess working time is to be
aught up. The regular worker handles this �rst item and needs to work 20 se
ondsmore than the 
y
le time to 
omplete the item. If a se
ond item with option is to bepro
essed, the 
umulated ex
ess working time would be 40 se
onds, whi
h is twi
ethe extra time that is allowed. A utility worker is therefore ne
esary to handle thisse
ond item, so we have wk,2 = 1. The utility worker fully pro
esses this item, thusabsorbing an extra time of 20 se
. while the regular worker 
an �nish his work on the�rst item, therefore absorbing also an extra time of 20 se
onds. A third item withoption 
an therefore be pro
essed, as the presen
e of the utility worker �nally allowsfor absorbing the equivalent of the extra time needed to pro
ess 2 items with option(one extra time is done by the utility worker himself and the other one by the regularworker). The presen
e of the utility worker for h = 2 (se
ond item) is thus equivalentto 
an
elling νk +1 = 2 items with option in the window {h−ηk +1, . . . , h} = {1, 2}.Thus, to adapt 
onstraint (3), we must de
rease mk,h by (νk + 1) wk,h and repla
e
∑N

i=1 δi,k · yi,h−ηk
with a proper binary variable, namely qk,h−ηk

, that takes intoa

ount the fa
t that a possible utility worker has led to the `
an
ellation' of theoption, if any, on the (h − ηk)
th item. Letting qk,h−ηk

be su
h a binary variable, thespa
ing 
onstraints for �exible stations 
an now be written as
mk,h = mk,h−1 +

∑N
i=1 δi,k · yi,h − qk,h−ηk

− (νk + 1) wk,h ≤ νk,

h = 1, . . . , N ; k ∈ KF ,
(7)where qk,h−ηk

takes a value of 1 if item in position h − ηk has the option and noneof the items in positions {h − ηk, . . . , h − 1} was handled by a utility worker, and 0otherwise. Formally, the variable qk,h−ηk

orresponds to the following de�nition

qk,h−ηk
=

N
∑

i=1

δi,k · yi,h−ηk

h−1
∏

l=h−ηk

(1 − wk,l). (8)This expression is linearized using the three inequalities
qk,h−ηk

≤
∑N

i=1 δi,k · yi,h−ηk
,

qk,h−ηk
≥
∑N

i=1 δi,k · yi,h−ηk
−
∑h−1

l=h−ηk
wk,l,

2qk,h−ηk
≤ 1 +

∑N
i=1 δi,k · yi,h−ηk

−
∑h−1

l=h−ηk
wk,l.

(9)To illustrate, 
onsider the example in Table 4 for a station k ∈ KF and νk =
µk = 1 so the spa
ing 
onstraint is νk : ηk = 1 : 2. Table 4 provides the value of thevariables in
luded in Eq. (7) for a sequen
e of 3 items ea
h requiring the option.For h = 1 
onstraint (3) gives mk,1 =

∑N
i=1 δi,k ·yi,1 −2wk,1, sin
e mk,0 and qk,−3have negative indi
es, they are ignored. Assuming there is no initial 
ondition, weset to zero all variables with negative indi
es in Eq. (7). However, initial 
onditions(i.e. past de
isions) will be taken into a

ount in the experiment so this point willbe dis
ussed further in Se
tion 5. We have mk,1 = 1 ≤ νk = 1 with wk,1 = 0.Note that wk,1 
ould have been equal to 1 without violating the spa
ing 
onstraint.However, the obje
tive is to minimize the 
ost asso
iated with temporary workers so9



Position h 1 2 3
∑N

i=1
δi,k · yi,h 1 1 1

mk,h 1 0 1

wk,h 0 1 0

qk,h−ηk
/ / 0Table 4: Spa
ing 
onstraint for a �exible station k ∈ KF hosting a utility workervariables {wk,h} will always take their minimum value while satisfying the spa
ing
onstraints. For h = 2, we have mk,2 = mk,1 +

∑N
i=1 δi,k · yi,2 − 2wk,2 = 0 with

mk,1 = 1 and wk,1 = 1. A utility worker is required to pro
ess the se
ond itemas the spa
ing 
onstraint is violated sin
e items in position 1 and 2 both requirethe option. For h = 3, we get mk,3 = mk,2 +
∑N

i=1 δi,k · yi,3 − qk,1 − 2wk,3 with
qk,1 =

∑N
i=1 δi,k · yi,1

∏2
l=1(1 − wk,l) as de�ned by Eq. (8). We have qk,1 = 0 sin
ethe �rst item has the option but a utility worker was present for the se
ond item andthis leads to `
an
elling' the option on item 1 and 2. We have mk,3 = 1 ≤ 1 with

wk,3 = 0.3.1.2 Optimal number of utility workersIn this paragraph we �rst provide a formulation of the obje
tive fun
tion relativeto the 
ost of hiring temporary workers for horizon T whi
h is usually a day ofprodu
tion. This obje
tive fun
tion in
ludes variables representing the total numberof utility workers hired per half-days. We then derive suitable 
onstraints to link thesevariables to the binary variables {wk,h} re�e
ting the presen
e (or the absen
e) ofutility workers on some station and item.Let W1(T ) be the number of a
tive temporary workers in the �rst half of horizon
T. Analogously, W2(T ) designates the number of utility workers required to pro
essitems in the se
ond half of horizon T. We �nally de�ne W3(T ) as the number ofutility workers that are needed to implement sequen
ing de
isions made for horizon
T but physi
ally present only in the next horizon T +1. The obje
tive is to minimize

ω · [W1(T ) − W3(T − 1) + W2(T ) + W3(T )] , (10)where ω is the 
ost of hiring a utility worker for one half-day, and the di�eren
e
W1(T ) − W3(T − 1) represents the number of utility workers resulting from hiringde
isions made for T and a
tually present during the �rst half of horizon T. Thee
onomi
 fun
tion (10) therefore refers to hiring de
isions aimed at implementingthe sequen
ing of items for horizon T only. We shall now spe
ify the relationshipsbetween variables {wk,h} and variables W1(T ), W2(T ), W3(T ).Any temporary worker required on station k has a working time of θmax

k on ea
hitem requiring the option. This implies that he is assigned to station k for a numberof 
y
le times equals to βk =
⌈

θmax
k /θ

⌉

. Thus a utility worker that handles on station
k the hth item in the sequen
e be
omes anew available for performing operations onthe (h + βk)

th item, if need be, either on the same station or on any other station,assuming workers moving time between any pair of stations is ignored. Obviously,10



βk ≥ 2 sin
e θmax
k > θ. From the assumption (θmax

k − θ)νk ≤ θ we made in theprevious paragraph, we get θmax
k /θ ≤ 1 + 1/νk with 1 + 1/νk taking a maximumvalue of 2 when νk = 1. We therefore have βk = 2, ∀k. When νk > 1, it shouldbe noted that the utility worker spends less than 2 
y
le times on station k so theremaining time 
an be 
onsidered as a free time for moving from one station toanother.Re
all the horizon is divided into N 
y
le times. During the hth 
y
le time, itemin position h−k+1 is pro
essed on station k. For instan
e, with no initial 
ondition,

N = 6 and KF = {1, 2}, in the �rst 
y
le time, the �rst item in the sequen
e ispro
essed on station 1 and no item is pro
essed on station 2. In the se
ond 
y
letime, the se
ond item is pro
essed on station 1 while item 1 
rosses station 2 et
.As a utility worker stays βk = 2 
y
le times on any station station k ea
h time he isrequired, the sum wk,h−k + wk,h−k+1 gives the number of utility workers operatingon station k in the hth 
y
le time. The sum ∑

k∈KF
(wk,h−k + wk,h−k+1) thereforerepresents the total number of a
tive utility workers on all stations in the hth 
y
le.It follows that the number of utility workers needed in the �rst half of horizon T is

W1(T ) = maxh=1,...,[N/2]

{

∑

k∈KF
(wk,h−k + wk,h−k+1)

}. A similar reasoning holdsfor W2(T ) and W3(T ). The linear version of the 
onstraints asso
iated with W1(T ),
W2(T ), W3(T ) is

∑

k∈KF
(wk,h−k + wk,h−k+1) ≤ W1(T ), h = 1, . . . ,

[

N
2

]

,
∑

k∈KF
(wk,h−k + wk,h−k+1) ≤ W2(T ), h =

[

N
2

]

+ 1, . . . , N,
∑

k∈KF

∑h−k+1
l=h−k
l≤N

wk,l ≤ W3(T ), h = N + 1, . . . , N + K − 1.

(11)Let us note that at the end of horizon T, part of the sequen
e that has beende
ided in T is only pro
essed and 
ompleted in T + 1. The third inequality in (11)re�e
ts the hiring de
isions referred to the sequen
ing of these items although the
orresponding utility workers will only be present at the beginning of horizon T + 1.3.1.3 IllustrationLet us 
onsider a simple example with K = 3 stations, where stations k = 1 and
k = 3 are �exible and k = 2 is neither a �xed-
apa
ity station nor a �exible one. Weassume that N = 6 items are sequen
ed during ea
h horizon T − 1, T and T + 1.Three horizons are examined to 
larify the interdependen
e between past, presentand future de
isions. With two options (k = 1, k = 3), 4 models of items areavailable: item A has no option, item B requires option k = 1 only; option k = 3is ex
lusively installed on item C and item D in
ludes both options. We assume
ν1 = ν3 = 1 and µ1 = 1, µ3 = 2.Table 5 illustrates the satisfa
tion of 
onstraints (7) for stations k = 1 and
k = 3, for ea
h position h where h = −5, . . . , 0 are the positions of items for whi
hsequen
ing de
isions are made during horizon T − 1, de
isions for h = 1, . . . , 6 aremade for horizon T, et
. We indeed adopt the 
onvention that negative positions
h ≤ 0 refer to past sequen
ing de
isions whereas positions h > N are relative tofuture sequen
ing. Table 5 also displays the values of {wk,h} . For instan
e, we have11



w1,2 = 1 meaning that a temporary worker must pro
ess on station 1 the item inthe se
ond position in the sequen
e whi
h is de
ided during horizon T. This item�amodel B�in
ludes option k = 1 just like the previous one (a model D) whi
h wouldhave led to a violation of the spa
ing 
onstraint ν1 : η1 (i. e. 1 : 2) if no worker 
ouldhave temporarily been hired.
PN

i=1
δi,kyi,h mk,h≤νk =1 wk,h qk,h−ηkHor. h Model k=1 k=3 k=1 k=3 k=1 k=3 k=1 k=3

−5 D 1 1 / / 0 0 / /

−4 A 0 0 1 / 0 0 / /

T−1 −3 B 1 0 1 1 0 0 1 /

−2 D 1 1 0 1 1 0 0 1

−1 C 0 1 0 0 0 1 0 0

0 C 0 1 0 1 0 0 0 0

1 D 1 1 1 0 0 1 0 0

2 B 1 0 0 0 1 0 0 0

T 3 A 0 0 0 0 0 0 0 0

4 B 1 0 1 0 0 0 0 0

5 D 1 1 0 1 1 0 0 0

6 C 0 1 0 0 0 1 0 0

7 D 1 1 1 1 0 0 0 0

8 B 1 0 0 1 1 0 0 0

T +1 9 A 0 0 0 1 0 0 0 0

10 D 1 1 1 1 0 0 0 1

11 B 1 0 0 1 1 0 0 0

12 A 0 0 0 1 0 0 0 0Table 5: Spa
ing 
onstraints for two flexible stationsTable 6 shows for ea
h 
y
le time the items positions that are pro
essed on ea
hstation. For instan
e, item in position h = −5 is pro
essed on station k = 1 in the�rst 
y
le time of horizon T − 1. This item leads over station k = 2 in the se
ond
y
le time. It undergoes operations on station k = 3 in the third 
y
le time and is�nally 
ompleted in the fourth 
y
le time, as indi
ated in the penultimate 
olumn ofTable 6. Re
all that a utility worker required on station k to perform operations onthe hth item is busy for 2 
y
le times, ∀k = 1, 3. The a
tivity of every utility workeris represented by a re
tangle in Table 6. As an example, w1,−2 = 1 is symbolizedby a re
tangle around positions −2 and −1 indi
ating that the 
orresponding utilityworker is busy on station 1 in the fourth and �fth 
y
le time of horizon T − 1. Wealso report in ea
h re
tangle the horizon in whi
h the hiring de
ision has been taken.With su
h a table, we 
an visualize the a
tivity of utility workers in the time so thenumber of ne
essary workers 
an easily be derived. The last 
olumn provides thenumber of a
tive workers per 
y
le time. Considering horizon T, one utility workeris a
tive on workstation k = 3 in the �rst 
y
le time and he is engaged for 2 
y
letimes. This means that this worker 
an not be allo
ated to station 1 in the se
ond
y
le time to perform operations on the item in position 2, thus 2 utility workersmust be a
tive in the se
ond 
y
le time. 12



Station Completed Nb of a
tiveHorizon Cy
le k = 1 k = 2 k = 3 item (pos.) u. workers
1 −5 0

2 −4 −5 0

T − 1 3 −3 −4 −5 0

4 −2 (T − 1) −3 −4 −5 1

5 −1 −2 −3 −4 1

6 0 −1 −2 −3 0

1 1 0 −1 (T − 1) −2 1

2 2 (T ) 1 0 −1 2

T 3 3 2 1 (T ) 0 2

4 4 3 2 1 1

5 5 (T ) 4 3 2 1

6 6 5 4 3 1

1 7 6 5 4 0

2 8 (T + 1) 7 6 (T ) 5 2

T + 1 3 9 8 7 6 2

4 10 9 8 7 0

5 11 (T + 1) 10 9 8 1

6 12 11 10 9 1

12 11 10

12 11

12Table 6: Items positions on ea
h station and a
tivity of utility workersApplying 
onstraints (11) to our example yields w1,0 + w1,1 + w3,−2 + w3,−1 ≤
W1(T ) for h = 1, where the value of the sum w1,0+w1,1+w3,−2+w3,−1 
an be read inthe last 
olumn of Table 6 in the row relative to the �rst 
y
le time of horizon T. Weget W1(T ) ≥ 1, W1(T ) ≥ 2, W1(T ) ≥ 2 for h = 1, 2, 3 respe
tively. This leads to anoptimal value W ∗

1 (T ) = 2, assuming the sequen
e of items given for T in Table 5 isan optimal one given the 
ost parameters. As W1(T ) is to be minimized, it takes itsminimum possible value. Similarly we obtain W ∗
2 (T ) = 1. The third inequality in (11)applies for h = 7, 8. We have w1,6 +w3,4 +w3,5 ≤ W3(T ) for h = 7 and w3,5 +w3,6 ≤

W3(T ) for h = 8. Note that W3(T ) is only linked to variables {wk,h} asso
iated withitems positions that do not ex
eed N = 6. We have W ∗
3 (T ) = 1. The optimal numberof utility workers whose e
onomi
 
onsequen
e is attributable to the sequen
ingde
isions made for horizon T equals W ∗

1 (T ) − W ∗
3 (T − 1) + W ∗

2 (T ) + W ∗
3 (T ) = 3.In the �rst half of T , 2 operators are required but one of them has been de
idedin T − 1 so its wage is in
luded in the e
onomi
 fun
tion related to de
isions madefor horizon T − 1. A single operator is required in the se
ond half-day and a utilityworker that will be present only in the next day is a
tually paid in horizon T.

13



3.2 Minimizing sequen
e-dependent setupsMany operations ne
essitate sequen
e-dependent setups. For instan
e, in the auto-motive industry, vehi
les of a same 
olour are grouped in an attempt to minimizethe 
ost of 
leaning sprayguns. We will fo
us here on su
h setup 
osts and we will
onsider a single paint station. The formulation below may easily be generalizedto any number of stations and any type of setup 
osts (see Giard, 2003). A typi
alsetup 
ost involves the 
ost asso
iated with ma
hine tune ups to swit
h from a modelto another, e.g. a two-door vehi
le to a four-door one. Vehi
les of a same 
olour aregrouped in bat
hes but the bat
h size has an upper bound for two reasons. First, af-ter some vehi
les, sprayguns get paint-en
rusted and need a purge. Se
ond, a 
olour
hange is required to avoid eye tiredness responsible for a less e�e
tive paint �awdete
tion. We let L be the maximum number of 
ars in any identi
al-
olour group.The binary variable uh takes a value of 1 if the 
olour of the 
ar in position h isdi�erent from the 
olour of the previous one in the sequen
e (position h − 1) and 0otherwise. The sum of variables uh over the whole sequen
e expresses the number ofpurges. Letting γ be the unit 
ost of 
leaning paint from sprayguns (solvent, labourand station downtime), the obje
tive is to minimize
γ ·

N
∑

h=1

uh. (12)The 
onstraint on the maximum group size is equivalent to enfor
e at least one
olour swit
h between positions h − L + 1 and h, ∀h. This is written as
h
∑

l=h−L+1

uh ≥ 1, h = 1, . . . , N, (13)whi
h indi
ates the number of 
olour 
hanges any subsequen
e of L vehi
les mustbe at least equal to one.We must impose additional 
onstraints on variables uh so they take a valueof 1 ea
h time there is a 
olour swit
h in the sequen
e, and zero otherwise. The
olour index of vehi
le i is denoted by ρi so the 
olour index whi
h is applied tothe vehi
le in position h is ∑N
i=1 ρi · yi,h. Variable uh will take a value of 1 if a
olour 
hange o

urs between position h − 1 and position h, whi
h is translated bya non zero di�eren
e of 
olour indi
es between position h and position h− 1, that is

∑N
i=1 ρi · yi,h −

∑N
i=1 ρi · yi,h−1 6= 0. This 
ondition is ful�lled when the two followinginequalities hold:

∑N
i=1 ρi · yi,h −

∑N
i=1 ρi · yi,h−1 ≤ P · uh, h = 1, . . . , N,

∑N
i=1 ρi · yi,h −

∑N
i=1 ρi · yi,h−1 ≥ −P · uh, h = 1, . . . , N.

(14)To illustrate, 
onsider N = 6 vehi
les and P = 2 
olours (an index value of 1is 
hosen for the blue 
olour and a value of 2 
orresponds to the red hue). Themaximum number of 
ars with same 
olours in a sequen
e is L = 3. In table 7,we give the values of relevant variables for a given sequen
e of vehi
les for whi
h14




olours are indi
ated. For ea
h position h, the value of∑N
i=1 ρi ·yi,h simply gives the
olour index of the vehi
le in position h (this is given in the 4th row of Table 7). Thedi�eren
e∑N

i=1 ρi ·yi,h−
∑N

i=1 ρi ·yi,h−1 between the 
olour indi
es in position h and
h− 1 is non zero when the 
olour has 
hanged between the 
urrent position and theprevious one. This di�eren
e is given for ea
h position h in the 5th row of the table(
olour di�eren
e). During horizon T, this happens in positions h = 1 and h = 3(and also for h = 0 whi
h is the last position in horizon T − 1). Appropriate valuesfor uh are then obtained utilizing 
onstraint (14). For instan
e, in position h = 3, wehave ∑6

i=1 ρi · yi,3 −
∑6

i=1 ρi · yi,2 = −1 and we want u3 su
h that −2u3 ≤ −1 ≤ 2u3whi
h implies u3 = 1. Thus, a 
olour di�eren
e ne
esarily implies the implementationof a 
olour 
hange. The last row of Table 7 
he
ks 
onstraint (13). This 
onstraint isviolated for h = 6 as no 
olour 
hange has been done for the last 3 vehi
les so thereis more than 3 
onse
utive vehi
les with same 
olour. Letting γ = 10 euros be theunit 
ost of a purge, the total 
ost of 
leaning guns during horizon T amounts to 20euros as ∑6
h=1 uh = 2.Horizon T − 1 TPosition h ... −2 −1 0 1 2 3 4 5 6Colour name red red blue red red blue blue blue blueColour index 2 2 1 2 2 1 1 1 1Colour di�eren
e 0 −1 1 0 −1 0 0 0Colour 
hange (uh) 0 1 1 0 1 0 0 0

∑h

l=h−2
uh 2 2 2 1 1 0Table 7: Constraints on 
olour 
hanges - illustration4 Summary: notations, assumptions and the optimiza-tion problemTables 8 and 9 provide the notations we used so far. The optimization problem �nally
onsists in minimizing the sum of the obje
tive fun
tions in (10) and (12) subje
t to
onstraints (1), (3) for all �xed-
apa
ity stations in the set KC , (7) for all �exiblestations in KF , (8), (9), (11), (13), (14). We made the following assumptions.Assumption 1. There are only two possible values for the pro
essing time onstation k, θmax

k and θmin
k where θmax

k = maxi=1...,N {θi,k} (with at least one item irequiring option k) and θmin
k = maxi=1...,N

{

θi,k| θi,k < θ
}

.Thus, installing option k takes always the same pro
essing time whatever theitem type. All items without option k are assumed to have the same pro
essing time
θmin
k on station k although some of them may require a zero time whi
h a
tually leadsto a greater de
rease in the ex
ess working time than the one we 
onsidered. Withoutthis assumption however the logi
 of spa
ing requirements on �exible stations mustbe abandoned in favor of a reasoning in terms of pro
essing times.Assumption 2. For any option o pro
essed on several stations Ko with Ko =
{

k| θo,k > θ
} we asso
iate option o with the most 
apa
itated station k ∈ Ko.15



PARAMETERS
T Sequen
ing horizon, usually a day
N Number of items to be sequen
ed over T

θ = ⌊T/N⌋ Cy
le time
K Set of all stations in the line
KC Subset of �xed-
apa
ity stations
KF Subset of �exible stations
O ≡ KC ∪ KF Set of options
λk Number of dedi
ated operators on station k

νk : ηk Spa
ing 
onstraint: `at most νk items with option k out of ηk
onse
utive items'
δi,k Boolean taking a value of 1 if item i requires option k and 0 otherwise
θi,k Pro
essing time of item i on station k

θmax

k Pro
essing time on station k of any item requiring the option k

θmin

k Pro
essing time on station k of any item without option k

Rmax

k Maximum ex
ess working time allowed on station k

µk Number of items without option to be sequen
ed after νk 
onse
utiveitems with option k to avoid ex
eeding 
apa
ity, when λk = 1

βk Number of 
y
le times a utility worker spends on station k to pro
essone item with option
ω Cost of hiring a utility worker per half-day
γ Set-up 
ost
L Maximum number of 
onse
utive items with same 
olour
P Number of 
olours
ρi Colour index 
hosen for item i, 1 ≤ ρi ≤ PTable 8: Notations for parametersIt should be noted that when a utility worker is allowed to work on su
h station k,this relaxes the spa
ing 
onstraint so all stations in Ko must be 
onsidered separately.A simplifying assumption 
onsists in 
onsidering that any option is fully pro
essedby a single spe
ialized workstation.Assumption 3. Ea
h �exible station has a single dedi
ated worker and may hosta single utility worker per 
y
le time. Assumption 4. The maximum ex
ess workingtime, (θmax

k − θ)νk, without violating the 
apa
ity of any �exible station k is su
hthat (θmax
k − θ)νk ≤ θ so the regular worker fully absorbs the ex
ess working timewhile the utility worker solely pro
esses an item with option.

16



VARIABLES
yi,h ∈ {0, 1} Binary that takes a value of 1 if item i is pla
ed in position h

mk,h ∈ N Number of items with option k in the window {h− ηk + 1, . . . , h}

wk,h ∈ {0, 1} Binary that takes a value of 1 if a utility worker is required on station
k to pro
ess the hth item

qk,h ∈ {0, 1} Binary that takes a value of 1 if item in position h has the option andnone of the items in positions {h − ηk, . . . , h − 1} is handled by autility worker
W1(T ) ∈ N Number of a
tive temporary workers in the �rst half of horizon T

W2(T ) ∈ N Number of utility workers required to pro
ess items in the se
ond halfof horizon T

W3(T ) ∈ N Number of utility workers needed to implement sequen
ing de
isionsmade for T but physi
ally present only in the next horizon T + 1

uh ∈ {0, 1} Binary that takes a value of 1 if a set-up is in
urred to pro
ess the
hth item (e.g. a 
olour swith)Table 9: Notations5 Computational studyWe �rst dis
uss the initial 
onditions. We then des
ribe the experimental design.We �nally turn to the 
omment of the results.5.1 Initial 
onditionsIn pra
ti
e, sequen
ing de
isions are made on a rolling horizon basis: the sequen
eimplemented within horizon T −1 provides initial 
onditions to the sequen
ing prob-lem for horizon T. In the experiment, we have generated a random sequen
ing ofitems for horizon T − 1 and we have optimized the sequen
ing for horizon T. In therandom sequen
ing, we have in
orporated some rules in order to obtain a feasiblesequen
e that satis�es the spa
ing 
onstraints for �xed-
apa
ity stations only. Wethen have 
omputed the values of all variables 
orresponding to this feasible ran-dom sequen
e, some of them being in
luded as initial parameters in the optimizationprogram relative to horizon T.5.2 Experimental designThe number N of vehi
les to be sequen
ed during the horizon took the values in theset {10, 15, 20, 25, 30, 35}. For N = 10 and 15, the number P of 
olours was set to 3with a maximum of L = 3 
onse
utive 
ars with same 
olour. For N = 20 and 25, we
hose P = 4 and L = 5. Finally, for N = 30 and 35, we set P = 5 and L = 6. Notethat for ea
h value of N, parameters P and L are su
h that a reasonable number ofsubset of 
onse
utive identi
al-
olour of vehi
les may be obtained.The number KC of �xed-
apa
ity stations was set to 1 and 2 and the number17



KF of �exible stations took the values of 2 and 4, i.e. (KC ,KF ) = {(1, 2), (2, 4)}leading to a total number of either 3 or 6 options. We set νk = 1 for all k, so thespa
ing 
onstraint for �exible stations is a ne
essary and su�
ient 
ondition not toex
eed the 
apa
ity. We let ηk  U{2, 3, 4, 5} for all k so we get reasonable valuesfor the spa
ing 
onstraints with respe
t to the number of items to be sequen
ed.Letting Nk be the number of vehi
les with option k, we set Nk = 0.75Nνk/ηk forall k ∈ KC and Nk = 2Nνk/ηk for all k ∈ KF . This makes easier the sear
h for afeasible sequen
e satisfying the spa
ing 
onstraints for �xed-
apa
ity stations whilemaking ne
essary the appointment of some utility workers.Ea
h item is uniformly pi
ked at random to be endowed with option k untilthe number of items with option k rea
hes the value of Nk. The 
olours of 
ars areidenti
ally independently uniformly distributed over the set of possible 
olours. Thusthere is on average a proportion 1/P of 
ars of ea
h 
olour. In a

ordan
e with thefren
h wage levels we set ω = 70 euros. In the fren
h automotive industry, the 
ostof 
leaning the sprayguns approximates 10 euros so we set γ = 10 throughout.For ea
h problem de�ned in terms of values for N and for the pair (KC ,KF ),we made 3 repli
ations and we obtained 30 instan
es sin
e we only 
onsidered
(KC ,KF ) = (1, 2) for N ≥ 30. In the optimization programs, the spa
ing 
onstraintsfor �exible stations were �nally written as

h
∑

l=1

(

N
∑

i=1

δi,k · yi,l − (1 + νk) · wk,l

)

−

h−ηk
∑

l=1

qk,l, h = 1, . . . , N ; k ∈ KF , (15)instead of using (7) whi
h would lead to a higher number of variables with theintrodu
tion of the `intermediary' variables {mk,h}. Analogously, we used the spa
ing
onstraints for 
apa
itated stations as given by (2).5.3 ResultsTable 10 reports the results for the small instan
es (up to 15 vehi
les) for whi
hwe get an optimal solution in a reasonable time through the use of the 
ommer
ialsoftware MIP solver ILOG-Cplex 9.0. The �rst three 
olumns give the values of N ,
KC and KF whi
h de�ne a type of instan
e. The next two 
olumns provide thenumber of variables and of 
onstraints. For ea
h type of problem and ea
h of thethree repli
ations, we report the quality of the �rst feasible solution measured as therelative deviation (gap) to the optimal value. The penultimate 
olumn displays theexe
ution time to rea
h the �rst feasible solution whereas the last 
olumn exhibitsthe time to obtain the optimum. Computing times are expressed in CPU se
ondsand refer to a Bi-Xeon 3.4 GHz with 4Go of main memory.Ex
ept for one of the largest problems, it takes less than 2 se
. to get a �rstinteger (feasible) solution. The quality of these �rst feasible solutions is rather het-erogeneous, with a deviation to the optimal value ranging from about 15% to 75%with no obvious relationship between the deviation and the problem size. The exe-
ution time to rea
h the optimum seems to strongly depend on the stru
ture of ea
hproblem. However, a relationship between the time and the problem size exists as18



N KC KF Var. Const. Gap (%) Time Time, Opt.
10 1 2 151 166 34.38 0.01 0.6732.26 0.01 0.2772.73 0.03 0.6510 2 4 189 273 19.15 0.98 14.3317.02 1.99 79.9935.90 1.26 240.6515 1 2 301 251 54.55 0.04 3.8375.00 1.41 648.9857.58 0.03 0.2315 2 4 359 413 18.03 0.24 66.1746.00 15.87 1026.3814.52 0.12 47.19Table 10: Feasible and optimal solution to small instan
esthe largest time is asso
iated with the biggest problem and the smallest instan
esare also the fastest problems to be solved to optimality.Table 11 displays the results for larger instan
es (up to 35 vehi
les) for whi
hCplex was not able to �nd the optimal solution within the time limit of 7200 CPUse
onds. Like in the previous table, the �rst �ve 
olumns des
ribe the instan
es.The next two 
olumns report the quality of the �rst feasible solution and the timerequired by Cplex to rea
h it. The quality is measured by the relative gap betweenthe �rst feasible solution and the best bound. The penultimate 
olumn displays thegap between the best integer solution delivered by Cplex after 7200 se
. and the bestbound. The last 
olumn provides the improvement of the obje
tive value after 7200se
. 
ompared to the �rst feasible solution (for instan
e, the best obje
tive value is23.40% lower than the �rst feasible solution to the �rst problem).For instan
es up to 20 vehi
les Cplex delivers solutions of good quality withinthe 7200-se
ond time limit. For 13 
ases out of 18, Cplex is able to provide a �rstfeasible solution in less than 3 min. Even if the solution quality after 7200 se
.rapidly degrades as larger instan
es are 
onsidered, the solution to 5 instan
es over18 exhibits a gap below 5%. In all 
ases, the �rst feasible solution is signi�
antly im-proved during subsequent iterations with a de
rease in the obje
tive value of 47.75%on average.6 Con
lusionIn this paper we have developed an optimal formulation for the sequen
ing problemwhere simultaneous minimization of the number of utility workers and setups isdesired. The resultant optimization model is more realisti
 than those of earlierpapers dealing with su
h goals sin
e it provides an operational way to implement theutility work needed to avoid line stoppages. Although the proposed approa
h here
an hardly deal with real-size problems, it may lay down the basis for developingheuristi
 methods. 19



First feas. sol. After 7200 se
.
N KC KF Var. Const. Gap (%) Time Gap (%) Imp. (%)20 1 2 501 336 26.09 0.06 2.17 23.4040.63 0.20 3.13 36.3665.63 0.15 3.13 60.6120 2 4 579 553 60.38 468.59 5.00 34.9249.06 4.06 14.46 29.5150.94 14.60 16.67 14.2925 1 2 751 420 275.00 11.09 150.00 50.00291.67 93.34 95.61 95.8366.67 0.63 3.03 61.7625 2 4 849 693 139.39 1703.85 77.67 33.9080.00 424.21 70.00 5.8878.79 23.45 66.67 7.2730 1 2 1051 505 308.33 12.64 158.33 58.06308.33 16.37 108.33 96.00308.33 163.80 108.33 96.0035 1 2 1401 590 225.00 735.13 158.33 25.81140.74 16.55 39.06 58.54361.54 422.38 169.23 71.43Table 11: Feasible and best integer solution to larger instan
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