Optimal sequencing of mixed models with
sequence-dependent setups and utility workers
on an assembly line

May 22, 2009

Abstract

This paper presents an integer programming formulation for the sequenc-
ing problem in mixed-model assembly lines where the number of temporarily
hired utility workers and the number of sequence-dependent setups are to be
optimized simultaneously through a cost function. The resultant model offers
an operational way to implement the utility work needed to avoid line stop-
pages, unlike previous papers addressing the goal of smoothing the workload.
The present research has an immediate application to the automotive industry,
namely to the car-sequencing problem. Simulation results show that the pro-
posed formulation leads to the optimum in a reasonable time for instances up
to 15 items and to satisfactory feasible solutions for some of the larger problems
we considered within a moderate time limit.

Keywords: Mixed-model assembly lines; Sequencing; Spacing constraints;
Sequence-dependent setups; Utility workers; Economic evaluation.

1 Introduction

Past research on the sequencing problem in a mixed-model assembly line has pri-
marily focused on two goals. Prior to the 1980’s, the main goal was (1): to smooth
the workload at each workstation through the line. This goal seeks to reduce line
stoppages or inefficiencies like work congestion or utility work (see Mitsumori, 1969
or Xiaobo and Ohno, 1997 for optimal models and for heuristics, see Thomopoulos,
1967; Macaskill, 1973; Sumichrast et al., 1992; Smith et al., 1996 and Gottlieb et al.,
2003).

The emerging JIT concept by the mid 1980’s has raised a second goal that consists
in keeping a constant rate of part usage to avoid large inventories. Goal (2) may be
achieved by: (2a) synchronizing the production of each model with its demand and
(2b) levelling the usage of each part at each level of the manufacturing process. Each
goal (2a) and (2b) is usually expressed as an objective of minimization of the variation
(squared deviations) of the actual production/usage from the desired amount. Goals
(2a) and (2b) are strictly equivalent when all products require the same number and
mix of parts (see Miltenburg, 1989). Under this assumption, Goal (2) is optimally
addressed in Miltenburg et al., 1990 and heuristically solved in Miltenburg, 1989;



Ding and Cheng, 1993 and Korkmazel and Meral, 2001. Without this hypothesis,
Goal (2a) is optimally solved by Kubiak and Sethi, 1991 and by Bautista et al., 2000;
heuristic methods to handle Goal (2b) may be found in Bautista et al., 1996; Leu et
al.; 1996 and Monden, 1998.

Goals (1) and (2) are simultaneously addressed in optimal formulations by Kork-
mazel and Meral, 2001 and by Drexl and Kimms, 2001 who also provide a heuristic
solution approach to the problem by using column-generation techniques to solve the
corresponding LP-relaxation. Goals (1) and (2) are heuristically considered through
bi-criteria approaches by Choi and Shin, 1997; Tamura et al., 1999 and by Korkmazel
and Meral, 2001.

The additional objective of minimizing the set-up cost, namely Goal (3), is rarely
examined, possibly because it conflicts with both previous goals: a sequence that
smooths the workload neither ensures a constant rate of part usage nor a minimum
number of model switches (see Burns and Daganzo, 1997 for a discussion). A
heuristic approach handling both Goals (2) and (3) is developed by Mansouri, 2005.
Multi-objective models including the three goals are quite scarce (Hyun et al., 1998).

The present paper considers Goals (1) and (3) in an optimal formulation of the
problem where the objective function is a cost function associated with hiring tempo-
rary /utility workers to avoid line stoppages and with model switches in the sequence.
The research presented here differs from earlier studies in the sequencing area in sev-
eral ways. First, as an economic cost function is associated with the goals, the
challenging task of assigning weights to the different objectives—whose measuring
units are not identical is avoided (see Tamura et al., 1999 or Murata et al., 1996 for
a discussion on methods to set weights to multi-objective functions). Second, papers
that address the goal of smoothing the workload often express it as an objective of
minimization of the total utility work (see for instance Hyun et al., 1998). This latter
objective consists in minimizing the number of hours that additional workers should
handle to avoid line stoppages so no indication on when and how many workers must
temporarily be hired is provided. By contrast, our formulation leads to assigning
utility workers to stations so as to process some items in the sequence. Spacing
constraints are utilized here to account for workstations capacity limitations, like in
few papers (Smith et al., 1996; Choi and Shin, 1997; Drexl and Kimms, 2001; Got-
tlieb et al., 2003) although they are more intuitive and operational than processing
time-based rules.

Our work has a direct application to the car sequencing problem that consists
in finding a sequence of vehicles that minimizes the set-up costs while satisfying
capacity contraints along the assembly line. The set-up costs of switching from one
model to another involve the cost of tuning up the machines and  possibly  the
cost of cleaning sprayguns if the colour is changed. As solvent purchase constitutes a
major expense for automotive body shops, there is a strong incentive to group same-
coloured vehicles to minimize the number of purges. In our experimental study,
we consider this type of application to generate instances on which we apply the
proposed formulation that is solved using the commercial software MIP solver ILOG-
Cplex 9.0. Considering the option of hiring utility workers in such a context creates
an interesting trade-off as utility workers allow for violations of spacing constraints



which result in more colour grouping possibilities.

The next section provides a general description of the sequencing problem as
well as the usual constraints relative to the demand satisfaction and the capacity
limitations. Section 3 presents the integer programming formulation designed to
achieve Goals (1) and (3). Section 4 summarizes the optimization problem and the
assumptions we made. The section also includes a useful table of notations the reader
may refer to. In Section 5 we describe the experimental framework and we comment
the simulation results. We conclude in Section 6.

2 Problem statement

This section is dedicated to a general description of the sequencing problem. Con-
straints relative to demand satisfaction and capacity limitations are then provided.
The notations we will use throughout are summarized in Tables 8 and 9 (see Section
4).

2.1 General description

In the mixed-model assembly line, some models of items have to be assembled over
a horizon T' (usually a day) for which a total demand of N items must be satisfied.
The cycle time @ is defined as = |T/N| which means that items are launched in
fixed  time intervals to the assembly line.

The line is partitioned into K stations of three types. Subset K¢ groups the
stations with a fixed capacity and subset K is composed of flexible stations whose
capacity can be extended with utility workers temporarily hired. Stations that nei-
ther belongs to K¢ nor K are those for which processing times never exceed the
cycle time. Operations on such stations involve doing exactly the same thing to all
items (installing safety belts on all vehicles is an example).

A model or variant results from a combination of options. KEach option may
be fully processed on a single station or may undergo several operations on different
workstations to be completed. In the following, we will consider each item separately
by letting y; , be a binary variable that takes a value of 1 if item i is in position A in
the sequence, and 0 otherwise. Our incentive is to allow any combination of options
for the customer so the space of choices is not limited to a predetermined number of
variants.

Solving the sequencing problem involves finding an arrangement of the items in
the sequence, say a 0—1 matrix Y = {y; ,} of dimension N x N so as to meet several
objectives like minimizing the number of utility workers and the setups, levelling the
utilization rate, subject to a set of constraints relative to the demand satisfaction
and capacity limitations.

2.2 Usual constraints: demand satisfaction and spacing require-
ments

We first provide the constraints relative to the demand satisfaction. We then give the
general form of the spacing constraints. We finally derive analytically the spacing



constraints in the particular case of stations hosting a single permanent worker.

2.2.1 Demand satisfaction

The following constraints ensure that the demand is satisfied over horizon T' (each
item is sequenced) and that exactly one product is assigned to each position in the
sequence (see for instance Drex]l and Kimms, 2001)

N

Syin = 1,i=1,....N, (1)
h=1

N

 yin = 1L, h=1,...,N

=1

2.2.2 General form of the spacing constraints

Spacing constraints are specified to avoid line stoppages. They dictate the spacing
(i.e. the number of items without option) between two consecutive items with option.
The spacing constraint v, : n, stipulates that ‘there must be at most v, items with
option o in any sequence of 7, consecutive items’.

A spacing constraint for option o is required as soon as its processing time on
one station k, denoted by 0, is such that 6,5 > A -0, where \; is the number
of permanent workers dedicated to station k. When the previous inequality holds
for several stations k, the spacing constraint for option o is dictated by the most
capacitated station k, processing this option o, with k, € argmaxpcx urp{0ok}
and we usually have v, = X\;, and 1, = v,/d,, where d, is the average rate of
demand for option o.

Consider for instance one option o = 1 and 3 stations & = 1,2,3. The cycle
time is @ = 60 sec. The number of permanent workers on each station is given by
A = 2; Ay = 4; A\3 = 3. We assume the demand rate for option 1 equal to 20%.

Table 1 provides for each station k the processing time ¢ ; and the value of A\ - 0.

Station £k Process. time 601 Mg -0 Spacing constraint vy : 7

1 127 120
2 200 240
3 190 180 3:15

Table 1: Spacing constraints for an option o - illustration

Two stations k = 1 and k = 3 are such that 61, > A -0, indeed for k = 1 we
have 127 > 120 and for & = 2,we have 190 > 180. Among these two stations, station
k1 = 3 is the station for which 6; ; is maximum. With A3 = 3 we have v = 3. Since
dy = 1/5 then n; = 15. For option 1, the most capacitated station is station 3 and
the spacing constraint is vq : 771 = 3 : 15 meaning that there must be at most 3 items
with option 1 in any sequence of 15 items.

When a station k provides the tightest spacing constraint for more than one
option, these options are grouped in a subset and the tightest of the tightest spacing



constraints applies for any option in this subset. This reasoning substantiates the
common assumption that each option is fully processed on a single station only
dedicated to the installation of this option. Thus, in the following, we will make no
difference between option o and the station k on which the option is treated and we
will keep the notation k to designate the option processed on station k.

For instance, following the previous example, if a second option o = 2 is also such
that station 3 is the most capacitated station with a spacing constraint v5 : ny = 3 : 4,
we thus will consider option 1 or 2 as a single ‘artificial” option o processed on station
k = 3 with a spacing constraint of v, : 7, = 3 : 15 (since this is tighter than
vy :imy =3:4).

Letting d; 1, be a parameter that takes a value of 1 if option k is required by item
1 and 0 otherwise, the spacing constraint is written as

h N
Z Zéi,k‘yi,lﬁl/k,hzla---aNSkGKCUKF- (2)
l=h—1’]k+1 i=1

The spacing constraint (2) applies for any flexible station as long as no utility worker
operates on this station. This constraint can also iteratively be defined as

MEgn = Mg p—1+ Zﬁil Oik " Yih — ZfV:1 Oik " Yish—rmy, < Vk, (3)
h=1,....,N; ke Kc UKp,

where my, 5, is the total number of items with option recorded in the set of positions
(or window) {h —m + 1,...,h}. For the sake of clarity, we will use expression (3)
when we adapt the spacing constraint to the case of flexible stations hosting utility
workers (see paragraph 3.1.1, p. 8).

As an illustration, consider N = 6 items to be produced during horizon T.
Four models are produced: A, B,C,D and models B and D require option k£ = 1.
The spacing constraint is v : y; = 1 : 2. Table 2 provides a sequence of models,
where h = —1,0 are negative indices chosen for the previous horizon T' — 1. Indices
h = 1,...,6 represents items’position during horizon 7. For each position h, the
value of Zfil Oi & - ¥i,n is simply equal to 1 if item in position h requires option k
(with £ =1 in our example) and zero otherwise. Constraint (2) consists in counting
the number of options k£ in any window of nyx items and checking if this number
is inferior to v. In constraint (3), the number of items with option in the window
{h—nr+1,...,h} equals the number of items with option in the previous window
to which we add the last element of the new window and from which we subtract
the first element of the former window, as windows roll. Considering h = 1, we have
item D in the window {0,1} thus m;; = 1. For h = 2, we consider window {1,2},
we add Zfil dik - iz = 1 (last element of the new window) to m;; and sustract
Zfil ik - yi,0 = 0 (first element of the former window) to obtain my 2 = 2. Note the
spacing constraint is not satisfied.



Horizon T-1 T

h -1 0 1 2 3 4 5 6
Item D C D B A B D C
SN Gk Vi 1 0 1 1 0 1 1 0

Table 2: Checking the spacing constraints

2.2.3 Deriving the spacing constraint for stations with a single dedicated
worker

For the stations designed to host a single permanent worker (A = 1), spacing con-
straints can be derived from capacity limitations defined in terms of operation time.
We note 60; j; the processing time of item ¢ on station k. The operation time of the
R item on station k is Zf\il ik - yin- We can reasonably assume that there are
only two possible values for the processing time on station k: 6;*** and Ggﬁn which
respectively designates the operation time when option k is installed on any item ¢
and when it is not, with 9,’?1“ <0< 07%%. Th e processing time can therefore be
written as Zf\il Oi k- Yin = O Zf\il ik - Yip + OO Zﬁl(l — i k) - Yin, recalling
i = 1 if item ¢ has option k and zero otherwise. Utilizing constraint (1), we have
Zf\il Oik - yip = (O — gmin) Zfil Sik - Yin + 0. Thus, if item 4 has option £,
its processing time on station k equals 67%%; it equals 6;'" otherwise.

Let R be the difference between the total time dedicated to operations per-
formed on station k and 6. This represents the extra time that can be spent on
station k, compared to the average f. To process one item with option on station k,
this extra time R;'®* must be such that Rp'®* > 07'% — . The excess working time
compared to the cycle time, Ry, j,, after completion on station k of operations on the
ht" item is given by

N
Ry p = max {Rk,h—l +(OF™ = 0™ " Sin - yin + 0P =0, 0} - (4)
i=1

The capacity of station k is violated by the item in position h as soon as Ry, j >
R and Ry p—1 < R, Vke€ KcUKp|A\y=1and h=1,...,N.

To illustrate, consider a station k hosting a single dedicated worker with 6% =
80 sec., Hznin = 50 sec., § = 60 sec. and R, the extra time that can be spent on
station k is R = 40 sec. As option k consumes an additional time of 0,?‘”‘—5 =20
sec. then 2 items with option k£ may be produced consecutively. To catch up these
40 extra seconds, it is then necesary to produce 4 items without option, since the
underuse of such items on station k is 6 — H?in = 10 sec.

More formally, let us consider the situation in which option k is required by
the first item in the sequence (Zf\il dik - yin =1) and Rpo = 0. From (4) we have
Ry = 0 — 0. A second item with option may follow if Ry o = 2(00 —0) < Ry,
Finally, the maximum number v of consecutive items with option k is such that

(0% — )y, < RP™, which gives



Rmax
fmax — g

After v;, consecutive items with option, we have Ry ,, = R’ and a number p; of
items without option must follow before sequencing once again v consecutive items
requiring the option. This number gy, is such that (6 — 027) g, > (0% — )1y, which
finally leads to

= [,,k ww , (6)

9 — gin

The spacing constraint (2) or (3) still applies with v, as determined by (5) and
Nk = Vg + p with py defined by (6) for all stations k& such that A\ = 1. It should be
noted that this spacing constraint is a necessary and sufficient condition not to exceed
the capacity only when v, = 1 or equivalently when R}** < 2. (9 —6). Otherwise,
the spacing constraint is only a sufficient condition: a window {h—mn,+1,...h} may
contain more than v items with the option without violating the capacity constraint

of the station, Ry ; < R for all [ € {h —n +1,... h}, with Ry defined by (4).

Let us consider again the example of a station k hosting a single dedicated worker
with 919 = 80 sec., #i0 = 50 sec., § = 60 sec. and RI"™ = 40 sec. From (5) and
(6), we get v, = 2 and ui = 4 leading to 1 = 6. The spacing constraint states
in a strict sense that after 2 consecutive items with option, 4 items without option
must be sequenced so as to get a zero exceeding processing time which allows again
for the sequencing of 2 consecutive items with option and so on. The sufficient
condition not to exceed the capacity limitation is to sequence at most 2 vehicles with
option out of 6 vehicles. Table 3 displays a sequence of items for which the spacing
constraint can be checked for h = 6 and h = 7. For h = 6, constraint (2) gives
Zle Zf\il Oik - yig =2 <2 For h =7, we get 217:2 Zfil dik - yig = 2 < 2. Note
the values of Ry ; never exceed R = 40, meaning that the capacity limitation is
not violated. However, placing an item with option in position 7 would have led to
Ry 7 =40 < R, with a number of 3 items with option in the window {2,...,7}.
This illustrates the fact that the spacing constraint is a sufficient condition to meet
the capacity constraint but it is not a necessary condition when v > 1.

Position [ 1 2 3 4 5 6 7
SN Gk-wiy 0 1 0 0 0 1 0
Ry 10 30 20 10 0 20 10

Table 3: Spacing constraint with no utility worker

3 Optimal formulation of the sequencing problem

The objective function considered here is a cost function involving two elements: the
cost associated with additional utility workers and the setup cost. There is a trade-off



between these two costs as utility workers allow for violations of spacing constraints
without entailing line stoppages, so more grouping possibilities are available, hence
reducing the number of setups.

We first provide the analytical description of the problem of optimizing the num-
ber of utility workers to be temporarily hired. We then turn to the formal description
of the problem relative to the minimization of the number of setups in the sequence.

3.1 Objective and constraints relative to utility workers

Past studies have considered the objective of minimizing total utility work expressed
as a global working time and minimized as such, without evaluating its economic im-
pact as no wage costs are introduced (see for instance Hyun et al. 1998). We handle
the objective differently: our incentive is to minimize the number of utility workers
required to implement sequencing decisions taken for horizon T. The resultant for-
mulation gives the optimal assignment of utility workers on stations and items. We
first provide an adaptation of constraints (3) to the case of flexible stations (from
the set Kr). We then derive the optimal number of utility workers.

3.1.1 Spacing constraints for stations with utility workers

We assume that each flexible station hosts a single dedicated worker (A = 1) so the
spacing constraint vy : n; is defined by using Eq. (5) to determine v and Eq. (6)
to get the value of ny = v 4+ ui. Each flexible station £ € K is conceived to host a
single utility worker by cycle time.

Let wy, ;, be a binary variable that takes a value of 1 if a utility worker is required
on station k for the item in position h and 0 otherwise. We assume that workers do
not collaborate on the same task: the item in position h is fully processed by the
utility worker while the regular worker finishes the operations on the (h — 1) item.

A utility worker is required on station k to process the item in position h in
order to avoid a violation of capacity which occurs when Ry, ;1 + 0,7 — 0> R
The item in position h is necessarily an item with option (see Eq. (4)). We assume
the regular worker catches up on the total backlog Ry —1 (while the utility worker
fully handles the item in position h). This assumption makes possible an adaptation
of the spacing constraints otherwise a reasoning in terms of excess working time
must be adopted and spacing constraints must be abandoned. Formally, we assume
Ry p—1 < [ (the excess working time can not be superior to the ‘average’ time for
producing an item). As a straightforward upper bound for Ry, 1 equals (Gl?ax—g)uk,
we finally assume (6% — @)y, < . This implies that the presence of a utility worker
on station k for item in position h leads to a reduction of the excess working time
by an amount of (% — §)(vy, + 1) where (0"® — @)y, is handled by the regular
worker and 67 — @ is absorbed by the utility worker himself. This is equivalent to
‘cancelling’ v + 1 items with option in the window {h —n;+1,..., h} since the next
item in position A+ 1 may be chosen as if there was no item with option in positions
h—mn, + 1 to h.

To illustrate the reasoning, consider a station & with 6% = 80 sec., 6’,?“1 = 40
sec., § = 60 sec. and R = 20, so the spacing constraint is v : g = 1 : 2. Let



us assume a first item with option is produced and no excess working time is to be
caught up. The regular worker handles this first item and needs to work 20 seconds
more than the cycle time to complete the item. If a second item with option is to be
processed, the cumulated excess working time would be 40 seconds, which is twice
the extra time that is allowed. A utility worker is therefore necesary to handle this
second item, so we have wy o = 1. The utility worker fully processes this item, thus
absorbing an extra time of 20 sec. while the regular worker can finish his work on the
first item, therefore absorbing also an extra time of 20 seconds. A third item with
option can therefore be processed, as the presence of the utility worker finally allows
for absorbing the equivalent of the extra time needed to process 2 items with option
(one extra time is done by the utility worker himself and the other one by the regular
worker). The presence of the utility worker for h = 2 (second item) is thus equivalent
to cancelling v +1 = 2 items with option in the window {h—mn,+1,...,h} = {1,2}.

Thus, to adapt constraint (3), we must decrease my, , by (v + 1) wy , and replace
Zi]\il 0ik * Yih—m, With a proper binary variable, namely gy j_p,, that takes into
account the fact that a possible utility worker has led to the ‘cancellation’ of the
option, if any, on the (h — nk)th item. Letting g s, be such a binary variable, the
spacing constraints for flexible stations can now be written as

N
M h = Mih—1+ D i1 Oik " Yih — Qe by, — Wk + 1) Wi p < v,

(7)
h=1,...,N; k€ Kr,

where gy ,—,, takes a value of 1 if item in position h — n; has the option and none
of the items in positions {h — 1, ..., h — 1} was handled by a utility worker, and 0
otherwise. Formally, the variable gy, ;,_,, corresponds to the following definition

N h—1
Qi h—mp = Z ik Yish—ny, H (1 — wry). (8)
1=1 I=h—ny,

This expression is linearized using the three inequalities

N
Q=g < D i1 Oik " Yih—mps

N h—1
Qep—mp, = Die1 Ok * Yish—ng — 1=y, Whls (9)

N h—1
20, h—m, <142 2501 0ik * Yih—me — Dol Whil-

To illustrate, consider the example in Table 4 for a station k¥ € Kr and v, =
i, = 1 so the spacing constraint is v : g = 1 : 2. Table 4 provides the value of the
variables included in Eq. (7) for a sequence of 3 items each requiring the option.

For h = 1 constraint (3) gives my 1 = Zfil Oi ke Yi,1 — 2wy 1, since my o and g _3
have negative indices, they are ignored. Assuming there is no initial condition, we
set to zero all variables with negative indices in Eq. (7). However, initial conditions
(i.e. past decisions) will be taken into account in the experiment so this point will
be discussed further in Section 5. We have m;; = 1 < v, = 1 with w,; = 0.
Note that wy ; could have been equal to 1 without violating the spacing constraint.
However, the objective is to minimize the cost associated with temporary workers so



Position A 1 2 3
S Oikyin 1011
Mg, 1 0 1
Wk, h 0 1 0
dk,h—ny / /0

Table 4: Spacing constraint for a flexible station k& € Kp hosting a utility worker

variables {wy, p} will always take their minimum value while satisfying the spacing
constraints. For h = 2, we have myo = my 1 + Zi\il Oik - Yi2 — 2wg o = 0 with
mp1 = 1 and wi; = 1. A utility worker is required to process the second item
as the spacing constraint is violated since items in position 1 and 2 both require
the option. For h = 3, we get my3 = myo + Zfil Sik - Yi3 — Qk1 — 2wg,3 with
qk,1 = sz\il Oik * Yi1 Hle(l — wy,,) as defined by Eq. (8). We have ¢;; = 0 since
the first item has the option but a utility worker was present for the second item and
this leads to ‘cancelling’ the option on item 1 and 2. We have my; 3 = 1 < 1 with
Wg 3 = 0.

3.1.2 Optimal number of utility workers

In this paragraph we first provide a formulation of the objective function relative
to the cost of hiring temporary workers for horizon 7" which is usually a day of
production. This objective function includes variables representing the total number
of utility workers hired per half-days. We then derive suitable constraints to link these
variables to the binary variables {wy j} reflecting the presence (or the absence) of
utility workers on some station and item.

Let W1 (T') be the number of active temporary workers in the first half of horizon
T. Analogously, W5 (T') designates the number of utility workers required to process
items in the second half of horizon T. We finally define W5(T') as the number of
utility workers that are needed to implement sequencing decisions made for horizon
T but physically present only in the next horizon T'+1. The objective is to minimize

w - [Wi(T) = Wa(T = 1) + Wa(T) + Ws(T)] , (10)

where w is the cost of hiring a utility worker for one half-day, and the difference
Wi (T) — W5(T — 1) represents the number of utility workers resulting from hiring
decisions made for T and actually present during the first half of horizon T. The
economic function (10) therefore refers to hiring decisions aimed at implementing
the sequencing of items for horizon T only. We shall now specify the relationships
between variables {wy, ,} and variables Wy (T'), Wa(T'), W3(T).

Any temporary worker required on station k has a working time of 0;** on each
item requiring the option. This implies that he is assigned to station k for a number
of cycle times equals to G = [0}?‘”‘/5 —| . Thus a utility worker that handles on station
k the A" item in the sequence becomes anew available for performing operations on
the (h + B,)!" item, if need be, either on the same station or on any other station,
assuming workers moving time between any pair of stations is ignored. Obviously,
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Br > 2 since 6;"* > #. From the assumption (O — v, < 6 we made in the
previous paragraph, we get 6% /0 < 1+ 1/y, with 1 + 1/v taking a maximum
value of 2 when v, = 1. We therefore have 5, = 2, Vk. When v, > 1, it should
be noted that the utility worker spends less than 2 cycle times on station k so the
remaining time can be considered as a free time for moving from one station to
another.

Recall the horizon is divided into N cycle times. During the A" cycle time, item
in position h — k41 is processed on station k. For instance, with no initial condition,
N =6 and Kr = {1,2}, in the first cycle time, the first item in the sequence is
processed on station 1 and no item is processed on station 2. In the second cycle
time, the second item is processed on station 1 while item 1 crosses station 2 etc.
As a utility worker stays [ = 2 cycle times on any station station k each time he is
required, the sum wy, p_p + Wi p—r41 gives the number of utility workers operating
on station k in the A" cycle time. The sum ZkeKF (Wg,h—k + Wk ph—k+1) therefore
represents the total number of active utility workers on all stations in the ht" cycle.
It follows that the number of utility workers needed in the first half of horizon T is

Wi(T) = max,—y,. /2 {Zker (W h—k + Wi - k+1)}- A similar reasoning holds

for Wa(T') and W3(T'). The linear version of the constraints associated with W1 (7)),
Wo(T), W3(T) is

Y ke Weh—k + Wep—k+1) < WiI(T), h=1,..., [g] ,
EkEKF (wkh k‘+wk7h—k‘+1) W ( ) h= [%] +1,...,N, (11)
ZkGKFZ? }f—i_klwaSW?)(T) h:N+17 7N+K_1

Let us note that at the end of horizon T, part of the sequence that has been
decided in T is only processed and completed in 7"+ 1. The third inequality in (11)
reflects the hiring decisions referred to the sequencing of these items although the
corresponding utility workers will only be present at the beginning of horizon 7'+ 1.

3.1.3 Illustration

Let us consider a simple example with K = 3 stations, where stations £ = 1 and
k = 3 are flexible and k& = 2 is neither a fixed-capacity station nor a flexible one. We
assume that N = 6 items are sequenced during each horizon 7' — 1, T and T + 1.
Three horizons are examined to clarify the interdependence between past, present
and future decisions. With two options (k = 1, & = 3), 4 models of items are
available: item A has no option, item B requires option k£ = 1 only; option k = 3
is exclusively installed on item C and item D includes both options. We assume
vi=vz3=1and pu =1, uzg = 2.

Table 5 illustrates the satisfaction of constraints (7) for stations £ = 1 and
k = 3, for each position h where h = —5,...,0 are the positions of items for which
sequencing decisions are made during horizon T — 1, decisions for h = 1,...,6 are

made for horizon T, etc. We indeed adopt the convention that negative positions
h < 0 refer to past sequencing decisions whereas positions h > N are relative to
future sequencing. Table 5 also displays the values of {wy 5} . For instance, we have
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wi,2 = 1 meaning that a temporary worker must process on station 1 the item in
the second position in the sequence which is decided during horizon 7' This item a
model B—includes option k& = 1 just like the previous one (a model D) which would
have led to a violation of the spacing constraint v : np (i. e. 1:2) if no worker could
have temporarily been hired.

Z,—I\Ll 0i,kYi,h My <vp=1 W,k Qe ,h—ny,
Hor. h Model k=1 k=3 k=1 k=3 k=1 k=3 k=1 k=3
-5 D 1 1 / / 0 0 / /
-4 A 0 0 1 / 0 0 / /
T—-1 =3 B 1 0 1 1 0 0 1 /
—2 D 1 1 0 1 1 0 0 1
-1 C 0 1 0 0 0 1 0 0
0 C 0 1 0 1 0 0 0 0
1 D 1 1 1 0 0 1 0 0
2 B 1 0 0 0 1 0 0 0
T 3 A 0 0 0 0 0 0 0 0
4 B 1 0 1 0 0 0 0 0
5 D 1 1 0 1 1 0 0 0
6 C 0 1 0 0 0 1 0 0
7 D 1 1 1 1 0 0 0 0
8 B 1 0 0 1 1 0 0 0
T+1 9 A 0 0 0 1 0 0 0 0
10 D 1 1 1 1 0 0 0 1
11 B 1 0 0 1 1 0 0 0
12 A 0 0 0 1 0 0 0 0

Table 5: Spacing constraints for two flexible stations

Table 6 shows for each cycle time the items positions that are processed on each
station. For instance, item in position h = —5 is processed on station k£ = 1 in the
first cycle time of horizon 7" — 1. This item leads over station £ = 2 in the second
cycle time. It undergoes operations on station £ = 3 in the third cycle time and is
finally completed in the fourth cycle time, as indicated in the penultimate column of
Table 6. Recall that a utility worker required on station k to perform operations on
the h'" item is busy for 2 cycle times, Vk = 1,3. The activity of every utility worker
is represented by a rectangle in Table 6. As an example, wy,_2 = 1 is symbolized
by a rectangle around positions —2 and —1 indicating that the corresponding utility
worker is busy on station 1 in the fourth and fifth cycle time of horizon T'— 1. We
also report in each rectangle the horizon in which the hiring decision has been taken.
With such a table, we can visualize the activity of utility workers in the time so the
number of necessary workers can easily be derived. The last column provides the
number of active workers per cycle time. Considering horizon T, one utility worker
is active on workstation k& = 3 in the first cycle time and he is engaged for 2 cycle
times. This means that this worker can not be allocated to station 1 in the second
cycle time to perform operations on the item in position 2, thus 2 utility workers
must be active in the second cycle time.
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Station Completed Nb of active

Horizon Cycle k=1 k=2 k=3 item (pos.) u. workers
1 —5 0
2 —4 -5 0
T-1 3 -3 —4 -5 0
4 [2@-1]-3 -4 -5 1
5 -1 -2 -3 —4 1
6 0 -1 —2 -3 0
11 0 —1(T—1) —2 1
2 2 1 0 -1 2
T 3 |3 2 1(7) 0 2
4 4 3 2 1 1
5 [5(7) 4 3 2 1
6 6 5 4 3 1
1 7 6 5 4 0
2 [s@+1) |7 6 (T) 5 2
T+1 3 9 8 7 6 2
4 10 9 8 7 0
5 [1(T+1) |10 9 8 1
6 12 11 10 9 1
12 11 10
12 11
12

Table 6: Items positions on each station and activity of utility workers

Applying constraints (11) to our example yields wi o+ wi1 + w32 + w3 1 <
Wi (T) for h = 1, where the value of the sum w; g+wq 1 +w3 _2+ws 1 can be read in
the last column of Table 6 in the row relative to the first cycle time of horizon T. We
get Wi (T) > 1, Wi(T) > 2, Wi(T) > 2 for h = 1,2, 3 respectively. This leads to an
optimal value W} (T') = 2, assuming the sequence of items given for 7" in Table 5 is
an optimal one given the cost parameters. As Wi (7') is to be minimized, it takes its
minimum possible value. Similarly we obtain W3 (T") = 1. The third inequality in (11)
applies for h = 7,8. We have wy g + w34 +wszs < W3(T) for h =7 and w3 5 + w3 e <
W3(T) for h = 8. Note that W3(T') is only linked to variables {wy, ,} associated with
items positions that do not exceed N = 6. We have W3 (T') = 1. The optimal number
of utility workers whose economic consequence is attributable to the sequencing
decisions made for horizon T' equals W (T) — W4 (T — 1) + W5 (T) + W5(T) = 3.
In the first half of T', 2 operators are required but one of them has been decided
in T'— 1 so its wage is included in the economic function related to decisions made
for horizon T' — 1. A single operator is required in the second half-day and a utility
worker that will be present only in the next day is actually paid in horizon T.
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3.2 Minimizing sequence-dependent setups

Many operations necessitate sequence-dependent setups. For instance, in the auto-
motive industry, vehicles of a same colour are grouped in an attempt to minimize
the cost of cleaning sprayguns. We will focus here on such setup costs and we will
consider a single paint station. The formulation below may easily be generalized
to any number of stations and any type of setup costs (see Giard, 2003). A typical
setup cost involves the cost associated with machine tune ups to switch from a model
to another, e.g. a two-door vehicle to a four-door one. Vehicles of a same colour are
grouped in batches but the batch size has an upper bound for two reasons. First, af-
ter some vehicles, sprayguns get paint-encrusted and need a purge. Second, a colour
change is required to avoid eye tiredness responsible for a less effective paint flaw
detection. We let L be the maximum number of cars in any identical-colour group.
The binary variable uy takes a value of 1 if the colour of the car in position A is
different from the colour of the previous one in the sequence (position h — 1) and 0
otherwise. The sum of variables u, over the whole sequence expresses the number of
purges. Letting v be the unit cost of cleaning paint from sprayguns (solvent, labour
and station downtime), the objective is to minimize

M=

S (12)

h=1
The constraint on the maximum group size is equivalent to enforce at least one
colour switch between positions h — L 4+ 1 and h, Vh. This is written as

h

> up=1,h=1,..,N, (13)
I=h—L+1

which indicates the number of colour changes any subsequence of L vehicles must
be at least equal to one.

We must impose additional constraints on variables wu, so they take a value
of 1 each time there is a colour switch in the sequence, and zero otherwise. The
colour index of vehicle ¢ is denoted by p; so the colour index which is applied to
the vehicle in position A is Zfil pi - Yin- Variable u, will take a value of 1 if a
colour change occurs between position h — 1 and position A, which is translated by
a non zero difference of colour indices between position h and position h — 1, that is
Zfil Pi Yih — Zi\il pi - Yi,h—1 7 0. This condition is fulfilled when the two following
inequalities hold:

Z%lpi'yi,h—Z%lpi'yi,h—l <P-up, h=1,...,N, (14)
Doic1 PiYih — 2 inq Pi Yih—1 > —P-up, h=1,...,N.

To illustrate, consider N = 6 vehicles and P = 2 colours (an index value of 1
is chosen for the blue colour and a value of 2 corresponds to the red hue). The
maximum number of cars with same colours in a sequence is L = 3. In table 7,
we give the values of relevant variables for a given sequence of vehicles for which
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colours are indicated. For each position h, the value of Zf\il pi - Yi,n simply gives the
colour index of the vehicle in position h (this is given in the 4™ row of Table 7). The
difference Zfil Pi*Yih — Zf\il pi - Yi.h—1 between the colour indices in position h and
h — 1 is non zero when the colour has changed between the current position and the
previous one. This difference is given for each position A in the 5™ row of the table
(colour difference). During horizon T, this happens in positions A = 1 and h = 3
(and also for h = 0 which is the last position in horizon 7" — 1). Appropriate values
for uy, are then obtained utilizing constraint (14). For instance, in position h = 3, we
have Z?:l Pi - Yi3 — 2?21 pi-¥Yi2 = —1 and we want u3 such that —2uz < —1 < 2ug
which implies ug = 1. Thus, a colour difference necesarily implies the implementation
of a colour change. The last row of Table 7 checks constraint (13). This constraint is
violated for h = 6 as no colour change has been done for the last 3 vehicles so there
is more than 3 consecutive vehicles with same colour. Letting v = 10 euros be the
unit cost of a purge, the total cost of cleaning guns during horizon 7" amounts to 20
euros as S 0_, up = 2.

Horizon T-1 T

Position h . =2 -1 0 1 2 3 4 5 6
Colour name red red blue red red blue blue blue blue
Colour index 2 2 1 2 2 1 1 1 1
Colour difference 0 -1 1 0 -1 0 0 0
Colour change (up) 0 1 1 0 0 0 0
S 2 2 1 1 0

Table 7: Constraints on colour changes - illustration

4 Summary: notations, assumptions and the optimiza-
tion problem

Tables 8 and 9 provide the notations we used so far. The optimization problem finally
consists in minimizing the sum of the objective functions in (10) and (12) subject to
constraints (1), (3) for all fixed-capacity stations in the set K¢, (7) for all flexible
stations in K, (8), (9), (11), (13), (14). We made the following assumptions.

Assumption 1. There are only two possible values for the processing time on
station k, 6;"* and Hznin where 6;"** = max;—;. n {0;} (with at least one item ¢
requiring option k) and Ggﬁn = max;—1.. N {Hi,k| 01 < 5} .

Thus, installing option k takes always the same processing time whatever the
item type. All items without option k are assumed to have the same processing time
H?in on station k although some of them may require a zero time which actually leads
to a greater decrease in the excess working time than the one we considered. Without
this assumption however the logic of spacing requirements on flexible stations must
be abandoned in favor of a reasoning in terms of processing times.

Assumption 2. For any option o processed on several stations K, with K, =
{k;] 0o,k > 6’} we associate option o with the most capacitated station k € K,,.
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PARAMETERS

T Sequencing horizon, usually a day

N Number of items to be sequenced over T’

0= |T/N| Cycle time

K Set of all stations in the line

Kce Subset of fixed-capacity stations

Kp Subset of flexible stations

O =KcUKpr Set of options

Ak Number of dedicated operators on station k

Vg Nk Spacing constraint: ‘at most vy items with option & out of n
consecutive items’

ik Boolean taking a value of 1 if item ¢ requires option k and 0 otherwise

0i.k Processing time of item ¢ on station k

gax Processing time on station k of any item requiring the option k

ginin Processing time on station k of any item without option &

R Maximum excess working time allowed on station k

Lok Number of items without option to be sequenced after v, consecutive
items with option k£ to avoid exceeding capacity, when Ay =1

B Number of cycle times a utility worker spends on station k to process
one item with option

w Cost of hiring a utility worker per half-day

y Set-up cost

L Maximum number of consecutive items with same colour

P Number of colours

Di Colour index chosen for item i, 1 < p; < P

Table 8: Notations for parameters

It should be noted that when a utility worker is allowed to work on such station k,
this relaxes the spacing constraint so all stations in K, must be considered separately.
A simplifying assumption consists in considering that any option is fully processed
by a single specialized workstation.

Assumption 3. Each flexible station has a single dedicated worker and may host
a single utility worker per cycle time. Assumption 4. The maximum excess working

time, (0 — 0)vy,, without violating the capacity of any flexible station k is such
that (07 — 0)v, < 6 so the regular worker fully absorbs the excess working time
while the utility worker solely processes an item with option.
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VARIABLES

yin € {0,1}  Binary that takes a value of 1 if item ¢ is placed in position h
mgp € N Number of items with option k in the window {h —n, +1,...,h}

wg,p, € {0,1}  Binary that takes a value of 1 if a utility worker is required on station
k to process the ht" item

gr.n € {0,1}  Binary that takes a value of 1 if item in position h has the option and
none of the items in positions {h — nk,...,h — 1} is handled by a
utility worker

Wi(T)eN Number of active temporary workers in the first half of horizon T

Wy(T) e N Number of utility workers required to process items in the second half
of horizon T'
W5(T) e N Number of utility workers needed to implement sequencing decisions

made for T but physically present only in the next horizon T 4 1

up € {0,1} Binary that takes a value of 1 if a set-up is incurred to process the
hth item (e.g. a colour swith)

Table 9: Notations

5 Computational study

We first discuss the initial conditions. We then describe the experimental design.
We finally turn to the comment of the results.

5.1 Initial conditions

In practice, sequencing decisions are made on a rolling horizon basis: the sequence
implemented within horizon T'—1 provides initial conditions to the sequencing prob-
lem for horizon T. In the experiment, we have generated a random sequencing of
items for horizon T'— 1 and we have optimized the sequencing for horizon T In the
random sequencing, we have incorporated some rules in order to obtain a feasible
sequence that satisfies the spacing constraints for fixed-capacity stations only. We
then have computed the values of all variables corresponding to this feasible ran-
dom sequence, some of them being included as initial parameters in the optimization
program relative to horizon T.

5.2 Experimental design

The number N of vehicles to be sequenced during the horizon took the values in the
set {10, 15,20, 25,30,35}. For N = 10 and 15, the number P of colours was set to 3
with a maximum of L = 3 consecutive cars with same colour. For N = 20 and 25, we
chose P =4 and L = 5. Finally, for N = 30 and 35, we set P =5 and L = 6. Note
that for each value of N, parameters P and L are such that a reasonable number of
subset of consecutive identical-colour of vehicles may be obtained.

The number K¢ of fixed-capacity stations was set to 1 and 2 and the number
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KF of flexible stations took the values of 2 and 4, i.e. (K¢, Kr) = {(1,2),(2,4)}
leading to a total number of either 3 or 6 options. We set v = 1 for all k, so the
spacing constraint for flexible stations is a necessary and sufficient condition not to
exceed the capacity. We let n, ~ U{2,3,4,5} for all k so we get reasonable values
for the spacing constraints with respect to the number of items to be sequenced.

Letting Nj be the number of vehicles with option k, we set Ny = 0.75Nvy /ny, for
all k € Ko and Ny = 2Nv/ny for all k € Kp. This makes easier the search for a
feasible sequence satisfying the spacing constraints for fixed-capacity stations while
making necessary the appointment of some utility workers.

Each item is uniformly picked at random to be endowed with option k until
the number of items with option k reaches the value of N,. The colours of cars are
identically independently uniformly distributed over the set of possible colours. Thus
there is on average a proportion 1/P of cars of each colour. In accordance with the
french wage levels we set w = 70 euros. In the french automotive industry, the cost
of cleaning the sprayguns approximates 10 euros so we set v = 10 throughout.

For each problem defined in terms of values for N and for the pair (K¢, Kr),
we made 3 replications and we obtained 30 instances since we only considered
(Ke,Kr) = (1,2) for N > 30. In the optimization programs, the spacing constraints
for flexible stations were finally written as

h N h—ng
> (Zai,k i — (1+ ) - wk,l> =Y s h=1,...,N;k€ Kp,  (15)
=1 \i=1 =1

instead of using (7) which would lead to a higher number of variables with the
introduction of the ‘intermediary’ variables {my,,}. Analogously, we used the spacing
constraints for capacitated stations as given by (2).

5.3 Results

Table 10 reports the results for the small instances (up to 15 vehicles) for which
we get an optimal solution in a reasonable time through the use of the commercial
software MIP solver ILOG-Cplex 9.0. The first three columns give the values of N,
Ko and Kp which define a type of instance. The next two columns provide the
number of variables and of constraints. For each type of problem and each of the
three replications, we report the quality of the first feasible solution measured as the
relative deviation (gap) to the optimal value. The penultimate column displays the
execution time to reach the first feasible solution whereas the last column exhibits
the time to obtain the optimum. Computing times are expressed in CPU seconds
and refer to a Bi-Xeon 3.4 GHz with 4Go of main memory.

Except for one of the largest problems, it takes less than 2 sec. to get a first
integer (feasible) solution. The quality of these first feasible solutions is rather het-
erogeneous, with a deviation to the optimal value ranging from about 15% to 75%
with no obvious relationship between the deviation and the problem size. The exe-
cution time to reach the optimum seems to strongly depend on the structure of each
problem. However, a relationship between the time and the problem size exists as
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N K¢ Kp Var. Const. Gap (%) Time Time, Opt.

10 1 2 151 166 34.38 0.01 0.67
32.26  0.01 0.27
72.73  0.03 0.65
10 2 4 189 273 19.15  0.98 14.33
17.02  1.99 79.99
3590 1.26 240.65
15 1 2 301 251 04.55  0.04 3.83
75.00 141 648.98
27.58  0.03 0.23
15 2 4 359 413 18.03  0.24 66.17
46.00 15.87 1026.38
14.52  0.12 47.19

Table 10: Feasible and optimal solution to small instances

the largest time is associated with the biggest problem and the smallest instances
are also the fastest problems to be solved to optimality.

Table 11 displays the results for larger instances (up to 35 vehicles) for which
Cplex was not able to find the optimal solution within the time limit of 7200 CPU
seconds. Like in the previous table, the first five columns describe the instances.
The next two columns report the quality of the first feasible solution and the time
required by Cplex to reach it. The quality is measured by the relative gap between
the first feasible solution and the best bound. The penultimate column displays the
gap between the best integer solution delivered by Cplex after 7200 sec. and the best
bound. The last column provides the improvement of the objective value after 7200
sec. compared to the first feasible solution (for instance, the best objective value is
23.40% lower than the first feasible solution to the first problem).

For instances up to 20 vehicles Cplex delivers solutions of good quality within
the 7200-second time limit. For 13 cases out of 18, Cplex is able to provide a first
feasible solution in less than 3 min. Even if the solution quality after 7200 sec.
rapidly degrades as larger instances are considered, the solution to 5 instances over
18 exhibits a gap below 5%. In all cases, the first feasible solution is significantly im-
proved during subsequent iterations with a decrease in the objective value of 47.75%
on average.

6 Conclusion

In this paper we have developed an optimal formulation for the sequencing problem
where simultaneous minimization of the number of utility workers and setups is
desired. The resultant optimization model is more realistic than those of earlier
papers dealing with such goals since it provides an operational way to implement the
utility work needed to avoid line stoppages. Although the proposed approach here
can hardly deal with real-size problems, it may lay down the basis for developing
heuristic methods.
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First feas. sol. After 7200 sec.

N K¢ Kp Var. Const. Gap (%) Time Gap (%) Imp. (%)
20 1 2 501 336 26.09 0.06 2.17 23.40
40.63 0.20 3.13 36.36

65.63 0.15 3.13 60.61

20 2 4 579 553 60.38  468.59 5.00 34.92
49.06 4.06 14.46 29.51

50.94 14.60 16.67 14.29

25 1 2 751 420 275.00 11.09 150.00 50.00
291.67 93.34 95.61 95.83

66.67 0.63 3.03 61.76

25 2 4 849 693 139.39 1703.85 77.67 33.90
80.00 424.21 70.00 5.88

78.79 23.45 66.67 7.27

30 1 2 1051 505 308.33 12.64 158.33 58.06
308.33 16.37 108.33 96.00

308.33  163.80 108.33 96.00

35 1 2 1401 590 225.00  735.13 158.33 25.81
140.74 16.55 39.06 58.54

361.54  422.38 169.23 71.43

Table 11: Feasible and best integer solution to larger instances
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