

### Master de Sciences de Gestion

Mention: Management de la performance

Spécialité: Management des processus de production de biens et services

UE 266U3: Pilotage des flux à moyen et court terme Responsable de l'UE: Pierre Fenies

# I Présentation générale

### I-1 Objectifs

- Approfondir les approches d'ordonnancement de la production de biens ou de services ainsi que les techniques d'ordonnancement de projet; la problématique plus large du management de projet est traitée dans l'UE 1.
- Approfondir les approches de planification de la production de biens et leur intégration dans des logiciels intégrés (ERP)
- Sensibiliser les étudiants aux nouvelles approches de la production synchrone.

## I-2 Moyens mobilisés

- Heures d'enseignement:
- 14 séances de 3 heures
- organisation des séances 1/4 d'approfondissement de cours (sur la base de documents préalablement étudiés), 3/4 de résolution de cas.
- Les logiciels @Risk et XPress dont les fondements ont été vus dans l'UE 310 «Instrumentations d'aide à la décision en management de production».
- Le progiciel **R3 de SAP** (URL fournie en cours)
- Exécutable *Cartel 3000* (exécutable envoyé par mail).
- Fichier de données «MPPBS.xls»

# I-3 Méthodes pédagogiques

- Lecture préalable de parties d'ouvrages ou d'articles;
- Exposés.
- Résolution d'exercices et de mini-cas.

# I-4 Bibliographie

- V. Giard, Gestion de la production et des flux, Economica, 3e édition, 2003.
- Notes de cours de Pierre Fenies <sup>1</sup>

### I-5 Modalités du contrôle continu

- Travaux écrits (propositions de solutions de cas remises avant le TD, note de synthèse, test écrit...): 40%.
- Participation aux séances de TD: 20%.

• Examen final: 40%.

# II Programme résumé

|    | Séance                             | Thème de la séance                                                                                    | Cas à préparer                                                |
|----|------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 1  | Mardi 8 janvier<br>8h15-12 heures  | - Pilotage synchronisé des flux au travers du cas Cartel                                              | - Lecture chapitre VI de Gestion de la Production et des flux |
| 2  | Mardi 15 janvier<br>8h15-12 heures | <ul> <li>Pilotage synchronisé des flux au<br/>travers du cas Cartel + cas<br/>Hydrolix</li> </ul>     | - Cas Hydrolix<br>- Exercice 1 & 2 de MRP                     |
| 3  | Mardi 22 janvier<br>8h15-12 heures | <ul> <li>Présentation aléatoire par groupe<br/>des cas Cartel, Hydrolix et la<br/>Vieille.</li> </ul> | - Exercice 3 de MRP<br>- Cas LaVieille                        |
| 4  | Mardi 29 janvier<br>8h15-12 heures | - Ordonnancement                                                                                      | - Lectures et cas                                             |
| 5  | Mardi 5 février<br>8h15-12 heures  | - Ordonnancement - Transport                                                                          | - Lectures et cas                                             |
| 6  | Mardi 12 février<br>8h15-12 heures | <ul> <li>Pilotage Opérationnel des Flux<br/>sur R3 de SAP</li> </ul>                                  | - Lectures et cas                                             |
| 7  | Mardi 19 février<br>8h15-12 heures | - Pilotage Opérationnel des Flux<br>sur R3 de SAP                                                     | - Lectures et cas                                             |
| 8  | Mardi 26 février<br>8h15-12 heures | - Pilotage Opérationnel des Flux<br>sur R3 de SAP                                                     | - Lectures et cas                                             |
| 9  | Mardi 6 mars<br>8h15-12 heures     | - Transport, V. Giard                                                                                 | - Cas Poste Lidurienne                                        |
| 10 | Mardi 19 mars<br>8h15-12 heures    | - Logistique / Léon de S'ab                                                                           | - Lectures et cas                                             |
| 11 | Mardi 26 mars<br>8h15-12 heures    | Dog.ssique / Loon de 5 do                                                                             | - Lectures et cas                                             |
| 12 | Mardi 2 avril<br>8h15-12 heures    |                                                                                                       |                                                               |
| 13 | Mardi 9 avril<br>8h15-12 heures    | - Jeu de simulation / Thierry Fouque                                                                  | - Simulog                                                     |
| 14 | Jeudi 16 avril<br>13h45-17h30      |                                                                                                       |                                                               |

# III Programme détaillé

# III-1 Mardi 8 janvier (8h15-12 heures)

- Séance animée par Pierre Fenies
- Objectifs de la séance

Situer les problèmes logistiques dans une vue globale au niveau tactique et opérationnel; comprendre les liens entre PIC, PdP, MRP.

• Lecture préalable impérative

Chapitre VI de Gestion de la Production et es flux (V. Giard)

### III-2 Mardi 15 janvier (8h15-12 heures)

- Séance animée par Pierre Fenies
- Objectifs de la séance

Étudier les conditions préalables à la mise en place du MRP; comprendre le mécanisme de calcul des besoins en composants; réaliser un ajustement entre charge et capacité.

• Lecture préalable

Chapitre VI de Gestion de la Production et des flux (V. Giard)

• Travail préparatoire complémentaire

Il vous est demandé ensuite de:

- vérifier vos connaissances des mécanismes de base en utilisant les 3 exercices corrigés d'auto-contrôle de la page 7.
- traiter le mini-cas **Hydrolix**, page 11; utilisez la feuille «Hydrolix» du classeur Excel MPPBS xls.

### III-3 Mardi 22 janvier (8h15-12 heures)

- Séance animée par Pierre Fenies
- Objectifs de la séance

Étudier les problèmes d'ordonnancement de projets; examiner leur représentation par un graphe potentiel-tâches; savoir calculer un ordonnancement au plus tôt et au plus tard.

Lectures préalables

Étudier plusieurs règles d'approvisionnement; comprendre le principe de la programmation dynamique; savoir effectuer une planification en horizon glissant.

• Travail préparatoire complémentaire

Il vous est demandé de préparer le cas **LaVieille**, page 13; utilisez la feuille «LaVieille» du classeur Excel MPPBS.xls.

# III-4 Mardi 29 janvier (8h15-12 heures)

- Séance animée par Pierre Fenies
- Objectifs de la séance

Étudier les problèmes d'ordonnancement de projets; examiner leur représentation par un graphe potentiel-tâches; savoir calculer un ordonnancement au plus tôt et au plus tard.

• Lectures préalables

Chapitre IV et V de Gestion de la Production et des flux (V. Giard)

• Travail préparatoire: à venir

# III-5 Mardi 5 février (8h15-12 heures)

- Séance animée par Pierre Fenies
- Objectifs de la séance

Présenter et analyser le problème du voyageur du commerce et identifier le lien avec un problème d'ordonnancement avec temps de préparation de la ressource unique.

• Lectures préalables

Lectures préalables?: révision de ce qui a été vu en ordonnancement et sur Xpress.

• Travail préparatoire: à venir

### III-6 Mardi 12 février (8h15-12 heures)

- Séance animée par Pierre Fenies
- Objectifs de la séance

Pilotage des Flux sur R3 de SAP (1/3).

Lectures préalables

Lire les modes opératoires de R3 sur l'ensemble des modules Lire le mode opératoire sur le module PP (planification de la production).

• Travail préparatoire: à venir

### III-7 Mardi 19 février (8h15-12 heures)

- Séance animée par Pierre Fenies
- Objectifs de la séance

Pilotage des Flux sur R3 de SAP (2/3).

• Lectures préalables

Lire les modes opératoires de R3 sur l'ensemble des modules Lire le mode opératoire sur le module PP (planification de la production).

• Travail préparatoire: à venir

### III-8 Mardi 26 février (8h15-12 heures)

- Séance animée par Pierre Fenies
- Objectifs de la séance

Pilotage des Flux sur R3 de SAP (3/3).

Lectures préalables

Lire les modes opératoires de R3 sur l'ensemble des modules Lire le mode opératoire sur le module PP (planification de la production).

• Travail préparatoire: à venir

# III-9 Mardi 12 mars (8h15-12 heures)

- Séance animée par Vincent Giard
- Objectifs de la séance

Cette séance a pour objectif de vous amener à mieux comprendre les enjeux économiques liés à la conception d'un réseau de distribution.

Travail préparatoire

Il vous est demandé de préparer le cas Reconfiguration de l'acheminement de la **Poste Lidurienne**, page 16; vous pouvez utiliser la feuille «Poste Lidurienne» du classeur Excel «MPPBS.xls» pour créer le jeu de données mais le plus simple est de télécharger le fichier Poste\_Lidurienne.dat (URL: http://www.lamsade.dauphine.fr/~giard/Poste\_Lidurienne.dat) et de reprendre les noms des tableaux et paramètres de ce fichier.

### **III-10** Mardi 19 mars (8h15-12 heures)

- Séance animée par Léon de Sahb
- Objectifs de la séance

Logistique

- Lectures préalables à venir
- Travail préparatoire complémentaire Il vous est demandé à venir
- Organisation de la séance à venir.

### III-11 Mardi 26 mars (8h15-12 heures)

- Séance animée par Léon de Sahb
- Objectifs de la séance

Logistique

- Lectures préalables à venir\*
- Travail préparatoire complémentaire Il vous est demandé à venir
- Organisation de la séance à venir.

### III-12 Mardi 2 avril (8h15-12 heures)

- Séance animée par Thierry Fouque
- Objectifs de la séance

Cette séance a pour objectif de vous amener à mieux comprendre l'interdépendance des décisions prises dans la chaîne logistique à travers un jeu de simulation.

- Lectures préalables (un seul cas à analyser, voir ci-après)
  - Descriptif du jeu Simulog, page 20.
  - Revoir les fondements de la MRP (Gestion de la production et des flux, chapitre VI, p. 457-497) traité au cours des deux premières séances de cette UE.
  - Revoir le modèle de Holt et Winters (*Gestion de la production et des flux*, chapitre XV, p. 1056-1061), après avoir revu les fondements du lissage exponentiel (*Gestion de la production et des flux*, chapitre XV, p. 1046-1049). Ces techniques ont été abordées au cours de la 12e séance de l'UE 266U2 (16 avril 2008).
- Travail préparatoire

Il vous est demandé de traiter les chroniques de la feuille «SIMULOG donnees» du classeur Excel «MPPBS.xls», en utilisant l'approche de Holt et Winters. Votre attention est attirée sur le fait que, pour ces données hebdomadaires, la saisonnalité est de 4. Il vous est demandé également de préparer sur une feuille de calcul, les calculs de MRP qui devront être réalisés dans cette simulation (voir la nomenclature au § VII du document descriptif du jeu Simulog).

### III-13 Mardi 9 avril (8h15-12 heures)

- Séance animée par Thierry Fouque
- Objectifs de la séance

Cette séance a pour objectif de vous amener à mieux comprendre l'interdépendance des décisions prises dans la chaîne logistique à travers un jeu de simulation.

- Travail préparatoire
- Ce travail sera défini au cours de la séance du 2 avril.

### III-14 Mardi 16 avril (8h15-12 heures)

- Séance animée par Thierry Fouque
- Objectifs de la séance

Cette séance a pour objectif de vous amener à mieux comprendre l'interdépendance des décisions prises dans la chaîne logistique à travers un jeu de simulation.

- Travail préparatoire
- Ce travail sera défini au cours de la séance du 2 avril.



# Master de Sciences de Gestion

Mention: Management de la performance

Spécialité: Management des processus de production de biens et services

UE 266U3: Pilotage des flux à moyen et court terme Responsable de l'UE: Pierre Fenies

# **Exercices d'auto-contrôle d'acquisition des mécanismes de base de la MRP**

# I Énoncés des exercices d'auto-contrôle

### I-1 Exercice 1

Le plan directeur de production des références A, B et X, pour les semaines 11 à 15 est donné dans le tableau ci-dessous. La technique du «lot pour lot» est retenue pour gérer ces trois références. Pour fabriquer 1 A, il faut 2 X. Pour fabriquer 1 B, il faut 3 X. Les livraisons attendues pour A, B et X, en début de semaine 11, sont respectivement: 150, 140, 1360. La livraison attendue de B en début de la semaine 12 est 280. Les positions de stock pour A, B et X, en fin de semaine 10, sont respectivement: 20, 90, 350. Les délais d'obtentions de A, B et X sont respectivement de 1, 2 et 1 semaine(s). Un stock de sécurité de 10% est désiré pour la référence X. Calculez les lancements de la référence X pour les semaines 11 à 13.

| semaine | 11  | 12  | 13  | 14  | 15  |
|---------|-----|-----|-----|-----|-----|
| PDP(A)  | 160 | 120 | 200 | 340 | 510 |
| PDP(B)  | 170 | 280 | 500 | 260 | 550 |
| PDP(X)  | 20  | 150 | 100 | 140 | 50  |

| Semaine                | 10 | 11  | 12  | 13  | 14  | 15  |
|------------------------|----|-----|-----|-----|-----|-----|
| BB(A)                  |    | 160 | 120 | 200 | 340 | 510 |
| Livraisons de A        |    | 150 |     |     |     |     |
| Position de stock de A | 20 |     |     |     |     |     |
| Besoins Nets de A      |    |     |     |     |     |     |
| Lancements de A        |    |     |     |     |     |     |
| BB(B)                  |    | 170 | 280 | 500 | 260 | 550 |
| Livraison de B         |    | 140 | 280 |     |     |     |
| Position de stock de B | 90 |     |     |     |     |     |
| Besoins nets de B      |    |     |     |     |     |     |
| Lancements de B        |    |     |     |     |     |     |

| Semaine | 10 | 11 | 12 | 13 | 14 | 15 |
|---------|----|----|----|----|----|----|
|         |    |    |    |    |    |    |
|         |    |    |    |    |    |    |
|         |    |    |    |    |    |    |
|         |    |    |    |    |    |    |
|         |    |    |    |    |    |    |
|         |    |    |    |    |    |    |
|         |    |    |    |    |    |    |
|         |    |    |    |    |    |    |
|         |    |    |    |    |    |    |
|         |    |    |    |    |    |    |

### I-2 Exercice 2

À la fin de la semaine 15, un calcul de MRP est à effectuer pour la référence A à partir des besoins bruts calculés pour les semaines 16 à 18, de la position de stock à la fin de la semaine 15 et de la livraison attendue en début de la semaine 16; ces calculs tiennent compte de la nécessité d'avoir un stock de sécurité de 10% en raison de problèmes de non-conformité que l'on observe parfois à l'utilisation des pièces livrées. La politique du lot pour lot est utilisée. Le délai d'obtention est de 1 semaine.

| Périodes                                   | 15 | 16  | 17  | 18  |
|--------------------------------------------|----|-----|-----|-----|
| Besoins Bruts de A                         |    | 360 | 320 | 480 |
| Livraison de A                             |    | 310 |     |     |
| Position de stock de A                     | 90 |     |     |     |
| Stock de sécurité désiré                   |    |     |     |     |
| Besoins nets de A (livraisons programmées) |    |     |     |     |
| Lancement de A                             |    |     |     |     |

Une semaine plus tard, au moment où un nouveau calcul de MRP est fait, on dispose des informations suivantes: les Besoins Bruts de la période 19 sont de 210 unités et dans la livraison faite au début de la semaine 16, on a constaté que 15 unités sont défectueuses. Il vous est demandé de compléter le tableau suivant pour calculer les nouveaux lancements en production.

| Périodes                                   | 16 | 17 | 18 | 19 |
|--------------------------------------------|----|----|----|----|
| Besoins Bruts de A                         |    |    |    |    |
| Livraison de A                             |    |    |    |    |
| Position de stock de A                     |    |    |    |    |
| Stock de sécurité désiré                   |    |    |    |    |
| Besoins nets de A (livraisons programmées) |    |    |    |    |
| Lancement de A                             |    |    |    |    |

### I-3 Exercice 3

Un arbitrage «charge capacité» est à effectuer dans un atelier produisant les références A, B et C et seulement ces références. Le coût horaire d'utilisation de cet atelier est 250 dollars liduriens. Il vous est demandé sur quelle référence il convient de faire porter l'anticipation de la production si, pour certaines périodes, la capacité disponible est insuffisante. Les données permettant de calculer les coûts de revient unitaires de ces

références sont fournies dans le tableau ci-dessous que vous compléterez pour argumenter votre choix.

| Dáfárangas | Tomns opératoire | Coût matières |  |  |
|------------|------------------|---------------|--|--|
| References | Temps opératoire | et composants |  |  |
| A          | 0,4              | 70            |  |  |
| В          | 0,5              | 90            |  |  |
| С          | 0,7              | 30            |  |  |

# II Réponses numériques

# II-1 Exercice 1

| Semaine                | 10  | 11   | 12    | 13   | 14   | 15   |
|------------------------|-----|------|-------|------|------|------|
| BB(A)                  |     | 160  | 120   | 200  | 340  | 510  |
| Livraisons de A        |     | 150  |       |      |      |      |
| Position de stock de A | 20  | 10   | -110  |      |      |      |
| Besoins Nets de A      |     | 0    | 110   | 200  | 340  | 510  |
| Lancements de A        |     | 110  | 200   | 340  | 510  | -    |
| BB(B)                  |     | 170  | 280   | 500  | 260  | 550  |
| Livraisons de B        |     | 140  | 280   |      |      |      |
| Position de stock de B | 90  | 60   | 60    | -440 |      |      |
| Besoins nets de B      |     | 0    | 0     | 440  | 260  | 550  |
| Lancements de B        |     | 440  | 260   | 550  | -    | -    |
| BB(X venant de A)      |     | 220  | 400   | 680  | 1020 | 0    |
| BB(X venant de B)      |     | 1320 | 780   | 1650 | 0    | 0    |
| PDP(X)                 |     | 20   | 150   | 100  | 140  | 50   |
| BB(X) totaux           |     | 1560 | 1330  | 2430 | 1160 | 50   |
| Livraison              |     | 1360 |       |      |      |      |
| Position de stock de X | 350 | 150  | -1180 |      |      |      |
| SS désiré              |     | 156  | 133   | 243  | 116  | 5    |
| Delta SS               |     |      | 133   | 110  | -127 | -111 |
| BN                     |     | 0    | 1313  | 2540 | 1033 | -61  |
| Lancements             |     | 1313 | 2540  | 1033 | -61  |      |

# II-2 Exercice 2

- question 1: lancement 312 (période 16), 496 (période 17)
- question 2

| Périodes                                   | 16 | 17  | 18   | 19  |
|--------------------------------------------|----|-----|------|-----|
| Besoins Bruts de A                         |    | 200 | 210  | 100 |
| Livraison de A                             |    | 190 |      |     |
| Position de stock de A                     | 15 | 5   | -205 |     |
| Stock de sécurité désiré                   |    | 20  | 21   | 10  |
| Besoins nets de A (livraisons programmées) |    | 0   | 226  | 89  |
| Lancement de A                             |    | 226 | 89   |     |

### II-3 Exercice 3

Choix de C

| Références | Lemns operatoire | Coût matières et composants | Coût unitaire | Production horaire | Valeur de production horaire |
|------------|------------------|-----------------------------|---------------|--------------------|------------------------------|
| A          | 0,4              | 70                          | 170,00 €      | 2,50               | 425,00 €                     |
| В          | 0,5              | 90                          | 215,00 €      | 2,00               | 430,00 €                     |
| С          | 0,7              | 30                          | 205,00 €      | 1,43               | 292,86 €                     |



# Master de Sciences de Gestion

Mention: Management de la performance

Spécialité: Management des processus de production de biens et services

UE 266U3: Pilotage des flux à moyen et court terme Responsable de l'UE: Pierre Fenies

# **Cas Hydrolix**

Cas proposé par Vincent Giard

La société **Hydrolix** est une société Lidurienne qui fabrique plusieurs gammes d'équipements. On s'intéresse ici à la gamme des pompes industrielles, qui comporte une centaine de références mais, ces références sont obtenues par une différenciation retardée à partir de deux références, notées ici A et B. Ces opérations complémentaires durent peu de temps et sont réalisées à la commande, juste avant expédition, dans l'atelier d'assemblage final. Pour cette raison, le Plan Directeur de Production est établi au niveau de ces références A et B. On s'intéressera aussi F et G, fabriqués par **Hydrolix** et produits également pour le service après-vente au titre des pièces détachées, dans un atelier d'assemblage intermédiaire. On s'intéressera ici aux références V et X fabriquées dans un atelier de mécanique, ainsi qu'au composant W, acheté à un fournisseur spécialisé, ces composants rentrent dans la fabrication des références F et G. Le PDP d'**Hydrolix** pour ces 7 références est donné dans le tableau ci-dessous. Les données de ce cas sont reprises (avec quelques calculs intermédiaires) dans la feuille «Hydrolix» du classeur Excel MPPBS.xls.

| PDP   |      | 2009  |     |      |         |      |           |         | 2010     |          |         |         |
|-------|------|-------|-----|------|---------|------|-----------|---------|----------|----------|---------|---------|
| 1 1/1 | Mars | Avril | Mai | Juin | juillet | Août | Septembre | Octobre | Novembre | Décembre | Janvier | Février |
| A     | 330  | 290   | 310 | 300  | 150     | 140  | 300       | 290     | 320      | 350      | 330     | 310     |
| В     | 210  | 180   | 190 | 220  | 100     | 110  | 190       | 230     | 230      | 190      | 180     | 200     |
| F     | 10   | 12    | 12  | 10   | 9       | 11   | 12        | 11      | 11       | 10       | 10      | 10      |
| G     | 14   | 15    | 13  | 12   | 15      | 14   | 15        | 16      | 15       | 13       | 14      | 15      |
| V     | 200  | 200   | 200 | 200  | 200     | 200  | 200       | 200     | 200      | 200      | 200     | 200     |
| W     | 250  | 250   | 250 | 250  | 250     | 250  | 250       | 250     | 250      | 250      | 250     | 250     |
| X     | 150  | 150   | 150 | 150  | 150     | 150  | 150       | 150     | 150      | 150      | 150     | 150     |

La nomenclature (partielle) des références étudiées est la suivante.

|   | Nive | eau 0 |  |  |  |  |
|---|------|-------|--|--|--|--|
|   | A    | В     |  |  |  |  |
| F | 1 1  |       |  |  |  |  |
| G | 1 2  |       |  |  |  |  |

|   | Nive | eau 1 |
|---|------|-------|
|   | F    | G     |
| V | 1    | 2     |
| W | 2    | 1     |
| X | 1    | 1     |

Les données complémentaires, nécessaires à la détermination des lancements, sont données dans le tableau suivant. Dans le coût des autres composants, on trouve des composants achetés et des composants produits par H mais non pris en compte dans cet énoncé.

|   | Coûts autres composants | Temps<br>opératoire<br>(en heure) | Délai de<br>livraison<br>(en mois) | Livraisons<br>attendues début<br>mars | Livraison<br>attendue début<br>avril | Position de stock fin février | Stock de sécurité<br>(% des BB) |
|---|-------------------------|-----------------------------------|------------------------------------|---------------------------------------|--------------------------------------|-------------------------------|---------------------------------|
| Α | \$850                   | 2,00                              | 1                                  | 300                                   | 0                                    | 50                            | 0%                              |
| В | \$1550                  | 3,00                              | 1                                  | 200                                   | 0                                    | 20                            | 0%                              |
| F | \$910                   | 0,75                              | 1                                  | 435                                   | 0                                    | 65                            | 10%                             |
| G | \$650                   | 0,50                              | 2                                  | 710                                   | 730                                  | 80                            | 10%                             |
| V | \$220                   | 0,25                              | 1                                  | 1350                                  | 0                                    | 344                           | 10%                             |
| W | ach                     | eté                               | 1                                  | 1578                                  | 0                                    | 386                           | 10%                             |
| X | \$230                   | 0,50                              | 1                                  | 1020                                  | 0                                    | 450                           | 10%                             |

L'atelier d'assemblage final ne traite que les références A et B; les opérations de différenciation retardée et d'emballage sont prises en charge par un autre atelier. Le coût standard horaire d'une heure d'utilisation de cet atelier est de 100 dollars liduriens en heures normales et 110 en heures supplémentaires. L'atelier d'assemblage intermédiaire ne traite pas que les références F et G mais une partie de son potentiel productif est réservée au traitement de ces références (quotas éventuellement renégociables). Le coût standard horaire d'une heure d'utilisation de cet atelier est de 90 dollars liduriens en heures normales et 100 en heures supplémentaires. Dans les deux cas, l'appel aux heures supplémentaires ne peut excéder 10% des heures disponibles pour le mois considéré. Le coût standard horaire d'une heure d'utilisation de l'atelier de mécanique est de 80 dollars liduriens; on considère inutile de donner le coût de l'heure supplémentaire, cet atelier étant sur-capacitaire. Les capacités mensuelles prévisionnelles (exprimées en heures) de ces ateliers sont données dans le tableau suivant.

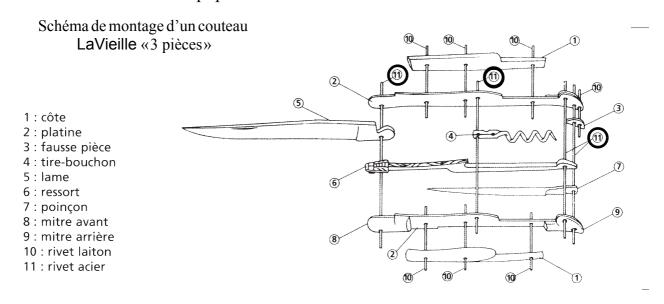
| Capacités des                 |                             |       |      |      |         | 20   | 009       |         |          |          | 20      | 10      |
|-------------------------------|-----------------------------|-------|------|------|---------|------|-----------|---------|----------|----------|---------|---------|
| ateliers                      | Mars                        | Avril | Mai  | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | Janvier | Février |
| d'assemblage final            | 1190                        | 1220  | 1179 | 1050 | 799     | 750  | 1201      | 1249    | 1180     | 1188     | 1208    | 1200    |
| d'assemblage<br>intermédiaire | 800                         | 740   | 740  | 650  | 600     | 550  | 750       | 750     | 750      | 750      | 750     | 750     |
| de mécanique                  | pas de problème de capacité |       |      |      |         |      |           |         |          |          |         |         |

Sachant que la technique du lot pour lot est utilisée, il vous est demandé d'effectuer une programmation prévisionnelle des références A, B, F, V et d'indiquer la quantité à commander à la fin du mois de février pour le composant X. Dans la recherche d'une solution, vous veillerez à effectuer un ajustement «charge-capacité» soit bien réalisé avant l'explosion des nomenclatures et que la solution la plus intéressante économiquement soit retenue, l'appel aux heures supplémentaires étant possible. À titre de contrôle, vous calculerez le coût de stockage de la programmation proposée dans l'atelier d'assemblage final.



### Master de Sciences de Gestion

Mention: Management de la performance


Spécialité: Management des processus de production de biens et services

UE 266U3: Pilotage des flux à moyen et court terme Responsable de l'UE: Pierre Fenies

### Cas LaVieille

Cas proposé par Vincent Giard

La société LaVieille est petite entreprise artisanale de luxe, comportant une centaine de personnes et spécialisée depuis plusieurs générations dans la fabrication de couteaux de table et couteaux pliants de grande qualité, montés à la main (production annuelle d'environ 250000 pièces). Plusieurs familles de modèles sont fabriquées et montés à la main. On ne s'intéressera ici qu'à la gamme de couteaux pliants Grands Espaces, qui comporte trois modèles (Brousse, Garrigue et Savane) et utilise des composants communs. Le schéma de la page suivante montre la liste des composants utilisés et comment ils sont assemblés pour constituer un couteau. Ce schéma est le même pour les trois références. Les seuls composants qui diffèrent d'un modèle à l'autre sont les flancs des couteaux, que l'on appelle côtes (composants référencés 1 dans le schéma) qui sont en ébène pour le modèle Brousse, en olivier pour modèle Garrigue et en corne pour le modèle Savane. Les différents composants sont achetés (comme la référence 11, Rivet acier) ou fabriqués. L'atelier Sud est consacré exclusivement au montage de la gamme de couteaux pliants Grands Espaces. Il comporte quatorze compagnons, ce qui correspond à une capacité de production hebdomadaire de 440 heures (temps requis). Le taux horaire standard de l'atelier Sud est de 100 €, ce qui inclut les charges salariales et l'amortissement des équipements.



La société LaVieille gère sa fabrication selon les principes de la MRP. On est à la fin de la dernière semaine 9 (vendredi 28 février 2009). Le tableau 2 fournit un extrait du plan directeur de production de LaVieille et le tableau 1 fournit les informations complémentaires sur les références étudiées.

**Tableau 1: Informations complémentaires** 

|              | Livraison<br>attendue en début<br>de semaine 9 | Position de stock en fin de semaine 8 | Stock de<br>sécurité<br>désiré <sup>a</sup> | Délai<br>d'obtention<br>(en semaines) | Temps<br>unitaire de<br>fabrication<br>(en heure) | Coût total de<br>tous les<br>composants<br>utilisés <sup>b</sup> |
|--------------|------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------------------|------------------------------------------------------------------|
| Brousse      | 580                                            | 130                                   | 10%                                         | 1                                     | 0,2                                               | 3 €                                                              |
| Garrigue     | 740                                            | 210                                   | 10%                                         | 1                                     | 0,2                                               | 2,25 €                                                           |
| Savane       | 320                                            | 140                                   | 10%                                         | 1                                     | 0,25                                              | 2,40 €                                                           |
| Rivets acier | 6000                                           | 350                                   | 20%                                         | 1                                     | -                                                 | 0,15€                                                            |

a.En% des besoins bruts de la période

Tableau 2 : Extrait du plan directeur de LaVieille

| Semaine  | 10  | 11  | 12   | 13  | 14   | 15  |
|----------|-----|-----|------|-----|------|-----|
| Brousse  | 650 | 520 | 780  | 590 | 780  | 910 |
| Garrigue | 850 | 510 | 1020 | 770 | 1020 | 770 |
| Savane   | 420 | 340 | 460  | 380 | 460  | 520 |

- a) Le vendredi 28 février 2009, en fin de journée, on vous demande de calculer les livraisons programmées des quatre références retenues ici, en supposant que les autres composants seront disponibles en quantité suffisante. Dans l'ajustement «charge capacité», vous veillerez à ce que le transfert de charge corresponde à la production d'un nombre entier de couteaux <sup>1</sup>.
- **b)** Le matin du lundi 2 mars 2009, l'acheteur du rayon coutellerie des GM (Galeries Modernes) téléphone pour demander s'il est possible de satisfaire, le 9 mars 2009 au plus tard (au début de la semaine 11), une commande urgente de 40 couteaux du modèle Savane. Sachant que vous disposez en début de semaine 10 (après livraison) de 551 jeux <sup>2</sup> de côtes en corne et que la programmation décidée vendredi peut être modifiée si nécessaire, quelles décisions d'adaptation prenez-vous pour essayer de satisfaire cette demande partiellement ou en totalité. Vous retiendrez les hypothèses de travail suivantes:
  - il est possible de remettre partiellement en cause l'arbitrage de l'ajustement «charge-capacité» décidé à la question précédente,
  - il ne semble pas judicieux de créer un stock de sécurité additionnel en relation avec cette demande additionnelle ni d'utiliser plus de 50% de ce stock de sécurité pour satisfaire cette demande additionnelle

b.Et donc y compris les rivets en acier.

<sup>1.</sup> Cette contrainte n'est pas prise en compte dans le cours. Il vous faut donc adapter le raisonnement.

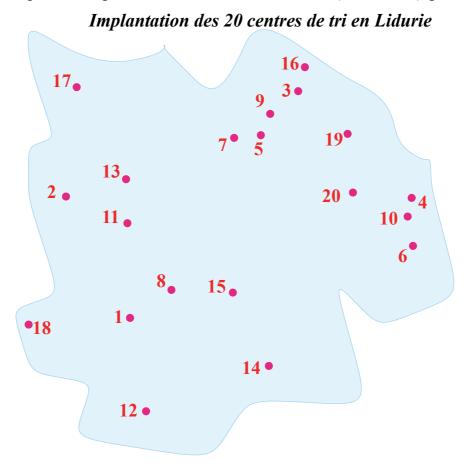
<sup>2.</sup> Un couteau de table utilise un jeu de 2 côtes, ces pièces n'étant pas identiques de part et d'autre du couteau (en raison des encoches). Attention aux incidences de l'ajustement «charge-capacité»

- tous les autres composants sont disponibles en quantité suffisante, quelle que soit la décision prise,
- il est inutile d'examiner l'incidence de ces décisions sur les rivets.
- c) Le vendredi 6 mars au soir, un contrôle de qualité montre que 5 couteaux Garrigue et 3 couteaux Savane présentent des défauts inacceptables. Par ailleurs, le PDP de la semaine 16 est de 750 pour le modèle Brousse, 780, pour le modèle Garrigue et 540 pour le modèle Savane. Déterminez les lancements de ces 3 références, sachant qu'en définitive, le client qui s'était manifesté le 2 mars n'a pas donné suite. Sauf erreur de calcul, vous devez rencontrer un problème de capacité sur la première période, vous obligeant à retarder la reconstitution des stocks de sécurité.



# Master de Sciences de Gestion

Mention: Management de la performance


Spécialité: Management des processus de production de biens et services

UE 266U3: Pilotage des flux à moyen et court terme Responsable de l'UE: Pierre Fenies

# Cas Reconfiguration de l'acheminement de la Poste Lidurienne

(cas rédigé par Vincent Giard)

La Direction de la **Poste Lidurienne** a décidé de réorganiser l'acheminement des journaux qui lui sont confiés. L'acheminement final sera toujours effectué à partir des bureaux de poste (tournées de facteurs) mais ceux-ci seront alimentés par un centre de tri spécialisé dans le traitement des journaux. Une centaine de centres de tri sont prévus, mais pour simplifier le problème, on en a retenu 20 (voir carte) pour analyser la



démarche à suivre Le trafic à acheminer dans chacun des centres est fourni dans le premier tableau de la page suivante la vec le nombre de camions nécessaires pour effectuer le transport en une seule fois (ces données simplifiées n'intègrent pas la

<sup>1.</sup> Ces données se trouvent dans la feuille «Poste Lidurienne» du classeur Excel «MPPBS.xls». Le plus simple est de télécharger le fichier Poste\_Lidurienne.dat (URL: http://www.lamsade.dauphine.fr/~giard/Poste\_Lidurienne.dat) et de reprendre les noms des tableaux et paramètres de ce fichier.

saisonnalité de la demande). Le tableau suivant fournit les distances routières entre centres.

Trafic à acheminer dans chaque centre

|      | Centre de destination <i>j</i>                                        |      |     |      |     |      |      |      |     |     |      |     |      |      |      |      |     |      |      |
|------|-----------------------------------------------------------------------|------|-----|------|-----|------|------|------|-----|-----|------|-----|------|------|------|------|-----|------|------|
| 1    | 2                                                                     | 3    | 4   | 5    | 6   | 7    | 8    | 9    | 10  | 11  | 12   | 13  | 14   | 15   | 16   | 17   | 18  | 19   | 20   |
|      | Nombres quotidiens de conteneurs $c_j$ à acheminer vers le centre $j$ |      |     |      |     |      |      |      |     |     |      |     |      |      |      |      |     |      |      |
| 1347 | 602                                                                   | 1261 | 508 | 1303 | 782 | 1453 | 1379 | 1258 | 761 | 982 | 1293 | 506 | 1366 | 1382 | 1480 | 1048 | 900 | 1230 | 1420 |
|      | Nombre de camions nécessaires pour cet acheminement <sup>a</sup>      |      |     |      |     |      |      |      |     |     |      |     |      |      |      |      |     |      |      |
| 23   | 11                                                                    | 22   | 9   | 22   | 14  | 25   | 23   | 21   | 13  | 17  | 22   | 9   | 23   | 24   | 25   | 18   | 15  | 21   | 24   |

a. 60 conteneurs par camion  $\Rightarrow$  nombre de camions = arrondi supérieur du quotient du nombre de conteneurs par 60.

# Distances entre centres $d_{ij}$

|               |    |     |     |     |     |     |     |     |     | Cent | re de o | destin | ation |     |     |     |     |     |     |     |     |
|---------------|----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|--------|-------|-----|-----|-----|-----|-----|-----|-----|-----|
|               |    | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9    | 10      | 11     | 12    | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|               | 1  | -   | 305 | 637 | 733 | 506 | 706 | 463 | 118 | 555  | 709     | 203    | 206   | 297 | 351 | 255 | 686 | 513 | 249 | 661 | 605 |
|               | 2  | 305 | -   | 611 | 845 | 495 | 854 | 431 | 327 | 529  | 834     | 161    | 503   | 150 | 614 | 457 | 645 | 236 | 291 | 700 | 699 |
|               | 3  | 637 | 611 | -   | 362 | 132 | 437 | 186 | 527 | 85   | 380     | 506    | 784   | 463 | 596 | 463 | 52  | 541 | 829 | 152 | 255 |
|               | 4  | 733 | 845 | 362 | -   | 392 | 103 | 452 | 618 | 390  | 41      | 697    | 795   | 700 | 503 | 483 | 386 | 853 | 974 | 210 | 147 |
|               | 5  | 506 | 495 | 132 | 392 | -   | 440 | 65  | 397 | 50   | 397     | 378    | 658   | 345 | 496 | 346 | 180 | 463 | 699 | 210 | 253 |
|               | 6  | 706 | 854 | 437 | 103 | 440 | -   | 493 | 595 | 449  | 66      | 699    | 742   | 715 | 437 | 451 | 467 | 889 | 952 | 290 | 189 |
|               | 7  | 463 | 431 | 186 | 452 | 65  | 493 | -   | 360 | 101  | 454     | 320    | 627   | 281 | 497 | 333 | 228 | 401 | 644 | 275 | 310 |
| Эe            | 8  | 118 | 327 | 527 | 618 | 397 | 595 | 360 | -   | 447  | 595     | 179    | 270   | 262 | 287 | 148 | 577 | 493 | 357 | 544 | 488 |
| igin          | 9  | 555 | 529 | 85  | 390 | 50  | 449 | 101 | 447 | ·    | 400     | 421    | 708   | 380 | 541 | 395 | 131 | 477 | 744 | 193 | 261 |
| l'ori         | 10 | 709 | 834 | 380 | 41  | 397 | 66  | 454 | 595 | 400  | -       | 683    | 763   | 692 | 467 | 456 | 407 | 854 | 952 | 230 | 144 |
| re d          | 11 | 203 | 161 | 506 | 697 | 378 | 699 | 320 | 179 | 421  | 683     | ı      | 408   | 94  | 460 | 297 | 547 | 318 | 325 | 571 | 553 |
| entre         | 12 | 206 | 503 | 784 | 795 | 658 | 742 | 627 | 270 | 708  | 763     | 408    | ı     | 501 | 314 | 332 | 836 | 718 | 341 | 774 | 690 |
| $\mathcal{C}$ | 13 | 297 | 150 | 463 | 700 | 345 | 715 | 281 | 262 | 380  | 692     | 94     | 501   | -   | 530 | 357 | 499 | 232 | 392 | 550 | 554 |
|               | 14 | 351 | 614 | 596 | 503 | 496 | 437 | 497 | 287 | 541  | 467     | 460    | 314   | 530 | ı   | 179 | 648 | 760 | 590 | 535 | 426 |
|               | 15 | 255 | 457 | 463 | 483 | 346 | 451 | 333 | 148 | 395  | 456     | 297    | 332   | 357 | 179 | •   | 516 | 584 | 502 | 442 | 364 |
|               | 16 | 686 | 645 | 52  | 386 | 180 | 467 | 228 | 577 | 131  | 407     | 547    | 836   | 499 | 648 | 516 | -   | 558 | 872 | 177 | 292 |
| 1             | 17 | 513 | 236 | 541 | 853 | 463 | 889 | 401 | 493 | 477  | 854     | 318    | 718   | 232 | 760 | 584 | 558 | -   | 525 | 669 | 710 |
|               | 18 | 249 | 291 | 829 | 974 | 699 | 952 | 644 | 357 | 744  | 952     | 325    | 341   | 392 | 590 | 502 | 872 | 525 | -   | 879 | 840 |
|               | 19 | 661 | 700 | 152 | 210 | 210 | 290 | 275 | 544 | 193  | 230     | 571    | 774   | 550 | 535 | 442 | 177 | 669 | 879 | -   | 126 |
|               | 20 | 605 | 699 | 255 | 147 | 253 | 189 | 310 | 488 | 261  | 144     | 553    | 690   | 554 | 426 | 364 | 292 | 710 | 840 | 126 | -   |

Le problème posé est celui du choix de quelques centres devant jouer le rôle de plateforme recevant par avion <sup>1</sup> les journaux destinés aux personnes relevant bureaux de poste de leur circonscription et à celles qui relèvent des circonscriptions des centres qui leur sont rattachés. Pour simplifier, on suppose ici qu'un centre de tri n'est rattaché qu'à une seule plate-forme.

Les quotidiens régionaux étant presque toujours imprimés dans la région de leur lectorat, on ne s'intéresse ici qu'aux quotidiens nationaux qui sont tous imprimés près de la capitale Alphaville, proche du centre de tri 15 (qui est donc directement alimenté par les imprimeries). Les journaux partiraient vers minuit de l'aéroport ou de la gare d'Alphaville pour être acheminé vers les plates-formes retenues. Celles-ci expédient ensuite les journaux qui ne lui sont pas destinés vers les centres de tri qui lui sont rattachés. Le temps de transport doit être assez court pour permettre au centre de tri de traiter le flux avant de l'envoyer dans les bureaux de poste. Pour cette raison, il a été décidé

<sup>1.</sup> Le TGV postal est un mode de transport possible mais il n'a pas été retenu pour simplifier la modélisation demandée.

de ne retenir, à partir du distancier ci-dessus, que les relations entre centres faisant moins de 300 kilomètres, le réseau routier et autoroutier étant excellent. Le coût quotidien d'acheminement pour transporter les journaux d'un centre d'origine, considéré alors comme plate-forme possible, vers le centre de tri de destination, c'est-à-dire celui acheminera les journaux reçus vers les bureaux de poste est la somme de charges fixes (personnel et amortissement du camion, principalement) estimées à \$65 et de charges variables proportionnelles à la distance parcourue (essence, entretien courant...) estimées à \$1 / km<sup>1</sup>.

Le problème posé se traite à l'aide de variables binaire  $x_{ij}$  valant 1 si le centre i joue le rôle de plate-forme pour le centre j<sup>2</sup>. On est en présence d'une variante du problème classique d'assignation: un centre de tri est nécessairement desservi par une plate-forme mais tous les centres n'ont pas vocation à être plate-forme. Le coût de la configuration retenue est la somme de deux coûts partiels

- la somme des coûts d'acheminement des plates-formes i retenues vers les centres j qu'il dessert; on notera que le trafic total traité par la plate-forme i est  $\sum_{i} c_{j} x_{ij}$ ;
- la somme des coûts d'acheminement d'Alphaville vers chacune des plates-formes retenues *i*; la capacité d'un avion étant équivalente à 700 conteneurs, le nombre d'avions nécessaire pour traiter le trafic destiné à la plate-forme *i* est le nombre

 $\frac{\sum c_j x_{ij}}{700} \text{ entier } z_i \text{ tel que } z_i \geq \frac{j}{700} \text{ , valeur }^3 \text{ qu'il faut multiplier par le coût unitaire du vol d'Alpha ville à l'aéroport proche du centre, augmenté du coût du transport terminal (voir tableau ci-dessous).}$ 

Coût du déplacement d'un avion de l'aéroport d'Alphaville à l'aéroport de destination le plus proche du centre de tri<sup>a</sup>

|       | Centre de destination |       |       |       |       |       |       |       |       |       |       |       |       |                |       |       |       |       |       |
|-------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|-------|-------|-------|-------|-------|
| 1     | 2                     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15             | 16    | 17    | 18    | 19    | 20    |
| 26500 | 46700                 | 47300 | 49300 | 35600 | 46100 | 34300 | 15800 | 40500 | 46600 | 30700 | 34200 | 36700 | 18900 | Alpha<br>ville | 52600 | 59400 | 51200 | 45200 | 37400 |

- a. Ce coût est calculé par la formule de coût: 1000 + 100 x T<sub>15 i</sub>
- 1. Par exemple, si le centre 11 est retenu comme plate-forme desservant le centre 2, 11 camions devront être mobilisés à cette fin, ce qui conduit à un coût de 11 x (\$ 65 + 1 \$ x 161) = 2486, la distance entre ces deux centres étant de 161 km.
- 2. A priori, ces variables binaires ne sont à créer que pour les couples de centres distants de moins de 300 kilomètres. Sachant qu'une plate-forme traite nécessairement les journaux destinés à ce centre de tri jouant le rôle de plate-forme, on a 98 + 20 = 118 variables binaires (au lieu de 400 sans cette restriction). Cette limitation du nombre de variables se réalise par le biais de conditions logiques dans le modeleur, leur génération étant automatique. Sans cette restriction, la version étudiante de XPress ne permet pas de résoudre le problème en raison du nombre trop élevé de variables. Dans les problèmes réels, toujours d'une grande taille, l'utilisation de ce type de condition s'impose toujours pour permettre l'obtention de solutions optimales (ou proches de l'optimum) en un temps raisonnable. Techniquement, si x est la variable binaire d'assignation, après la déclaration avec les indices Plateforme et Centre\_de\_tri (X: array(Plateforme, Centre\_de\_tri) of mpvar), il faut restreindre la spécification des variables binaires (forall(i in Plateforme, j in Centre\_de\_tri | Distance(i,j)<300) X(i,j) is\_binary) et ne pas oublier de rajouter cette contrainte chaque fois que vous utilisez cette variable binaire (par exemple sum(i in Plateforme|Distance(i,j)<300)). Dans la compilation du modèle avec les données, la variable X(i,j) n'étant jamais utilisée pour les couples «i,j» pour lesquels Distance(i,j)>=300 ne sera pas générée.
- 3. Ce nombre  $z_i$  aura tendance à être le plus faible possible puisqu'il intervient dans le coût global à minimiser; la contrainte aura pour effet de bien mettre en service le nombre d'avions nécessaire. On doit ajouter que dans cette formulation, on ne tiendra pas compte de ce qu'un avion peut être affrété pour desservir deux aéroports (reliquats non acheminés par un premier avion pour chacune de ces destinations).

La capacité de traitement des centres est limitée, ce qui implique qu'il faille en tenir compte dans les affectations des centres aux plates-formes. Ces capacités (exprimées en conteneurs à traiter) sont fournies dans le tableau ci-après.

Capacité des centres de tri candidats pour servir de plate-forme (unité: conteneur)

|      | Centre candidat pour être plate-forme              |      |         |         |      |      |      |         |      |      |         |      |      |      |      |         |      |      |      |
|------|----------------------------------------------------|------|---------|---------|------|------|------|---------|------|------|---------|------|------|------|------|---------|------|------|------|
| 1    | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |      |         |         |      |      |      |         |      |      |         |      |      |      |      |         |      |      |      |
| 3000 | 3000                                               | 3000 | 3 0 0 0 | 3 0 0 0 | 3000 | 3000 | 3000 | 3 0 0 0 | 3000 | 3000 | 3 0 0 0 | 3000 | 4000 | 5000 | 4000 | 3 0 0 0 | 3000 | 3000 | 3000 |

- 1) Compte tenu de ces informations, formulez un premier programme linéaire permettant de définir le réseau le plus économique; trouvez la solution optimale avec le modeleur.
- 2) En réalité, le problème est plus complexe, la capacité des centres est susceptible de varier movennant des investissements supplémentaires. On adoptera une version simplifiée du problème en supposant que tous les centres de tri sont susceptibles d'avoir une extension de capacité définie en deux tranches: la première tranche accroît la capacité du centre où l'investissement est réalisé, de 500 conteneurs (investissement de 1000000 dollars liduriens); la seconde tranche offre une capacité complémentaire de 300 conteneurs (investissement de 500000 dollars liduriens). D'un point de vue méthodologique, il faut minimiser une VAN, actualisant l'échéancier constant des dépenses quotidiennes <sup>1</sup>, s'ajoutant aux investissements retenus, le taux d'actualisation annuel étant de 10 %. Une alternative judicieuse, parce que permettant de mieux comparer la solution optimale avec celle obtenue précédemment, consiste à travailler sur des coûts quotidiens en ajoutant aux coûts de transport un coût constant équivalent aux investissements réalisés. Recopiez votre modèle en changeant son nom puis adaptez-le, trouvez la solution optimale et comparez-là à la précédente.

<sup>1.</sup> Il faut donc utiliser un taux d'actualisation quotidien équivalent au taux annuel. Travaillez avec 365 jours par an, ce qui ne vous empêche pas de réfléchir sur une meilleure solution prenant en compte le fait que le dimanche, il n'y a pas de journal à acheminer.



# Master de Sciences de Gestion

Mention: Management de la performance

Spécialité: Management des processus de production de biens et services

UE 266U3: Pilotage des flux à moyen et court terme Responsable de l'UE: Pierre Fenies

# **Simulog**

Simulation proposée et animée par Thierry Fouque



# JEU DE SIMULATION DE DECISIONS LOGISTIQUES

**Thierry Fouque** 

### Sommaire

# PRINCIPE ET OBJECTIF DES JEUX DE SIMULATION D'ENTREPRISE \_\_\_\_\_\_2 MANUEL UTILISATEUR DE SIMULOG.....4 I / Presentation du cas ......4 II / Principe d'utilisation ......4 IV / DEMARRAGE DU JEU ......5 V / PARAMETRES LIES A LA FONCTION DISTRIBUTION......6 VII / RESULTAT NET D'EXPLOITATION......24

### PRINCIPE ET OBJECTIF DES JEUX DE SIMULATION D'ENTREPRISE

Les entreprises qui veulent être performantes sur leur marché se doivent d'avoir un pôle logistique efficace. Pour cela, elles disposent de plusieurs paramètres décisionnels concernant par exemple les transports ou plus en amont les facteurs de production.

La fonction transport notamment concourt pleinement à la maîtrise des coûts logistiques et surtout à l'amélioration du taux de service en leur permettant d'être présentes plus rapidement que leurs concurrents sur un marché mondialisé ou bien d'être approvisionnés, au moindre coût et dans les meilleurs délais, en matières premières ou pièces détachées.

Le rôle des personnes en charge de la logistique est de trouver les solutions possibles afin que les barrières traditionnelles entre le transport à proprement parler et les opérations annexes s'estompent.

Le transport devient une conséquence de la logistique puisque les contraintes de la demande en flux, toujours plus tendus, structurent l'offre qui doit être toujours plus fiable et flexible : la qualité de service fait partie intégrante du produit logistique et de ce fait les prestations de transport sont de plus en plus organisées par des circuits d'information très performants. La montée en puissance de l'EDI gagne désormais tous les secteurs d'activité.

Il est manifeste que la fonction transport doit être exercée au sein d'une fonction plus vaste de logistique intégrée en interface avec toutes les autres fonctions de l'entreprise; cela, afin de parvenir à une insertion de la prestation de transport dans les rythmes et exigences de l'entreprise au regard de ses contraintes propres de distribution, de production, d'approvisionnements.

Elle est intégrée ainsi dans un concept et une stratégie très vaste d'optimisation logistique visant à supprimer tous les coûts inutiles au long de la chaîne du producteur jusqu'au client. Car il faut également bien savoir gérer sa production, de l'achat des matières premières jusqu'à la mise à disposition des produits finis en passant par la gestion de la main d'œuvre dans les ateliers de fabrication,...

Afin de se familiariser avec ce phénomène de logistique intégrée, ce jeu de simulation (SimuLog) a pour objectif de mettre les étudiants dans une situation de gestion d'une entreprise sur un marché concurrentiel, à travers des paramètres liés à l'approvisionnement en matières premières et composants, à la production et à la distribution des produits fabriqués.

La simulation est une méthode de formation qui, en un temps relativement court, doit permettre de faire vivre des situations très variées. Les apprenants sont acteurs, puisqu'ils prennent des décisions, un modèle informatisé simule les réactions de l'environnement économique aux actions des apprenants.

Elle permet de s'exercer à la formalisation des problèmes en conduisant l'acteur à se poser des questions du type « Quel est le problème que je dois résoudre en priorité ? »", « Comment le poser ? », « Quelles sont les informations utiles que je possède ? ». En outre, cette méthode présente l'intérêt d'utiliser une grande variété de supports pédagogiques tout en y associant une activité didactique plus vivante, plus ludique. Grâce à la simulation, l'apprenant découvre la gestion en la vivant, il n'ajoute pas un savoir à d'autres savoirs, il acquiert une expérience.

Le système présenté ici doit permettre aux participants de mettre en œuvre des techniques connues (nous verrons plus loin lesquelles), d'utiliser des principes de gestion assez simples, de se

familiariser avec le travail en équipe et d'apprendre à réagir face aux conséquences des décisions antérieures et d'évènements inattendus tels qu'un accroissement brutal de demande, une panne camion ou encore des conditions météorologiques difficiles.

Comme dans la réalité, les participants doivent, dans un premier temps, estimer le potentiel de marché et s'informer sur la concurrence représentée par des groupes constitués du même nombre d'individus et « jouant » au même moment. Viennent ensuite les décisions des moyens à mobiliser pour assurer la production (ressources humaines, achats de matières premières, etc....) et la distribution.

Ils peuvent rapidement évaluer les impacts éventuels de leurs décisions et ainsi affiner leurs stratégies, sans pour autant faire disparaître les incertitudes et les risques qui viennent de l'évolution des marchés et des actions des entreprises concurrentes.

L'objectif final des gestionnaires est de laisser l'entreprise, au terme du jeu, dans un état de prospérité susceptible de satisfaire leur conseil d'administration. Du point de vue du jeu, cela signifie que l'entreprise doit à la fin se trouver dans une situation lui permettant de continuer à produire, vendre, distribuer,...

Ce type de jeu oblige les participants à tenir compte du court terme et à décider en temps réel, tout en imposant une logique à long terme par sa nature multipériode. Cette simulation valorise la cohérence dont font preuve les acteurs du jeu tant dans la prise de décisions fonctionnelles que dans leur choix d'une logique stratégique.

Concrètement, pour chaque période (1 période = 1 semaine), suite aux différentes décisions de production et de distribution, chaque groupe remet une « feuille de décision » (fichier Excel) au « maître du jeu ». Celui-ci contrôle ensuite, pour chaque groupe, les résultats d'exploitation fournis par la simulation, reprenant les différents coûts et recettes engendrés par leurs décisions. A la fin du jeu (c'est à dire au bout du nombre de périodes défini au départ), la compilation des résultats détermine un « vainqueur ». Comme nous venons de le préciser, les équipes doivent, en fin de jeu, avoir rendu leur entreprise *en état de continuer son activité*. Si cette condition n'est pas respectée, des coûts supplémentaires seront appliqués en fin de jeu.

Après avoir présenté le cas qui nous intéresse ici, nous définirons les paramètres de production et de distribution que les acteurs ont besoin de connaître avant de démarrer le jeu. Par ailleurs, nous évoquerons tout au long du manuel les différents coûts et recettes liés aux décisions des équipes.

### MANUEL UTILISATEUR DE SIMULOG

### I / PRESENTATION DU CAS

L'entreprise dont vous venez de prendre les destinées en main est spécialisée dans la *production* et la *distribution* d'unités centrales de micro-ordinateurs.

Elle commercialise deux types de boîtiers dont nous vous présentons les caractéristiques cidessous. On supposera que les écrans sont vendus séparément par un grossiste.

• *Boîte 1* :

Longueur: 25 cm Largeur: 25 cm Hauteur: 75 cm Poids: 20 kg



Boîte 2 :

Longueur: 50 cm Largeur: 50 cm Hauteur: 25 cm Poids: 15 kg



Son réseau de distribution est constitué d'une usine située à Paris (où sont stockés les produits finis) et de six entrepôts (Brest, Dunkerque, Marseille, Nancy, Paris, et Toulouse). Notons que l'entrepôt de Paris est situé au même endroit que l'usine et qu'il n'y aura donc pas de coûts de distribution ni de problèmes de transports afférents à la livraison de cet entrepôt.

L'objectif premier de votre groupe est, compte tenu de la situation de départ et des perspectives d'évolution de l'activité de votre entreprise, d'organiser les différents flux de produits de manière à obtenir le résultat d'exploitation le plus performant tout en respectant les contraintes de gestion définies plus loin.

Il faudra donc, à la fin de chaque période, avoir *vendu* le plus possible, avec la plus forte *marge*, en dépensant le moins possible de frais. Pour cela, en fonction des *prévisions de ventes* que vous aurez préalablement effectuées, la marchandise devra être au bon endroit (l'Entrepôt), au bon moment (disponible). Après avoir exposé le principe d'utilisation du logiciel, nous préciserons les paramètres à connaître pour atteindre cet objectif.

### II / PRINCIPE D'UTILISATION

L'application présentée ici est destinée à la simulation de décisions dans le cadre d'une chaîne logistique intégrée. Pour vous aider dans votre démarche, vous disposez du manuel ci-joint qui recense l'ensemble des informations relatives à l'exploitation que vous allez devoir gérer pendant un certain nombre de périodes, en principe six à huit semaines (la semaine étant l'unité de temps du jeu). Avant de démarrer, il est nécessaire de lire attentivement ces renseignements afin de bien cerner l'environnement dans lequel vous allez devoir travailler.

Le programme interactif se décompose en deux grandes parties :

- Une première, où vous serez amenés à préciser vos décisions relatives à l'approvisionnement des entrepôts (trajets, quantités à livrer, ...).

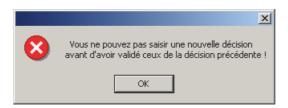
 Une deuxième, où vous aurez à gérer toute la partie Production de vos ateliers, des effectifs jusqu'au programme de production dans chacun des ateliers en passant par les approvisionnements.

Par ailleurs, ce même programme vous informera chaque fois que vous transgressez une des règles de gestion que nous définirons au fur et à mesure de la description des paramètres du jeu.

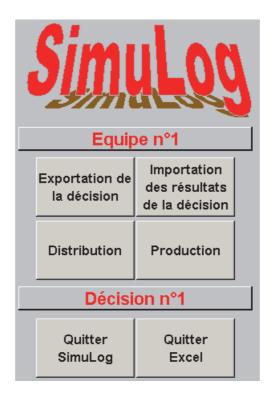
Ces différents choix vous conduiront à un *Résultat Net d'Exploitation* dont il vous sera possible de consulter le détail par période ainsi que le cumul depuis le début de votre gestion.

### III / PREVISIONS DES VENTES

Avant de démarrer, il est nécessaire de bien connaître l'état du marché. En effet, une des finalités principales étant de livrer les clients au départ de chacun des entrepôts, l'étude des séries de ventes par entrepôt (voir les graphiques et les extraits de données pages suivantes et la disquette fournie) doit vous permettre de déterminer des prévisions de ventes. Pour cela, vous disposez d'un historique portant sur 24 périodes de ventes dans chacun de vos entrepôts. Afin de bien cerner les besoins, vous devez effectuer des prévisions à partir de ces données en utilisant des méthodes telles que Holt-Winters par exemple.


Nous vous conseillons de bien étudier les séries de ventes dans les différents entrepôts (cf. disquette) avant d'effectuer vos prévisions. Cette analyse devra vous permettre de définir des modèles de prévision des demandes dont dépendront nombre de vos décisions..

### IV / DEMARRAGE DU JEU


Lorsque vous lancez l'application, l'écran figurant sur la page suivante apparaît. Vous noterez que sont indiqués le numéro de votre équipe ainsi que le numéro de la décision en cours afin que vous puissiez vous repérer dans le temps.

Les boutons « Exportation de la décision » et « Importation de la décision » sont réservés au maître du jeu et ils ne vous seront donc pas accessibles. En revanche, pour effectuer vos décisions de distribution et de production, vous aurez à cliquer sur les boutons correspondants, un lien existant entre les écrans de décision.

Tant que vos décisions n'auront pas été validées (cette tâche étant à la charge du maître du jeu), vous ne pourrez pas accéder aux écrans de la décision suivante et un message vous en avertira :



Vous devrez alors attendre les résultats de votre précédente décision avant de pouvoir préparer la suivante.



### V / PARAMETRES LIES A LA FONCTION DISTRIBUTION

Si vous cliquez dans l'écran précédant sur le bouton « Distribution », vous accédez à un écran de décision dont nous allons examiner les différents paramètres ici.

### 1 – Produits finis

Les produits finis (P1 et P2) sont au centre de notre chaîne logistique. Rappelons qu'il s'agit dans notre cas d'unités centrales (UC) d'ordinateurs. Ils induisent plusieurs contraintes : ils ont un poids et un volume unitaires (cf. présentation du cas), deux paramètres contraignants pour le transport. Le volume sera exprimé en dm<sup>3</sup> et le poids en kg.

Le stock disponible (en usine et dans les entrepôts) correspond au stock en début de période. Il peut seul faire l'objet d'un transport vers les entrepôts et donc d'une vente. Les valeurs indiquées ci-dessous correspondent au stock au début du jeu.

Chacun des produits engendre un coût propre, appelé coût d'obtention, comprenant le prix de revient des composants nécessaires à sa fabrication et le coût de main d'œuvre valorisé au prorata du temps « normal » (hors heures supplémentaires) pour assembler les pièces détachées.

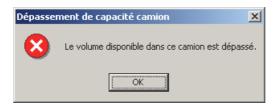
Le coût de rupture interviendra lorsqu'une unité de produit ne sera pas livrée en raison d'un épuisement des stocks dans un entrepôt ou dans l'usine. Cet élément n'est pas à négliger dans la mesure où une rupture de stock entraîne une dégradation de l'image de marque de l'entreprise et donc un risque de baisse du niveau des ventes futures. Dans notre cas, si le produit considéré n'est pas au bon endroit au bon moment, la vente est perdue. Outre la perte de confiance des clients, l'entreprise doit donc faire face à un manque à gagner non négligeable.

Ce coût de rupture est calculé au prorata du prix de vente unitaire du produit et diffère selon qu'il s'agit d'une pénurie en entrepôt ou dans l'entrepôt-usine de Paris. Ainsi, il est de 20 % en entrepôt pour les deux produits et 30 % lorsque la rupture se produit dans l'usine de distribution.

Enfin, le prix de vente unitaire est fixé en début de jeu pour les deux types de boîtiers et n'évolue plus ensuite.

|              | Volume (dm <sup>3</sup> ) | Poids<br>(kg) | Stock disponible | Prix de vente<br>unitaire (FF) | Rupture<br>usine (FF) | Rupture<br>entrepôts (FF) |
|--------------|---------------------------|---------------|------------------|--------------------------------|-----------------------|---------------------------|
| Boîtier nº 1 | 46,875                    | 20            | 1000             | 5380                           | 1614                  | 1076                      |
| Boîtier nº 2 | 62,5                      | 15            | 1100             | 3730                           | 1119                  | 746                       |

Connaissant le stock initial pour les 2 produits dans chacun des entrepôts et les besoins pour la prochaine période, vous pourrez en déduire les quantités à approvisionner, soit au départ de l'usine, soit au départ d'un autre entrepôt, si la nécessité s'en fait sentir.


### 2 – Moyens de transport

Le transport des produits finis se fait uniquement par voie routière. Vous disposez pour cela de 3 camions, chacun conduit par un seul et unique chauffeur.

Le volume des véhicules est exprimé en dm<sup>3</sup> comme le volume des produits. Une première contrainte incite à contrôler que le volume total des produits chargés ne dépasse pas le volume du véhicule, aussi bien en hauteur qu'en largeur. Le camion 1 est un semi-remorque de 13.6 m en longueur, 2.47 m en largeur et 2.55 m en hauteur soit un volume utile de 85660 dm<sup>3</sup>. Pour le camion 2, le volume est de 50612 dm<sup>3</sup> (8.1 m en longueur, 2.46 m en largeur et 2.54 m en hauteur). Le camion 3 est long de 6.5 m, large de 2.44 m et haut de 2.35 m soit un volume total de 37271 dm<sup>3</sup>.

Le poids ou charge utile est exprimé en kg, comme pour les produits. Bien entendu, le poids total des produits chargés doit être inférieur à la charge utile du véhicule (28 t pour le camion 1, 10 t pour le camion 2 et 5 t pour le camion 3).

Si votre décision entraîne une charge utile ou un volume supérieurs à ce que peut contenir le camion, un message d'alerte vous le signalera :



Vous aurez également à prendre en considération les coûts horaires correspondant aux salaires des 3 chauffeurs. Ceux-ci seront payés, quelle que soit la durée d'utilisation de leur camion, selon un salaire de base (fixe pour une durée normale du travail de 35 heures) incluant également une prime de risque croissante avec la taille du véhicule. Nous distinguerons le salaire fixe du coût des heures supplémentaires réalisées au-delà de l'horaire de base, sachant que la loi ne vous autorise qu'à un dépassement de 10 heures.

Si vous dépassez le temps total de travail autorisé pour un chauffeur, le logiciel vous l'indiquera et vous serez dans l'obligation de reconsidérer l'organisation de votre tournée :



Enfin, en fonction des distances parcourues lors des tournées, celles ci engendreront deux catégories de coûts : les coûts liés à la consommation de carburant et aux péages et les coûts liés à l'amortissement du véhicule et à son usure. Ces frais seront donc débités au prorata des kilomètres effectivement parcourus. Vous trouverez ci dessous le tableau des distances et un tableau récapitulatif de ces coûts par camion et par trajet.

Ayant pris connaissance de ces différentes contraintes, vous pourrez organiser vos tournées en conséquence, en gardant pour objectif de livrer ce qu'il faut au bon endroit, au bon moment.

#### Matrice des distances :

|           | Brest | Dunkerque | Marseille | Nancy | Paris | Toulouse |
|-----------|-------|-----------|-----------|-------|-------|----------|
| Brest     |       | 754       | 1298      | 968   | 591   | 922      |
| Dunkerque | 754   |           | 1093      | 494   | 296   | 988      |
| Marseille | 1298  | 1093      |           | 738   | 792   | 407      |
| Nancy     | 968   | 494       | 738       |       | 377   | 961      |
| Paris     | 591   | 296       | 792       | 377   |       | 694      |
| Toulouse  | 922   | 988       | 407       | 961   | 694   |          |

### Résumé des paramètres de transport :

|          | Volume (dm³) | Poids (kg) | Salaire horaire<br>(FF/h) | Coût des heures supplémentaires (FF/h) | Coût km<br>(FF/km) |
|----------|--------------|------------|---------------------------|----------------------------------------|--------------------|
| Camion 1 | 85660        | 28000      | 400                       | +50% si < 40h<br>+100% si >= 40h       | 5                  |
| Camion 2 | 50612        | 10000      | 350                       | +50% si < 40h<br>+100% si >= 40h       | 4                  |
| Camion 3 | 37271        | 5000       | 300                       | +50% si < 40h<br>+100% si >= 40h       | 3                  |

### Durée moyenne et coût fixe par camion en fonction des trajets parcourus<sup>1</sup>

Vous pouvez, si besoin, vous reporter à la matrice des distances présentée au début de cette partie.

| Camion 1  | Brest   | Dunkerque | Marseille | Nancy   | Paris   | Toulouse |
|-----------|---------|-----------|-----------|---------|---------|----------|
| Brest     |         | 11 h      | 18 h 15   | 13 h 30 | 8 h 45  | 13 h 30  |
| Brest     |         | 1436 FF   | 2982 FF   | 2210 FF | 1291 FF | 1946 FF  |
| Dunkanana | 11 h    |           | 14 h 15   | 6 h 30  | 4 h 15  | 14 h 15  |
| Dunkerque | 1436 FF |           | 2675 FF   | 805 FF  | 642 FF  | 2088 FF  |
| Marseille | 18 h 15 | 14 h 15   |           | 9 h 45  | 10 h 45 | 5 h 30   |
| Marsenie  | 2982 FF | 2675 FF   |           | 1813 FF | 1950 FF | 996 FF   |
| Nancy     | 13 h 30 | 6 h 30    | 9 h 45    |         | 5 h 30  | 12 h 30  |
| Nancy     | 2210 FF | 805 FF    | 1813 FF   |         | 907 FF  | 2416 FF  |
| Paris     | 8 h 45  | 4 h 15    | 10 h 45   | 5 h 30  |         | 10 h 30  |
| raiis     | 1291 FF | 642 FF    | 1950 FF   | 907 FF  |         | 1431 FF  |
| Taulauga  | 13 h 30 | 14 h 15   | 5 h 30    | 12 h 30 | 10 h 30 |          |
| Toulouse  | 1946 FF | 2088 FF   | 996 FF    | 2416 FF | 1431 FF |          |

| Camion 2    | Brest   | Dunkerque | Marseille | Nancy   | Paris   | Toulouse |
|-------------|---------|-----------|-----------|---------|---------|----------|
| Dungt       |         | 10 h      | 17 h      | 12 h 30 | 7 h 45  | 12 h 45  |
| Brest       |         | 941 FF    | 2017 FF   | 1497 FF | 875 FF  | 1306 FF  |
| Dunlzanaua  | 10 h    |           | 14 h      | 6 h 30  | 4 h 30  | 14 h     |
| Dunkerque   | 941 FF  |           | 1812 FF   | 522 FF  | 441 FF  | 1396 FF  |
| Marseille   | 17 h    | 14 h      |           | 9 h 45  | 10 h 30 | 5 h 15   |
| iviaiseille | 2017 FF | 1812 FF   |           | 1224 FF | 1319 FF | 679 FF   |
| Nancy       | 12 h 30 | 6 h 30    | 9 h 45    |         | 5 h 15  | 12 h 30  |
| Nancy       | 1497 FF | 522 FF    | 1224 FF   |         | 620 FF  | 1637 FF  |
| Paris       | 7 h 45  | 4 h 30    | 10 h 30   | 5 h 15  |         | 10 h 15  |
| raiis       | 875 FF  | 441 FF    | 1319 FF   | 620 FF  |         | 965 FF   |
| Toulouse    | 12 h 45 | 14 h      | 5 h 15    | 12 h 30 | 10 h 15 |          |
| Toulouse    | 1306 FF | 1396 FF   | 679 FF    | 1637 FF | 965 FF  |          |

| Camion 3    | Brest   | Dunkerque | Marseille | Nancy   | Paris   | Toulouse |
|-------------|---------|-----------|-----------|---------|---------|----------|
| Brest       |         | 8 h 30    | 14 h 30   | 10 h 30 | 6 h 30  | 10 h 45  |
| Biest       |         | 892 FF    | 1933 FF   | 1435 FF | 837 FF  | 1247 FF  |
| Dunkerque   | 8 h 30  |           | 12 h      | 5 h 30  | 3 h 45  | 12 h     |
| Dunkerque   | 892 FF  |           | 1741 FF   | 489 FF  | 421 FF  | 1332 FF  |
| Marseille   | 14 h 30 | 12 h      |           | 8 h 15  | 9 h     | 4 h 30   |
| iviaiseille | 1933 FF | 1741 FF   |           | 1176 FF | 1268 FF | 652 FF   |
| Nancy       | 10 h 30 | 5 h 30    | 8 h 15    |         | 4 h 45  | 10 h 45  |
| Nancy       | 1435 FF | 489 FF    | 1176 FF   |         | 596 FF  | 1576 FF  |
| Paris       | 6 h 30  | 3 h 45    | 9 h       | 4 h 45  |         | 9 h      |
| raiis       | 837 FF  | 421 FF    | 1268 FF   | 596 FF  |         | 920 FF   |
| Toulouse    | 10 h 45 | 12 h      | 4 h 30    | 10 h 45 | 9 h     |          |
| Toulouse    | 1247 FF | 1332 FF   | 652 FF    | 1576 FF | 920 FF  |          |

<sup>&</sup>lt;sup>1</sup> Source : www.iti.fr

\_

### 3 - Temps de manutention

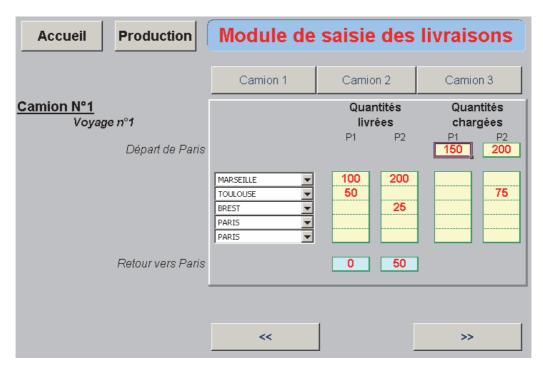
Dans la durée hebdomadaire du travail de chacun des chauffeurs, il ne faut pas oublier de décompter la manutention, temps nécessaire pour charger ou décharger une unité de produit d'un véhicule. Afin de faciliter les calculs, il sera équivalent, quelle que soit la nature du produit, le type de camion et l'entrepôt considéré. Ce temps a été évalué à 10 secondes par unité de produit que ce soit au chargement ou au déchargement de cette unité. C'est un paramètre important à prendre en compte car, au vu des volumes transportés, il augmente rapidement le temps de travail des chauffeurs qui, a priori, ne reçoivent aucune aide extérieure (y compris de la part des ouvriers des entrepôts).

### 4 - Entrepôts

Les entrepôts constituent l'extrémité finale de votre chaîne logistique (c'est dans les entrepôts que les clients viennent s'approvisionner). C'est un lieu de livraison et de stockage. Nous avons déjà évoqué les demandes de livraison dont vous disposez de l'historique. Vos prévisions de ventes vous permettront de préparer vos tournées sachant que vous devez toujours tenir compte des différentes contraintes de transport et de volume que nous venons de préciser.

Chacun d'entre eux a un stock disponible en début de période, calculé automatiquement compte tenu des mouvements de la période précédente (quantités livrées, chargées). Le stock utilisable pour la vente dans les entrepôts est égal au stock disponible en début de période majoré des entrées de ladite période et ôté des sorties éventuelles (transport vers d'autres entrepôts).

Vous avez donc la possibilité au cours d'une période de transférer des produits d'un entrepôt à un autre. Bien sûr, si vous décidez de charger une certaine quantité de produit dans un entrepôt qui ne disposerait pas d'un stock suffisant, le message suivant apparaîtra :




Sachez également que si des incidents majeurs doivent intervenir sur la route reliant 2 entrepôts (chutes de neige ou accès complètement bloqués par exemple), le maître du jeu vous en avertira afin que vous puissiez prendre les dispositions adéquates.

### 5 – Exemple de décision

Vous trouverez ci-dessous (cf. page suivante) la feuille de décision relative à l'activité transport. Pour les 3 types de camion, vous devez choisir ce qui sera chargé au départ de l'usine à Paris tout en respectant les contraintes de poids et de volumes. Ensuite, vous avez la possibilité de choisir votre trajet et ce que vous livrerez à chacun des entrepôts du parcours.

Comme nous venons de le préciser, dans le cas où vous constateriez un sur stock, il est envisageable de reprendre certaines quantités des produits en excédent dans les entrepôts afin de les transférer dans d'autres ou même de les ramener à Paris.



Dans l'exemple présenté ci-dessus, l'utilisateur a choisi de faire charger au camion 1 à Paris (usine) 150 unités de P1 et 200 unités de P2 lors de son voyage n°1. Par l'intermédiaire des listes déroulantes, il a choisi d'effectuer les trajets entre Paris et Marseille puis Marseille et Toulouse, Toulouse et Brest et enfin Brest et Paris. Rappelons en effet que le retour à Paris est obligatoire (et géré automatiquement par le logiciel) à la fin des voyages.

A Marseille seront livrées 100 unités de P1 et 200 unités de P2, soit pour ces dernières la totalité de ce que le camion transporte. Les 50 unités restantes de P1 sont destinées à l'entrepôt de Toulouse.

L'utilisateur ayant considéré que ce dernier avait un sur stock de P2 tandis qu'à l'entrepôt de Brest, c'était plutôt la situation inverse, il a chargé 75 unités de P2 à Toulouse pour en livrer 25 à Brest. Au final, il reste donc 50 unités de P2 dans le camion 1 qui rentre à Paris.

Dès que vous en avez terminé avec votre décision concernant le voyage n°1 du camion 1, vous avez la possibilité soit de passer au voyage n°2 du même camion par l'intermédiaire des flèches correspondantes (à condition de ne pas excéder la durée maximale de travail des chauffeurs) soit de passer à votre décision pour les trajets des camions suivants.

### <u>6 – Feuille de résultats</u>

Nous vous présentons en exemple le résultat de la décision prise concernant le camion 1 présentée au paragraphe précédent. Toutes vos décisions en terme de transports engendrent des coûts qui se présentent de la façon suivante :

| Temps total             | 40 h 51 mn |       |
|-------------------------|------------|-------|
| Dont transport          | 38 h 30 mn |       |
| Dont Chgt/Déchgt        | 2 h 21 mn  |       |
| Temps normal            | 35 h 00 mn | 14000 |
| Temps 50 %              | 5 h 00 mn  | 3000  |
| Temps 100 %             | 0 h 51 mn  | 689   |
| Coût salarial           |            | 17689 |
| Nombre de km            |            | 2712  |
| Coût d'usure            |            | 13560 |
| Essence / Péage         |            | 6183  |
| Coût transport          |            | 19743 |
|                         |            |       |
| Coût total distribution |            | 37432 |

- Temps total: Equivaut au temps de transport du camion sur la période entre le moment où il quitte l'usine de Paris et l'instant où il rentre. Pour information, le logiciel vous indique le temps véritable de roulage du camion et la durée totale de chargement et déchargement de vos produits (850 unités \* 10/60 = 141.67 minutes ou encore 2 h 21 mn). Dans notre exemple, le temps de trajet total du camion 1 (qui n'a effectué qu'un seul trajet) est de 40 h 51 mn.
- Temps normal : C'est la durée normale du travail (DNT). Il indique le salaire fixe du chauffeur sur la période, toutes charges incluses. Comme précisé, il est calculé sur une base de 35 h.
- Temps 50 %: Si le chauffeur a une durée de travail sur la période comprise entre 35 et 40 h, son salaire est majoré de 50 %. Le coût de ces heures supplémentaires est indiqué ici. Sachant que le temps de travail est ici supérieur à 40 h, le chauffeur est payé pendant 5h 150 % de son salaire horaire habituel.
- Temps 100 %: Entre 40 et 45 h de travail sur la période, le chauffeur voit son salaire horaire majoré de 100% d'où un coût supplémentaire. Ici, les 51 dernières minutes de la semaine du routier lui seront donc payées 200 % de son salaire de base.
- Coût salarial : C'est la somme des 3 coûts précédemment cités.
- Nombre de km: Reprend la distance totale parcourue par le camion en fonction du distancier. La distance Paris-Marseille-Toulouse-Brest-Paris est donc au total de 2712 km.
- Coût d'usure : Fonction de la distance et d'un coefficient fixe par camion (cf. le résumé des paramètres de transports), il correspond à l'amortissement, l'usure globale du véhicule, ...
- Essence/Péage: Correspond aux frais fixes, il dépend des trajets et fait référence à la matrice des coûts présentée auparavant.
- Coût transport : C'est la somme du coût d'usure et des frais fixes. Il est donc directement lié à l'utilisation du véhicule.
- Coût total distribution: C'est le résultat de vos décisions concernant le domaine de la distribution. Il regroupe les coûts des véhicules et des chauffeurs. La décision prise par l'utilisateur dans le paragraphe précédent coûte donc à son entreprise 37 432 FF pour la période

considérée et pour le camion 1. En faisant la somme des coûts de distribution pour les trois camions, on obtient un coût de distribution global pour une période.

Vous disposez pour chacun des camions d'une feuille de résultats identique à celle-ci que vous pourrez consulter à la fin de chaque période.

### 7 – Répartition du surplus

L'objectif de votre entreprise est de maximiser son résultat net c'est-à-dire, tout en minimisant ses coûts, de dégager une marge bénéficiaire la plus importante qui soit. Nous distinguerons deux types de ventes, valables pour tous les entrepôts : les ventes propres et les ventes à la concurrence.

Dans chacun des lieux de ventes, il faudra arriver à vendre ce qui est demandé par vos clients principaux donc avoir les stocks suffisants au bon moment sous peine de voir ceux-ci s'orienter vers vos concurrents. Il s'agira de vos ventes propres. Dans le cas contraire, vous seriez amené à payer des coûts de pénuries équivalents à 20% du prix de vente unitaire des deux produits lorsque la rupture interviendra dans un entrepôt et 30% lorsqu'il s'agira d'une rupture dans l'usine de distribution (à Paris).

Mais vous pourriez également avoir des stocks que vous estimez supérieurs à la demande dans certains endroits. Deux solutions s'offrent à vous : soit vous décidez de transférer ce sur stock dans d'autres entrepôts, soit vous les laissez là où ils sont. Dans ce cas, si certains de vos concurrents sont en rupture de stocks, alors vous pouvez espérer « récupérer » leurs clients.

Prenons un exemple simple et concret et considérons l'entrepôt de Brest où trois entreprises sont en concurrence sur le marché des boîtiers de type 1.

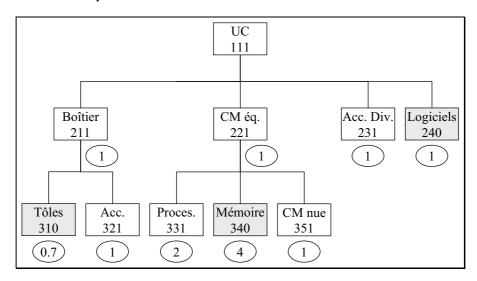
Après livraison des marchandises dans l'entrepôt, le stock du produit 1 pour l'équipe 1 est de 200 unités, 150 pour l'équipe 2 et 100 pour l'équipe 3. Par ailleurs, les 3 entreprises concurrentes ont à faire face à des demandes réelles de la part des clients finaux de 125 unités pour les équipes 1 et 2 et 150 pour l'équipe 3.

Ainsi, les deux premières sont en sur stock en fin de période (75 pour l'entreprise n°1 et 25 pour l'entreprise n°2) tandis que la troisième a un « déficit » de 50 unités. Le premier groupe contient donc 75% du sur stock total et le deuxième 25%.

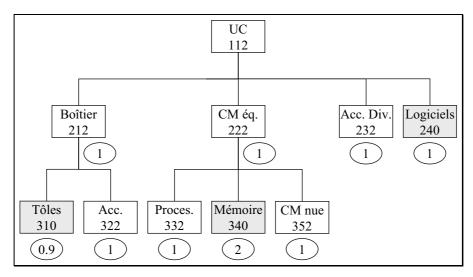
Ce sur stock sert ensuite de vente aux clients des entreprises concurrentes, le déversement se faisant au prorata du surplus constaté. Dans notre exemple, l'équipe 1 vendra 0,75\*50 (≈ 38 unités) et l'équipe 2 environ 12 unités (le prix de vente restant le même). Pour ces deux dernières, il reste un stock final (75-38=37 pour l'équipe 1 et 25-12=13 pour l'équipe 2) utilisable à la période suivante pour des ventes ou un éventuel transfert entre entrepôts ou encore un retour à Paris.

En fin de période, les participants pourront donc faire la distinction entre les recettes issues de leurs ventes propres et celles provenant du fait de ventes à la concurrence (c'est-à-dire les ventes auprès des clients finaux des entreprises concurrentes sur le marché considéré dans l'entrepôt traité).

Notons que les demandes ne sont donc pas reportables d'une période à l'autre mais sont perdues. Néanmoins, pour les périodes suivantes, les clients restent « fidèles » à leur fournisseur et continuent à lui acheter ses produits même si à la période précédente ils se sont approvisionnés auprès de la concurrence (ce point est important du point de vue des prévisions notamment).


### VI / PARAMETRES LIES A LA FONCTION PRODUCTION

Pour pouvoir livrer les produits en utilisant son réseau de distribution de la façon la plus optimale possible, il faut avoir un système de production efficace, à savoir un système qui permette de fabriquer le bon nombre de produits (en fonction de vos prévisions) à partir des composants nécessaires tout en minimisant les divers coûts de production.


Après avoir étudié les nomenclatures des deux produits finis, nous analyserons les paramètres des différents secteurs concernés par la partie production.

### 1 - Nomenclatures des produits

#### • Nomenclature du produit 1 :



### • Nomenclature du produit 2 :



On remarque qu'il existe 3 sous-ensembles constituant les ateliers de fabrication. Les ouvriers de l'atelier 1 sont chargés de constituer l'unité centrale à partir des boîtiers, des cartes mères équipées, des accessoires divers (kit disponible chez un grossiste et regroupant le clavier, la souris, le lecteur de CDRom, le disque dur, le lecteur de disquette,...). Ils doivent également installer les logiciels, ensemble classique identique quel que soit le produit.

On assemble dans l'atelier 2 les cartes mères équipées, fabriquées à partir du processeur, de la mémoire et de la carte mère nue.

Enfin, dans l'atelier 3 sont fabriqués les boîtiers à partir de la tôle et d'accessoires de tringlerie et de visserie.

Les chiffres notés en dessous des composants (coefficients techniques), indiquent le nombre d'unités nécessaires à la fabrication d'une unité de produit intermédiaire ou fini. On note par exemple que pour la mémoire, la carte mère équipée du boîtier 1 rassemble 4 unités de mémoire tandis que la fabrication de la carte mère équipée du boîtier 2 n'en nécessite que 2.

On retrouve par l'intermédiaire de ces nomenclatures les deux grands paramètres : les ateliers et la quantité de matières premières et composants nécessaire pour produire vos unités centrales. Nous verrons tour à tour les différents choix que vous aurez à faire pour piloter au mieux votre entreprise.

### 2 – Les produits fabriqués et pièces détachées

En fonction des nomenclatures vues précédemment, nous distinguerons 3 types de produits : les produits finis (UC1 et UC2), les produits intermédiaires ou semi-ouvrés (carte mère équipée 1 et 2, boîtier 1 et 2) et les pièces détachées et composants (tôle, accessoires 1 et 2, processeur 1 et 2, mémoire, carte mère nue 1 et 2, accessoires divers 1 et 2, logiciels). Leur niveau d'intervention dans la chaîne de production déterminera un *code* propre à chacun d'entre eux. Ainsi, par exemple, les pièces détachées telles que la tôle ou le processeur qui sont utilisés au niveau le plus bas auront un numéro d'article commençant par 3 (respectivement 310 pour la tôle et 331 ou 332 pour le processeur selon qu'il s'agit du produit 1 ou du produit 2). A contrario, les produits fabriqués tels que l'unité centrale auront des codes dont le premier chiffre sera 1. Enfin, le dernier chiffre du code vous permettra de repérer s'il s'agit d'un article commun à la fabrication des deux types de boîtes (0), d'un article spécifique au produit 1 (1) ou d'une pièce caractéristique du produit 2 (2). Dorénavant, vous pourrez repérer chaque article par ce numéro qui devrait faciliter vos passations de commandes.

Par exemple, les accessoires divers de l'UC1 sont repérés par le code 231. En effet, ils interviennent au niveau 2 de la nomenclature, sont utilisés pour le produit de type 1 et apparaissent en troisième position lorsqu'on lit la nomenclature de gauche à droite. En revanche, les logiciels, ensemble commun aux deux types de boîtiers, ont un code (240) qui indique qu'ils interviennent au niveau 2 (2), en quatrième position (4), et pour les deux types de boîtiers (0).

Les paramètres que nous allons évoquer dans la suite n'ont pas forcément la même signification selon qu'il s'agit d'un produit ou d'un autre. Prenons le cas du *stock initial*, calculé en début de période. Il représente la seule quantité utilisable pour charger les véhicules lorsqu'il s'agit de produits finis ou encore la capacité qu'ont les ateliers pour travailler avec les pièces détachées.

Nous retrouvons les principes d'une chaîne puisque, pour assembler une certaine quantité de produits finis (définies en fonction des demandes des entrepôts), il faut avoir un stock initial de produits intermédiaires suffisant pour que l'atelier 1 puisse fournir ces produits finis en quantités suffisantes. Il en est de même pour les ateliers 2 et 3 qui ont besoin d'un certain stock de pièces détachées pour fabriquer les produits intermédiaires en temps voulu. La valeur indiquée dans le tableau ci-dessous est celle du début du jeu.

Le logiciel calcule automatiquement le stock initial en fonction, pour certains articles, de ce que vous avez livré ou fabriqué pendant la période précédente ou, pour d'autres, de ce que vous avez commandé à vos fournisseurs (le délai de livraison étant alors pris en compte).

Le *temps unitaire* représente le temps nécessaire pour fabriquer une unité d'un composant donné. Cette durée est bien sûr variable d'un produit (semi-ouvré ou fini) à un autre. Par exemple, il faut 12 mn pour assembler un boîtier de type 1 dans l'atelier 3. Cela signifie, qu'un ouvrier pourra en assembler 5 en une heure. Les temps de pause sont déjà inclus dans ces temps de fabrication.

Comme nous venons de le préciser, les produits fabriqués ne nécessitent pas tous la même quantité de pièces détachées ni le même temps de main d'œuvre dans les ateliers. Ainsi, pour construire le boîtier 1 dans l'atelier 3, il faut 0,7 m² de tôle, 1 kit d'accessoires, 12 minutes de travail et ainsi de suite. De la même façon, un boîtier de type 2 contient 0,9 m² de tôle, 1 kit d'accessoires, 21 minutes de travail...

Dans l'atelier 2, où l'on construit des cartes mères équipées, il faut 2 processeurs, 4 mémoires, 1 carte mère nue, 9 minutes d'activité pour fabriquer les cartes mères pour le boîtier de type 1. En revanche, il ne faut qu'1 processeur, 2 mémoires, 1 carte mère nue et 6 minutes de main d'œuvre pour constituer la carte mère équipée de type 2.

Enfin, la fabrication des deux unités centrales dans l'atelier 1 nécessite 30 minutes de travail et une unité de chacun des produits semi-ouvrés.

| Temps de fabrication unitaire         |            |      |       |  |  |  |
|---------------------------------------|------------|------|-------|--|--|--|
| Atelier 1 Atelier 2 (Cartes Atelier 3 |            |      |       |  |  |  |
|                                       | (Boîtiers) |      |       |  |  |  |
| Produit 1                             | 30 mn      | 9 mn | 12 mn |  |  |  |
| Produit 2                             | 30 mn      | 6 mn | 21 mn |  |  |  |

Ces informations doivent vous permettre de déterminer le coût de fabrication des deux produits finis (une fois connus les coûts salariaux dans les trois ateliers) et de déterminer les capacités de production des trois ateliers en fonction du nombre d'ouvriers.

Comme pour toute entreprise, votre but est d'atteindre une rentabilité maximale pour toutes vos opérations. Vous avez donc tout intérêt à produire juste ce qu'il faut au bon moment afin d'avoir les produits finis disponibles en quantité suffisante par rapport à vos prévisions de ventes dans chacune des régions. Ainsi, les articles ont un *coût de tenue de stock* qui leur est propre. Il s'agit d'un pourcentage appliqué à la valeur du stock final, ce qui permet de calculer des frais de stockage, constituant une charge variable d'exploitation. Ces frais comprennent les coûts d'immobilisation de fonds, l'amortissement immobilier (inclus dans les coûts de magasinage), le gardiennage, l'obsolescence, la détérioration, le coût des assurances pour les produits gardés en stock pendant une période prolongée...

Vous aurez également à prendre en compte dans votre gestion un coût de rupture (cf. les paramètres sur les produits finis) rappelant la pénalisation appliquée lorsqu'un produit fini n'a pu être livré ni de l'entrepôt, ni de l'usine, faute de stock suffisant. Un coût de rupture cumulé fort indiquera donc un problème dans votre gestion (mauvaise organisation de vos tournées de livraisons ou encore manque en amont de produits finis).

Pour les pièces détachées, le délai de livraison doit être un élément important pour vos décisions. En effet, vous devrez prévoir quels seront vos besoins dans les périodes futures. Cette notion de délai vous indique à quel moment votre marchandise sera livrée. Par exemple, supposons qu'à la première période vous commandez une marchandise ayant un délai de livraison de deux périodes, celle-ci ne sera utilisable qu'à la trosième période. En revanche, elle est payée immédiatement (mais les coûts de stockage ne sont calculés que sur les stocks réellement détenus). On voit là l'importance de vos prévisions de demandes de produits finis dont découleront vos décisions d'achats de pièces détachées. Lorsqu'il s'agit des produits finis ou semi-ouvrés, on parlera de délai de fabrication.

Enfin, chaque article a un prix d'achat unitaire décompté dans les charges proportionnellement au nombre de produits achetés. Pour les produits intermédiaires, il s'agira avant tout d'un coût de fabrication unitaire dépendant du temps de production dans un atelier pour fabriquer une unité de produit et d'un coût de production.

### Données sur les produits finis ou semi-ouvrés :

| Produits             | Code | Stock<br>initial | Coût de tenue<br>de stock (%) | Délai de<br>Fabrication<br>(période) |
|----------------------|------|------------------|-------------------------------|--------------------------------------|
| Unité centrale 1     | 111  | 1000             | 2                             | 1                                    |
| Unité centrale 2     | 112  | 1100             | 2                             | 1                                    |
| Boîtier 1            | 211  | 2500             | 1,5                           | 1                                    |
| Boîtier 2            | 212  | 3000             | 1,5                           | 1                                    |
| Carte mère équipée 1 | 221  | 3000             | 1,5                           | 1                                    |
| Carte mère équipée 2 | 222  | 1300             | 1,5                           | 1                                    |

### Données sur les matières premières :

| Matière              | Code | Stock   | Coût de   | Délai de  | Prix d'achat | Coût de passation |
|----------------------|------|---------|-----------|-----------|--------------|-------------------|
| première             |      | initial | tenue de  | livraison | unitaire     | d'une commande    |
|                      |      |         | stock (%) | (période) | (FF)         | (FF)              |
| Accessoires divers 1 | 231  | 2 400   | 1         | 1         | 1 300        | 15 000            |
| Accessoires divers 2 | 232  | 3 000   | 1         | 1         | 1 200        | 15 000            |
| Logiciels            | 240  | 7 100   | 1         | 1         | 300          | 5 000             |
| Tôle                 | 310  | 12 000  | 1         | 3         | 50           | Cf. page suivante |
| Accessoires 1        | 321  | 4 500   | 1         | 1         | 150          | 2 000             |
| Accessoires 2        | 322  | 1 200   | 1         | 1         | 130          | 2 000             |
| Processeur 1         | 331  | 10 000  | 1         | 1         | 800          | 5 000             |
| Processeur 2         | 332  | 2 000   | 1         | 1         | 600          | 5 000             |
| Mémoire              | 340  | 25 000  | 2         | 2         | 130          | Cf. page suivante |
| Carte mère nue 1     | 351  | 3 000   | 1         | 1         | 500          | 4 000             |
| Carte mère nue 2     | 352  | 3000    | 1         | 1         | 450          | 4 000             |

Les stocks initiaux dans les différents entrepôts sont les suivants :

| Stocks initiaux | PRODUIT 1 | PRODUIT 2 |
|-----------------|-----------|-----------|
| BREST           | 500       | 0         |
| DUNKERQUE       | 600       | 0         |
| MARSEILLE       | 0         | 300       |
| NANCY           | 400       | 100       |
| PARIS           | 1000      | 1100      |
| TOULOUSE        | 200       | 200       |

#### Cas particuliers:

Nous voulons attirer votre attention ici sur les prix d'achat de la tôle et de la mémoire, deux composants identiques quel que soit le produit fini. Si pour les autres pièces, le prix d'achat est directement proportionnel au nombre d'unités demandées, il n'en est pas de même pour ces deux produits.

Si vous achetez moins (strictement) de 10 000 unités de mémoire, vous les paierez au prix de 130 FF l'unité augmentée du coût de passation d'une commande (50 000 FF). En revanche, si vous décidez un achat entre 10 000 et 20 000 (exclu) unités, un rabais de 5 FF par unité vous sera accordé. Mieux encore, si votre commande atteint ou dépasse les 20 000 unités, l'unité de mémoire vous reviendra à 115 FF (cette remise s'applique sur la totalité des unités commandées).

Pour la tôle, le mode de calcul est basé sur la méthode incrémentale. Si la commande est inférieure à 10 000 m², alors vous aurez à payer un prix de 50 FF le m² sans rabais. Dans le cas où vous commanderiez entre 10 000 et 20 000 m² de tôle, les 10 000 premiers seraient facturés 50 FF, les suivants 48 FF. De la même façon, si la commande dépasse 20 000 m², les 10 000 premiers auraient un coût unitaire de 50 FF, les 10 000 suivants 48 FF l'unité et enfin, le reste serait compté à 47 FF l'unité. Quelle que soit la quantité commandée, le coût de passation d'une commande est de 20 000 FF.

En résumé, si on note x la quantité unitaire commandée de tôle, son prix d'achat total (p) se calcule de la façon suivante :

- Si x=0, p=0
- Si x < 10000, p = 50\*x + 20000
- Si  $10000 \le x < 20000$ , p = 50\*9999 + (x-9999)\*48 + 20000
- Si  $x \ge 20000$ ,  $p = 50 \cdot 9999 + 48 \cdot 10000 + (x-19999) \cdot 47 + 20000$

### 3 – Exemple de décision d'achats

Nous vous présentons ci-dessous (cf. page suivante) l'écran que vous aurez à remplir au début de chaque période concernant vos commandes de pièces détachées.

Pour chacun des composants, vous aurez à saisir dans la case correspondante le nombre d'unités (chiffre entier et positif) à commander en prenant bien en considération vos besoins pour les périodes futures et les délais de livraison.

Le résultat de vos décisions s'exprimera en termes de « Coût d'achat des composants » dans le calcul du résultat net d'exploitation.

| Achats                   |     |
|--------------------------|-----|
| Accessoires divers - 231 | 64  |
| Accesoires divers - 232  | 565 |
| Logiciels - 240          | 651 |
| Tôle - 310               | 482 |
| Accessoires - 321        | 921 |
| Accessoires - 322        | 913 |
| Processeur - 331         | 711 |
| Processeur - 332         | 561 |
| Mémoire - 340            | 142 |
| Carte mère nue - 351     | 473 |
| Carte mère nue - 352     | 440 |

### 4 – Les ateliers

Nous abordons là un des éléments centraux de votre gestion. De mauvaises décisions au niveau des ateliers peuvent engendrer des coûts importants, voire rédhibitoires pour votre résultat net d'exploitation.

Il ne s'agit plus ici de gérer des quantités de matières premières ou de produits finis mais des êtres humains. Vous aurez ainsi à choisir entre embaucher ou licencier ou encore décider du temps de travail de vos employés afin que les heures supplémentaires ne vous coûtent pas trop. Sans plus tarder, détaillons donc les caractéristiques de vos ateliers.

Comme nous l'avons évoqué précédemment, vous aurez à gérer un *nombre d'ouvriers* par atelier. Il est fixé au début du jeu et est bien entendu propre à chacun des 3 ateliers dont vous disposez. A un instant donné, le nombre d'employés est celui de l'effectif d'un atelier à la fin de la précédente période ôté des licenciements de la période en cours et augmenté des embauches décidées en *t*-1 (ateliers 2 et 3) ou *t*-2 (atelier 1).

|                                      | Atelier 1 | Atelier 2 | Atelier 3 |
|--------------------------------------|-----------|-----------|-----------|
| Nombre d'ouvriers<br>en début de jeu | 45        | 12        | 24        |

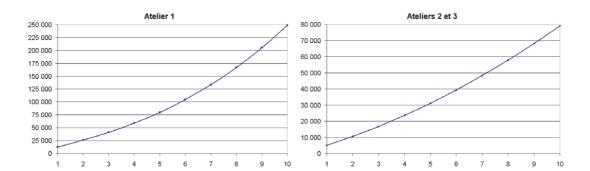
Il existe en effet des délais avant qu'une personne embauchée ne soit apte à travailler dans son atelier d'affectation. Ainsi, un individu embauché en t ne sera productif qu'en t+2 pour l'atelier 1 et t+1 pour les ateliers 2 et 3. Ceci est dû à la période de formation nécessaire pour effectuer les tâches spécifiques du métier. En revanche, toute personne licenciée en t devient immédiatement improductive et la décision est irréversible.

Notez bien que, lorsque vous déciderez de licencier dans un atelier, toute nouvelle embauche dans cet atelier deviendra impossible pour le reste du jeu. Par ailleurs, il n'est pas autorisé de licencier et d'embaucher simultanément dans le même atelier. Enfin, il ne sera plus possible de licencier 2 périodes avant la fin du jeu.

Le coût salarial correspond aux charges d'exploitation engendrées par un ouvrier pendant une période, toujours sur la base d'une durée normale du travail de 35 heures, même si l'activité de production n'a pas nécessité l'emploi de la totalité de l'effectif. Il diffère selon les ateliers en fonction de la qualification de la main d'œuvre. Les ouvriers sont peu qualifiés dans les ateliers 2 et 3 mais très qualifiés dans l'atelier 1, ce qui entraîne des charges supplémentaires.

|                              | Atelier 1 | Atelier 2 | Atelier 3 |
|------------------------------|-----------|-----------|-----------|
| Coût salarial horaire (FF/h) | 125       | 75        | 75        |

Cependant, pour certaines périodes, l'activité pourra être plus importante. Vous devrez alors demander une charge de travail supérieure à 35 h à la main d'œuvre déjà en place<sup>2</sup>. Cette situation engendrera des coûts d'heures supplémentaires, différents selon les ateliers, pour la même raison que pour les coûts salariaux évoqués plus haut.


Néanmoins, vous ne pourrez pas faire dépasser un certain niveau d'heures de travail à vos employés sous peine de transcrire la loi en vigueur. Cette limite est fixée à 45 h par employé et par période. Le logiciel limitera automatiquement votre production si vous demandez à vos ouvriers de produire plus qu'ils ne peuvent en 45 h.

|                 | Atelier 1    | Atelier 2    | Atelier 3    |
|-----------------|--------------|--------------|--------------|
| Coût heures     | +25% si <40h | +25% si <40h | +25% si <40h |
| supplémentaires | +50% si >40h | +50% si >40h | +50% si >40h |

Comme nous l'avons déjà souligné, vous aurez la possibilité d'embaucher ou de licencier dans chaque atelier. Ceci entraîne un coût d'embauche-licenciement correspondant à la charge exceptionnelle engendrée par l'accroissement ou la diminution de l'effectif global. C'est un coût unitaire, décompté pour chaque individu en plus ou en moins de l'effectif total de l'atelier. Le service des Ressources Humaines vous informe que les coûts d'embauche de n ouvriers au cours d'une même période peuvent être approximés à l'aide de la courbe du graphique de la page suivante.

Le coût de base d'une embauche d'un ouvrier très qualifié dans l'atelier 1 est de 4000 FF tandis que dans les ateliers 2 et 3, où se trouvent des ouvriers peu qualifiés, il n'est que de 2500 FF. A ce coût, il faut ajouter le coût de formation qui correspond au salaire de base d'un ouvrier de même niveau (soit 75 FF / h pour les ateliers 2 et 3, 125 FF / h dans l'atelier 1). Autrement dit, vous payez les ouvriers dès leur embauche même s'ils ne sont pas immédiatement productifs en t. Cette période de formation dure 1 semaine dans les ateliers 2 et 3 et 2 semaines dans l'atelier 1.


<sup>&</sup>lt;sup>2</sup> Ou alors avoir prévu d'engager des ouvriers au préalable...



En observant le graphique précédent, vous pouvez noter que quel que soit l'atelier, il est plus cher d'embaucher dix personnes à la même période plutôt qu'une personne sur dix périodes consécutives. Par exemple, en ce qui concerne l'atelier 1 cette différence est de quasiment 100 %.

En revanche, le coût de licenciement est linéaire et directement proportionnel au nombre d'individus licenciés. Il est équivalent aux coûts d'embauche pour les trois ateliers (soit 2500 FF pour les ateliers 2 et 3, 4000 FF pour l'atelier 1).

Supposons que vous désiriez embaucher 10 personnes dans l'atelier 1, 20 dans le 3 et d'en licencier 4 dans le 2, voici comment se présente votre feuille de décisions :



-21-

Vous n'avez donc qu'à renseigner les cases correspondant à vos besoins. En fonction des délais de formation, le nombre d'employés dans chacun de vos ateliers pour les périodes futures se calculera automatiquement. Il en sera de même pour les coûts qui, eux, sont imputés directement sur la période en cours.

La gestion de vos ateliers nécessite de bien connaître le programme de production. Pour chaque atelier, vous allez devoir décider des quantités à produire de manière à couvrir vos besoins. Par exemple, pour la première période, les besoins de l'atelier 1 seront constitués par les produits que vous aurez à transporter vers les entrepôts au cours de la deuxième période c'est-à-dire ceux qui pourront être vendus. De même, les besoins des ateliers 2 et 3 dépendront des produits que consommera l'atelier 1 à la période n°2. En conséquence, vous en déduirez vos besoins d'achats de composants et matières premières.

Vous devrez également préciser une priorité de production dans les trois ateliers, en fonction des demandes des entrepôts et des stocks restants de la période précédente. Si vous choisissez par exemple de fabriquer en priorité du produit 1, le logiciel vérifie que ce que vous demandez de ce produit est compatible avec le nombre d'employés que vous avez sans que ceux-ci ne dépassent les 45 h de travail hebdomadaire. Ensuite, avec le temps qu'il reste, il calculera la quantité de produit 2 que l'atelier pourra fabriquer, en essayant de se rapprocher le plus possible de votre demande. Dans le cas où l'atelier peut produire des deux produits, alors le nombre d'employés effectivement disponible pour le travail est calculé sur la base de (*n*-1) hommes. Il s'agit du temps de setup, c'està-dire la perte d'activité engendrée par la mise en marche d'un atelier ou le changement de gamme de fabrication. Pour un atelier ayant un effectif de 15 personnes, la production d'un article ayant un temps de setup de 1 (ce qui est notre cas ici) sera égale à la capacité de 14 hommes (15-1) \* 35 h (ou 45 h si vous décidez d'avoir recours aux heures supplémentaires).

Imaginons que dans l'atelier 1, vous ayez décidé de fabriquer les deux types d'unités centrales. Vous donnez la priorité à la fabrication de l'unité centrale de type 1 car vous avez prévu une forte demande de ce produit dans les différents entrepôts. Cependant, vous n'utilisez pas les capacités de main d'œuvre au maximum. Dans ce cas, vous serez autorisés à confectionner des unités centrales de type 2 et votre capacité de production sera ramenée à 44 (45-1) hommes \* 35 h.

Dans le cas présenté page suivante, l'utilisateur demande une production de 1 000 unités centrales de type 1 et 900 unités centrales de type 2 avec une priorité au premier. Il se trouve qu'en fonction des stocks de cartes mère équipées de type 1 et 2, des stocks de boîtiers de type 1 et 2 et de la main-d'œuvre disponible, l'atelier pourra ou non produire ces demandes. Il en va de même pour les produits intermédiaires (cartes mères équipées et boîtiers).

Il faut en effet, lorsque vous effectuez vos demandes de production, tenir compte des stocks disponibles en fin de période précédente, aussi bien en terme de produits semi-ouvrés que de composants. Vous ne serez averti des quantités effectivement produites qu'à l'issue de votre décision.

En conclusion, vous avez donc 2 types de contraintes à gérer lorsque vous décidez une certaine quantité des 2 produits à fabriquer :

- Les stocks des composants rentrant dans la fabrication du produit considéré.
- La capacité de l'atelier en terme d'heures de travail disponibles qui dépend du nombre d'ouvriers.



Sur la page suivante, figurent les résultats de la décision de production donnée en exemple. Avec ces informations, vous pourrez ainsi vérifier si vous avez pu réaliser ce qui a été planifié ou non et les contraintes qui vous ont éventuellement empêché de réaliser l'ensemble de vos besoins.

Dans notre exemple, les 3 ateliers ont pu produire ce qui avait été demandé. Le résultat de la décision vous indique le stock final de chacun des produits dans les différents ateliers. Toujours dans le premier bloc sont indiqués les licenciements et embauches de la période qui se termine.

En raison des délais de livraison, vous constatez que les commandes passées pour les articles 310 (Tôle) et 340 (Mémoire) ne sont pas disponibles pour la prochaine décision mais ne seront livrées qu'à la fin de la période 3 pour la tôle et à la fin de la période 2 pour la mémoire.

Remarquons que les 10 embauches demandées dans l'atelier 1 n'arriveront pas la période suivante compte tenu du délai de formation qui, pour cet atelier, est de 2 périodes. En revanche, les 20 embauches demandées dans l'atelier 3 seront productives dès la période suivante, ce qui est bien indiqué dans cette feuille de résultat.

La capacité de production disponible à la période suivante vous est également communiquée ainsi que le taux d'utilisation de vos ateliers sur la période qui s'achève. Ce dernier est calculé par rapport au nombre d'individus dans chacun des 3 ateliers et leur temps de travail normal (35 h). Dans notre exemple, les décisions ont conduit à une faible utilisation des capacités de production dans l'atelier 3 (35%).

| Atelier 1 - Production 111 : | Planifiée       | Réalisée     | Stock final       | Licenciements<br>de la période | Embauches<br>demandées | Embauches<br>arrivant | Capacité   | d'utilisation |
|------------------------------|-----------------|--------------|-------------------|--------------------------------|------------------------|-----------------------|------------|---------------|
|                              | 1000            | 1000         | 1 315             | . 1                            |                        |                       |            |               |
| Atelier 1 - Production 112 : | 900             | 900          | 1508              | 0                              | 10                     | 0                     | 45         | 60%           |
| Atelier 2 - Production 221:  | 800             | 800          | 2 800             |                                |                        |                       | Τ ,        |               |
| Atelier 2 - Production 222 : | 700             | 700          | 1100              | 4                              | 0                      | 0                     | 8          | 68%           |
| Atelier 3 - Production 211:  | 600             | 600          | 2 100             | . 1                            |                        |                       |            | 05            |
| Atelier 3 - Production 212 : | 500             | 500          | 2 600             | 0                              | 20                     | 20                    | 44         | 35%           |
|                              |                 |              |                   |                                |                        |                       |            |               |
|                              | Qtés achetées   | Stock        | Livraison à venir | Stock final                    |                        | Coût total            | Coût moyen | j             |
| Accessoires divers - 231     | 64              | 1400         | 64                | 1464                           |                        | 98 200                | 1534       | ]             |
| Accesoires divers - 232      | 565             | 2 100        | 565               | 2 665                          |                        | 693 000               | 1227       | ]             |
| ogiciels - 240               | 651             | 5 200        | 651               | 5 851                          |                        | 200 300               | 308        | ]             |
| 「ôle - 310                   | 482             | 11 130       | 0                 | 11 130                         |                        | 44 100                | 91         | ]             |
| Accessoires - 321            | 921             | 3 900        | 921               | 4 821                          |                        | 140 150               | 152        | ]             |
| Accessoires - 322            | 913             | 700          | 913               | 1 613                          |                        | 120 690               | 132        | ]             |
| Processeur - 331             | 711             | 8 400        | 711               | 9 111                          |                        | 573 800               | 807        | ]             |
| Processeur - 332             | 561             | 1300         | 561               | 1861                           |                        | 341600                | 609        | ]             |
| Vlémoire - 340               | 142             | 20 400       | 0                 | 20 400                         |                        | 68 460                | 482        | ]             |
| Carte mère nue - 351         | 473             | 2 200        | 473               | 2 673                          |                        | 240 500               | 508        | ]             |
| Carte mère nue - 352         | 440             | 2 300        | 440               | 2 740                          |                        | 202 000               | 459        | ]             |
|                              | Rappel : livrai | cons à uenir | ٦                 |                                |                        |                       |            |               |
|                              | Période 2       | Période 3    | _                 |                                |                        |                       |            |               |

### VII / RESULTAT NET D'EXPLOITATION

En fin de période le logiciel calcule le résultat net d'exploitation qui pourra être comparé d'une équipe à l'autre.

Sur l'exemple de la feuille suivante, le résultat reprend le chiffre d'affaires et les différents coûts que nous avons évoqués précédemment.

Le résultat net permet de classer les équipes concurrentes sur une échelle de valeurs. A la fin du jeu, la somme des résultats nets détermine les participants qui auront le mieux utilisé leur chaîne logistique intégrant la production et la distribution.

| Résultats de la période 1                                                                                                                                                                                               |                                                                                                        |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Ventes Coût distribution Coût de pénurie                                                                                                                                                                                | 20 867 000<br>-60 182<br>-4 985 050                                                                    |  |  |  |  |  |
| Coût de stockage PF Coût de stockage des PSO Coût de stockage des composants Coût d'achat des composants                                                                                                                | -157 100<br>-155 123<br>-220 715<br>-2 722 800                                                         |  |  |  |  |  |
| Coût de production Atelier 1 Coût de production Atelier 2 Coût de production Atelier 3 Coût de MO Atelier 1 Coût de MO Atelier 2 Coût de MO Atelier 3 Coût d'embauche Coût de licenciement Résultat net de la période 1 | -300 250<br>-35 375<br>-178 750<br>-196 875<br>-21 000<br>-63 000<br>-476 045<br>-10 000<br>11 284 736 |  |  |  |  |  |
| Résultat net cumulé                                                                                                                                                                                                     | 11 284 736                                                                                             |  |  |  |  |  |

Remarque: à la fin du jeu, l'entreprise doit se trouver dans un état lui permettant de continuer à fonctionner. Cela signifie très concrètement que si, par exemple, les entrepôts sont vides il serait impossible de répondre aux demandes. Dans ce cas, le logiciel calculera automatiquement une pénalité qui viendra en déduction du résultat net cumulé et donnera le résultat net cumulé corrigé.

Cette correction comprend également les stocks de produits semi-finis ainsi que les composants et matières premières. Notez bien que ces coûts peuvent être très importants si l'entreprise est laissée dans une trop mauvaise situation et leur impact sur le résultat net cumulé n'est donc pas à négliger.

C'est bien sûr le **résultat net cumulé corrigé** qui sera pris en compte pour établir le **classement entre les équipes**.