International Doctoral School Algorithmic Decision Theory: MCDA and MOO
Lecture 2: Multiobjective Linear Programming

Matthias Ehrgott
Department of Engineering Science, The University of Auckland, New Zealand
Laboratoire d’Informatique de Nantes Atlantique, CNRS, Université de Nantes, France

MCDA and MOO, Han sur Lesse, September 17 – 21 2007
Overview

1. Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums

2. Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example

3. Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples
Overview

1. Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums

2. Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example

3. Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples
- Variables \(x \in \mathbb{R}^n \)
- Objective function \(Cx \) where \(C \in \mathbb{R}^{p \times n} \)
- Constraints \(Ax = b \) where \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \)

\[
\min \left\{ Cx : Ax = b, x \geq 0 \right\} \quad (1)
\]

\[
X = \{ x \in \mathbb{R}^n : Ax = b, x \geq 0 \}
\]

is the feasible set in decision space

\[
Y = \{ Cx : x \in X \}
\]

is the feasible set in objective space
Variables $x \in \mathbb{R}^n$

Objective function Cx where $C \in \mathbb{R}^{p \times n}$

Constraints $Ax = b$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

$$\min \{ Cx : Ax = b, x \geq 0 \} \tag{1}$$

$$X = \{ x \in \mathbb{R}^n : Ax = b, x \geq 0 \}$$ is the feasible set in decision space

$$Y = \{Cx : x \in X\}$$ is the feasible set in objective space
Variables $x \in \mathbb{R}^n$

Objective function Cx where $C \in \mathbb{R}^{p \times n}$

Constraints $Ax = b$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

$$\min \{ Cx : Ax = b, x \geq 0 \} \tag{1}$$

$$X = \{ x \in \mathbb{R}^n : Ax = b, x \geq 0 \}$$

is the feasible set in decision space

$$Y = \{ Cx : x \in X \}$$

is the feasible set in objective space
• Variables $x \in \mathbb{R}^n$
• Objective function Cx where $C \in \mathbb{R}^{p \times n}$
• Constraints $Ax = b$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

$$\min \{ Cx : Ax = b, x \geq 0 \}$$ \quad (1)

$$X = \{ x \in \mathbb{R}^n : Ax = b, x \geq 0 \}$$

is the feasible set in decision space

$$Y = \{ Cx : x \in X \}$$

is the feasible set in objective space
Example

\[
\min \begin{pmatrix}
3x_1 + x_2 \\
-x_1 - 2x_2
\end{pmatrix}
\]

subject to
\[
\begin{align*}
x_2 & \leq 3 \\
3x_1 - x_2 & \leq 6 \\
x & \geq 0
\end{align*}
\]

\[
C = \begin{pmatrix}
3 & 1 \\
-1 & -2
\end{pmatrix} \quad A = \begin{pmatrix}
0 & 1 & 1 & 0 \\
3 & -1 & 0 & 1
\end{pmatrix} \quad b = \begin{pmatrix}
3 \\
6
\end{pmatrix}
\]
Example

\[
\begin{align*}
\text{min} & \quad \left(\begin{array}{c}
3x_1 + x_2 \\
-x_1 - 2x_2
\end{array} \right) \\
\text{subject to} & \quad x_2 \leq 3 \\
& \quad 3x_1 - x_2 \leq 6 \\
& \quad x \geq 0
\end{align*}
\]

\[
C = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix} \quad A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 3 & -1 & 0 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 3 \\ 6 \end{pmatrix}
\]
Multiobjective Linear Programming
Biobjective LPs and Parametric Simplex
Multiobjective Simplex Method

Formulation and Example
Solving MOLPs by Weighted Sums

Feasible set in decision space

Matthias Ehrgott MOLP I
Feasible set in objective space
Definition

Let $\hat{x} \in X$ be a feasible solution of the MOLP (1) and let $\hat{y} = C\hat{x}$.

- \hat{x} is called **weakly efficient** if there is no $x \in X$ such that $Cx < C\hat{x}$; $\hat{y} = C\hat{x}$ is called **weakly nondominated**.

- \hat{x} is called **efficient** if there is no $x \in X$ such that $Cx \leq C\hat{x}$; $\hat{y} = C\hat{x}$ is called **nondominated**.

- \hat{x} is called **properly efficient** if it is efficient and if there exists a real number $M > 0$ such that for all i and x with $c_i^T x < c_i^T \hat{x}$ there is an index j and $M > 0$ such that $c_j^T x > c_j^T \hat{x}$ and

$$\frac{c_i^T \hat{x} - c_i^T x}{c_j^T x - c_j^T \hat{x}} \leq M.$$
Definition

Let $\hat{x} \in X$ be a feasible solution of the MOLP (1) and let $\hat{y} = C\hat{x}$.

- \hat{x} is called **weakly efficient** if there is no $x \in X$ such that $Cx < C\hat{x}$; $\hat{y} = C\hat{x}$ is called **weakly nondominated**.

- \hat{x} is called **efficient** if there is no $x \in X$ such that $Cx \leq C\hat{x}$; $\hat{y} = C\hat{x}$ is called **nondominated**.

- \hat{x} is called **properly efficient** if it is efficient and if there exists a real number $M > 0$ such that for all i and x with $c_i^T x < c_i^T \hat{x}$ there is an index j and $M > 0$ such that $c_j^T x > c_j^T \hat{x}$ and

$$\frac{c_i^T \hat{x} - c_i^T x}{c_j^T x - c_j^T \hat{x}} \leq M.$$
Definition

Let $\hat{x} \in X$ be a feasible solution of the MOLP (1) and let $\hat{y} = C\hat{x}$.

- \hat{x} is called **weakly efficient** if there is no $x \in X$ such that $Cx < C\hat{x}$; $\hat{y} = C\hat{x}$ is called **weakly nondominated**.

- \hat{x} is called **efficient** if there is no $x \in X$ such that $Cx \leq C\hat{x}$; $\hat{y} = C\hat{x}$ is called **nondominated**.

- \hat{x} is called **properly efficient** if it is efficient and if there exists a real number $M > 0$ such that for all i and x with $c_i^T x < c_i^T \hat{x}$ there is an index j and $M > 0$ such that $c_j^T x > c_j^T \hat{x}$ and

$$\frac{c_i^T \hat{x} - c_i^T x}{c_j^T x - c_j^T \hat{x}} \leq M.$$
Definition

Let \(\hat{x} \in X \) be a feasible solution of the MOLP (1) and let \(\hat{y} = C\hat{x} \).

- \(\hat{x} \) is called **weakly efficient** if there is no \(x \in X \) such that \(Cx < C\hat{x} \); \(\hat{y} = C\hat{x} \) is called **weakly nondominated**.

- \(\hat{x} \) is called **efficient** if there is no \(x \in X \) such that \(Cx \leq C\hat{x} \); \(\hat{y} = C\hat{x} \) is called **nondominated**.

- \(\hat{x} \) is called **properly efficient** if it is efficient and if there exists a real number \(M > 0 \) such that for all \(i \) and \(x \) with \(c_i^T x < c_i^T \hat{x} \) there is an index \(j \) and \(M > 0 \) such that \(c_j^T x > c_j^T \hat{x} \) and

\[
\frac{c_i^T \hat{x} - c_i^T x}{c_j^T x - c_j^T \hat{x}} \leq M.
\]
Multiobjective Linear Programming
Biobjective LPs and Parametric Simplex
Multiobjective Simplex Method

Formulation and Example
Solving MOLPs by Weighted Sums

Nondominated set

Matthias Ehrgott MOLP I
Overview

1. Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums

2. Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example

3. Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples
Let \(\lambda_1, \ldots, \lambda_p \geq 0 \) and consider

\[
LP(\lambda) \quad \min \sum_{k=1}^{p} \lambda_k c_k^T x = \min \lambda^T C x
\]

subject to

\[
Ax = b
\]

\[
x \geq 0
\]

with some vector \(\lambda \geq 0 \) (Why not \(\lambda = 0 \) or \(\lambda \leq 0 \)?)

- \(LP(\lambda) \) is a linear programme that can be solved by the Simplex method
- If \(\lambda > 0 \) then optimal solution of \(LP(\lambda) \) is properly efficient
- If \(\lambda \geq 0 \) then optimal solution of \(LP(\lambda) \) is weakly efficient
- Converse also true, because \(Y \) convex
Let \(\lambda_1, \ldots, \lambda_p \geq 0 \) and consider

\[
LP(\lambda) \quad \min \sum_{k=1}^{p} \lambda_k c_k^T x = \min \lambda^T Cx
\]

subject to \(Ax = b \)
\(x \geq 0 \)

with some vector \(\lambda \geq 0 \) (Why not \(\lambda = 0 \) or \(\lambda \leq 0 \)?)

\(LP(\lambda) \) is a linear programme that can be solved by the Simplex method

- If \(\lambda > 0 \) then optimal solution of \(LP(\lambda) \) is properly efficient
- If \(\lambda \geq 0 \) then optimal solution of \(LP(\lambda) \) is weakly efficient
- Converse also true, because \(Y \) convex
Let $\lambda_1, \ldots, \lambda_p \geq 0$ and consider

$$LP(\lambda) \quad \text{min} \sum_{k=1}^{p} \lambda_k c_k^T x = \min \lambda^T Cx$$

subject to $Ax = b$

$$x \geq 0$$

with some vector $\lambda \geq 0$ (Why not $\lambda = 0$ or $\lambda \leq 0$?)

- $LP(\lambda)$ is a linear programme that can be solved by the Simplex method

- If $\lambda > 0$ then optimal solution of $LP(\lambda)$ is properly efficient

- If $\lambda \geq 0$ then optimal solution of $LP(\lambda)$ is weakly efficient

- Converse also true, because Y convex
Let $\lambda_1, \ldots, \lambda_p \geq 0$ and consider

$$LP(\lambda) \min \sum_{k=1}^{p} \lambda_k c_k^T x = \min \lambda^T C x$$

subject to $Ax = b$

$x \geq 0$

with some vector $\lambda \geq 0$ (Why not $\lambda = 0$ or $\lambda \leq 0$?)

$LP(\lambda)$ is a linear programme that can be solved by the Simplex method

If $\lambda > 0$ then optimal solution of $LP(\lambda)$ is properly efficient

If $\lambda \geq 0$ then optimal solution of $LP(\lambda)$ is weakly efficient

Converse also true, because Y convex
Let $\lambda_1, \ldots, \lambda_p \geq 0$ and consider

$$LP(\lambda) \quad \text{min} \sum_{k=1}^{p} \lambda_k c_k^T x = \min \lambda^T C x$$

subject to $Ax = b$

$x \geq 0$

with some vector $\lambda \geq 0$ (Why not $\lambda = 0$ or $\lambda \leq 0$?)

- $LP(\lambda)$ is a linear programme that can be solved by the Simplex method
- If $\lambda > 0$ then optimal solution of $LP(\lambda)$ is properly efficient
- If $\lambda \geq 0$ then optimal solution of $LP(\lambda)$ is weakly efficient
- Converse also true, because Y convex
Illustration in objective space

\[\lambda^1 = (2, 1), \lambda^2 = (1, 3), \lambda^3 = (1, 1) \]
Illustration in objective space

\[
\lambda^1 = (2, 1), \quad \lambda^2 = (1, 3), \quad \lambda^3 = (1, 1)
\]
\[y \in \mathbb{R}^p \text{ satisfying } \lambda^T y = \alpha \text{ define a straight line (hyperplane)} \]

- Since \(y = Cx \) and \(\lambda^T Cx \) is minimised, we push the line towards the origin (left and down).
- When the line only touches \(Y \) nondominated points are found.
- Nondominated points \(Y_N \) are on the boundary of \(Y \).
- \(Y \) is convex polyhedron and has finite number of facets. \(Y_N \) consists of finitely many facets of \(Y \). The normal of the facet can serve as weight vector \(\lambda \).
\(y \in \mathbb{R}^p \) satisfying \(\lambda^T y = \alpha \) define a straight line (hyperplane).

Since \(y = Cx \) and \(\lambda^T Cx \) is minimised, we push the line towards the origin (left and down).

When the line only touches \(Y \) nondominated points are found.

Nondominated points \(Y_N \) are on the boundary of \(Y \).

\(Y \) is convex polyhedron and has finite number of facets. \(Y_N \) consists of finitely many facets of \(Y \). The normal of the facet can serve as weight vector \(\lambda \).
\(y \in \mathbb{R}^p \) satisfying \(\lambda^T y = \alpha \) define a straight line (hyperplane)

Since \(y = Cx \) and \(\lambda^T Cx \) is minimised, we push the line towards the origin (left and down)

When the line only touches \(Y \) nondominated points are found

Nondominated points \(Y_N \) are on the boundary of \(Y \)

\(Y \) is convex polyhedron and has finite number of facets. \(Y_N \) consists of finitely many facets of \(Y \). The normal of the facet can serve as weight vector \(\lambda \)
- $y \in \mathbb{R}^p$ satisfying $\lambda^T y = \alpha$ define a straight line (hyperplane)
- Since $y = Cx$ and $\lambda^T Cx$ is minimised, we push the line towards the origin (left and down)
- When the line only touches Y nondominated points are found
- Nondominated points Y_N are on the boundary of Y
- Y is convex polyhedron and has finite number of facets. Y_N consists of finitely many facets of Y. The normal of the facet can serve as weight vector λ.
\begin{itemize}
 \item $y \in \mathbb{R}^p$ satisfying $\lambda^T y = \alpha$ define a straight line (hyperplane)
 \item Since $y = Cx$ and $\lambda^T Cx$ is minimised, we push the line towards the origin (left and down)
 \item When the line only touches Y nondominated points are found
 \item Nondominated points Y_N are on the boundary of Y
 \item Y is convex polyhedron and has finite number of facets. Y_N consists of finitely many facets of Y. The normal of the facet can serve as weight vector λ
\end{itemize}
Question: Can all efficient solutions be found using weighted sums? If \(\hat{x} \in X \) is efficient, does there exist \(\lambda > 0 \) such that \(\hat{x} \) is optimal solution to

\[
\min \{ \lambda^T Cx : Ax = b, x \geq 0 \}
\]

Lemma

A feasible solution \(x^0 \in X \) is efficient if and only if the linear programme

\[
\begin{align*}
\max & \quad e^T z \\
\text{subject to} & \quad Ax = b \\
& \quad Cx + lz = Cx^0 \\
& \quad x, z \geq 0,
\end{align*}
\]

where \(e^T = (1, \ldots, 1) \in \mathbb{R}^p \) and \(l \) is the \(p \times p \) identity matrix, has an optimal solution \((\hat{x}, \hat{z})\) with \(\hat{z} = 0 \).
Question: Can all efficient solutions be found using weighted sums? If $\hat{x} \in X$ is efficient, does there exist $\lambda > 0$ such that \hat{x} is optimal solution to

$$\min \{ \lambda^T Cx : Ax = b, x \geq 0 \}?$$

Lemma

A feasible solution $x^0 \in X$ is efficient if and only if the linear programme

$$\begin{align*}
\max & \quad e^T z \\
\text{subject to} & \quad Ax = b \\
& \quad Cx + Iz = Cx^0 \\
& \quad x, z \geq 0,
\end{align*}$$

where $e^T = (1, \ldots, 1) \in \mathbb{R}^p$ and I is the $p \times p$ identity matrix, has an optimal solution (\hat{x}, \hat{z}) with $\hat{z} = 0$.
Question: Can all efficient solutions be found using weighted sums? If \(\hat{x} \in X \) is efficient, does there exist \(\lambda > 0 \) such that \(\hat{x} \) is optimal solution to
\[
\min \{ \lambda^T Cx : Ax = b, x \geq 0 \}?
\]

Lemma

A feasible solution \(x^0 \in X \) is efficient if and only if the linear programme
\[
\begin{align*}
\max & \quad e^T z \\
\text{subject to} & \quad Ax = b \\
& \quad Cx + I z = Cx^0 \\
& \quad x, z \geq 0,
\end{align*}
\]
(2)

where \(e^T = (1, \ldots, 1) \in \mathbb{R}^p \) and \(I \) is the \(p \times p \) identity matrix, has an optimal solution \((\hat{x}, \hat{z}) \) with \(\hat{z} = 0 \).
Proof.

- LP is always feasible with $x = x^0$, $z = 0$ (and value 0)
 - Let (\hat{x}, \hat{z}) be optimal solution
 - If $\hat{z} = 0$ then $\hat{z} = Cx^0 - C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}$
 - There is no $x \in X$ such that $Cx \leq Cx^0$ because $(x, Cx^0 - Cx)$ would be better solution $\Rightarrow x^0$ efficient
 - If \hat{x}^0 efficient there is no $x \in X$ with $Cx \leq Cx^0$
 - \Rightarrow there is no z with $z = Cx^0 - Cx \geq 0$
 - $\Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0$
Proof.

- LP is always feasible with $x = x^0, z = 0$ (and value 0)
- Let (\hat{x}, \hat{z}) be optimal solution
 - If $\hat{z} = 0$ then $\hat{z} = Cx^0 - C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}$
 - There is no $x \in X$ such that $Cx \leq Cx^0$ because $(x, Cx^0 - Cx)$ would be better solution $\Rightarrow x^0$ efficient
- If \hat{x}^0 efficient there is no $x \in X$ with $Cx \leq Cx^0$
 - \Rightarrow there is no z with $z = Cx^0 - Cx \geq 0$
 - $\Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0$
Proof.

- LP is always feasible with \(x = x^0, z = 0 \) (and value 0)
- Let \((\hat{x}, \hat{z})\) be optimal solution
- If \(\hat{z} = 0\) then \(\hat{z} = Cx^0 - C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}\)
 - There is no \(x \in X\) such that \(Cx \leq Cx^0\) because \((x, Cx^0 - Cx)\)
 would be better solution \(\Rightarrow x^0\) efficient
- If \(\hat{x}^0\) efficient there is no \(x \in X\) with \(Cx \leq Cx^0\)
 - \(\Rightarrow\) there is no \(z\) with \(z = Cx^0 - Cx \geq 0\)
 - \(\Rightarrow\) \(\max e^Tz \leq 0 \Rightarrow \max e^Tz = 0\)
Proof.

- LP is always feasible with $x = x^0$, $z = 0$ (and value 0)
- Let (\hat{x}, \hat{z}) be optimal solution
- If $\hat{z} = 0$ then $\hat{z} = Cx^0 - C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}$
- There is no $x \in X$ such that $Cx \leq Cx^0$ because $(x, Cx^0 - Cx)$ would be better solution $\Rightarrow x^0$ efficient
- If \hat{x}^0 efficient there is no $x \in X$ with $Cx \leq Cx^0$
- \Rightarrow there is no z with $z = Cx^0 - Cx \geq 0$
- $\Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0$
Proof.

- LP is always feasible with \(x = x^0, z = 0 \) (and value 0)
- Let \((\hat{x}, \hat{z})\) be optimal solution
- If \(\hat{z} = 0 \) then \(\hat{z} = Cx^0 - C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x} \)
- There is no \(x \in X \) such that \(Cx \leq Cx^0 \) because \((x, Cx^0 - Cx)\)
 would be better solution \(\Rightarrow x^0 \) efficient
- If \(\hat{x}^0 \) efficient there is no \(x \in X \) with \(Cx \leq Cx^0 \)
 \(\Rightarrow \) there is no \(z \) with \(z = Cx^0 - Cx \geq 0 \)
 \(\Rightarrow \) max \(e^T z \leq 0 \) \(\Rightarrow \) max \(e^T z = 0 \)
Proof.

- LP is always feasible with \(x = x^0, z = 0 \) (and value 0)
- Let \((\hat{x}, \hat{z})\) be optimal solution
- If \(\hat{z} = 0 \) then \(\hat{z} = Cx^0 - C\hat{x} = 0 \) \(\Rightarrow \) \(Cx^0 = C\hat{x} \)
- There is no \(x \in X \) such that \(Cx \leq Cx^0 \) because \((x, Cx^0 - Cx)\) would be better solution \(\Rightarrow x^0 \) efficient
- If \(\hat{x}^0 \) efficient there is no \(x \in X \) with \(Cx \leq Cx^0 \)
- \(\Rightarrow \) there is no \(z \) with \(z = Cx^0 - Cx \geq 0 \)
- \(\Rightarrow \) \(\max e^T z \leq 0 \) \(\Rightarrow \) \(\max e^T z = 0 \)
Proof.

- LP is always feasible with \(x = x^0, z = 0 \) (and value 0)
- Let \((\hat{x}, \hat{z})\) be optimal solution
- If \(\hat{z} = 0\) then \(\hat{z} = Cx^0 - C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}\)
- There is no \(x \in X\) such that \(Cx \leq Cx^0\) because \((x, Cx^0 - Cx)\) would be better solution \(\Rightarrow x^0\) efficient
- If \(\hat{x}^0\) efficient there is no \(x \in X\) with \(Cx \leq Cx^0\)
- \(\Rightarrow\) there is no \(z\) with \(z = Cx^0 - Cx \geq 0\)
- \(\Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0\)
Lemma

A feasible solution \(x^0 \in X \) is efficient if and only if the linear programme

\[
\begin{align*}
\min & \quad u^T b + w^T C x^0 \\
\text{subject to} & \quad u^T A + w^T C \geq 0 \\
& \quad w \geq e \\
& \quad u \in \mathbb{R}^m
\end{align*}
\]

(3)

has an optimal solution \((\hat{u}, \hat{w})\) with \(\hat{u}^T b + \hat{w}^T C x^0 = 0 \).

Proof.

The LP (3) is the dual of the LP (2) \(\square \)
Lemma

A feasible solution \(x^0 \in X \) is efficient if and only if the linear programme

\[
\begin{align*}
\min & \quad u^T b + w^T C x^0 \\
\text{subject to} & \quad u^T A + w^T C \geq 0 \\
& \quad w \geq e \\
& \quad u \in \mathbb{R}^m
\end{align*}
\]

has an optimal solution \((\hat{u}, \hat{w})\) with \(\hat{u}^T b + \hat{w}^T C x^0 = 0 \).

Proof.

The LP (3) is the dual of the LP (2). □
Theorem

A feasible solution \(x^0 \in X \) is an efficient solution of the MOLP (1) if and only if there exists a \(\lambda \in \mathbb{R}^p \) such that

\[
\lambda^T C x^0 \leq \lambda^T C x
\]

for all \(x \in X \).

Note: We already know that optimal solutions of weighted sum problems are efficient.
Theorem

A feasible solution $x^0 \in X$ is an efficient solution of the MOLP (1) if and only if there exists a $\lambda \in \mathbb{R}^p_+$ such that

$$\lambda^T C x^0 \leq \lambda^T C x$$

for all $x \in X$.

Note: We already know that optimal solutions of weighted sum problems are efficient.
Proof.

- Let $x^0 \in X_E$

 - By Lemma 4 LP (3) has an optimal solution (\hat{u}, \hat{w}) such that

 $$\hat{u}^T b = -\hat{w}^T Cx^0 \quad (5)$$

 - \hat{u} is also an optimal solution of the LP

 $$\min \left\{ u^T b : u^T A \geq -\hat{w}^T C \right\}, \quad (6)$$

 which is (3) with $w = \hat{w}$ fixed

 - \Rightarrow There is an optimal solution of the dual of (6)

 $$\max \left\{ -\hat{w}^T Cx : Ax = b, \ x \geq 0 \right\} \quad (7)$$
Proof.

- Let \(x^0 \in X_E \)

- By Lemma 4 LP (3) has an optimal solution (\(\hat{u}, \hat{w} \)) such that

\[\hat{u}^T b = -\hat{w}^T C x^0 \quad (5) \]

- \(\hat{u} \) is also an optimal solution of the LP

\[\min \left\{ u^T b : u^T A \geq -\hat{w}^T C \right\} , \quad (6) \]

which is (3) with \(w = \hat{w} \) fixed

- \(\Rightarrow \) There is an optimal solution of the dual of (6)

\[\max \left\{ -\hat{w}^T C x : Ax = b, \ x \geq 0 \right\} \quad (7) \]
Proof.

• Let $x^0 \in X_E$

• By Lemma 4 LP (3) has an optimal solution (\hat{u}, \hat{w}) such that

$$\hat{u}^T b = -\hat{w}^T C x^0 \quad (5)$$

• \hat{u} is also an optimal solution of the LP

$$\min \left\{ u^T b : u^T A \geq -\hat{w}^T C \right\}, \quad (6)$$

which is (3) with $w = \hat{w}$ fixed

• \Rightarrow There is an optimal solution of the dual of (6)

$$\max \left\{ -\hat{w}^T C x : A x = b, \ x \geq 0 \right\} \quad (7)$$
Proof.

- Let \(x^0 \in X_E \)
- By Lemma 4 LP (3) has an optimal solution \((\hat{u}, \hat{w})\) such that
 \[
 \hat{u}^T b = -\hat{w}^T C x^0
 \]
 (5)
- \(\hat{u} \) is also an optimal solution of the LP
 \[
 \min \left\{ u^T b : u^T A \geq -\hat{w}^T C \right\},
 \]
 (6)
 which is (3) with \(w = \hat{w} \) fixed
- \(\Rightarrow \) There is an optimal solution of the dual of (6)
 \[
 \max \left\{ -\hat{w}^T C x : Ax = b, \ x \geq 0 \right\}
 \]
 (7)
Proof.

- By weak duality $u^T b \geq -\hat{w}^T C x$ for all feasible solutions u of (6) and for all feasible solutions x of (7).
- We already know that $\hat{u}^T b = -\hat{w}^T C x^0$ from (5).
- $\Rightarrow x^0$ is an optimal solution of (7).
- Note that (7) is equivalent to

$$\min \left\{ \hat{w}^T C x : A x = b, \quad x \geq 0 \right\}$$

with $\hat{w} \geq e > 0$ from the constraints in (3).
Proof.

- By weak duality $u^T b \geq -\hat{w}^T Cx$ for all feasible solutions u of (6) and for all feasible solutions x of (7).
- We already know that $\hat{u}^T b = -\hat{w}^T Cx^0$ from (5).
- ⇒ x^0 is an optimal solution of (7).
- Note that (7) is equivalent to

$$\min \left\{ \hat{w}^T Cx : Ax = b, \ x \geq 0 \right\}$$

with $\hat{w} \geq e > 0$ from the constraints in (3).
Proof.

- By weak duality $u^T b \geq -\hat{w}^T Cx$ for all feasible solutions u of (6) and for all feasible solutions x of (7).
- We already know that $\hat{u}^T b = -\hat{w}^T Cx^0$ from (5).
- $\Rightarrow x^0$ is an optimal solution of (7).

Note that (7) is equivalent to

$$\min \left\{ \hat{w}^T Cx : Ax = b, \ x \geq 0 \right\}$$

with $\hat{w} \geq e > 0$ from the constraints in (3).
Proof.

- By weak duality $u^T b \geq -\hat{w}^T C x$ for all feasible solutions u of (6) and for all feasible solutions x of (7).
- We already know that $\hat{u}^T b = -\hat{w}^T C x^0$ from (5).
- $\Rightarrow x^0$ is an optimal solution of (7).
- Note that (7) is equivalent to

$$\min \left\{ \hat{w}^T C x : Ax = b, \ x \geq 0 \right\}$$

with $\hat{w} \geq e > 0$ from the constraints in (3).
Overview

1. Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums

2. Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example

3. Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples
• Modification of the **Simplex algorithm** for LPs with two objectives

\[
\begin{align*}
\text{min} & \quad ((c^1)^T x, (c^2)^T x) \\
\text{subject to} & \quad A x = b \\
& \quad x \geq 0
\end{align*}
\]

(8)

• We can find all efficient solutions by solving the parametric LP

\[
\begin{align*}
\text{min} \left\{ \lambda_1 (c^1)^T x + \lambda_2 (c^2)^T x : A x = b, x \geq 0 \right\}
\end{align*}
\]

for all \(\lambda = (\lambda_1, \lambda_2) > 0 \)
Modification of the *Simplex algorithm* for LPs with two objectives

$$\min \quad ((c^1)^T x, (c^2)^T x)$$

subject to

$$\begin{align*}
Ax &= b \\ x &\geq 0
\end{align*}$$

We can find all efficient solutions by solving the parametric LP

$$\min \left\{ \lambda_1 (c^1)^T x + \lambda_2 (c^2)^T x : Ax = b, x \geq 0 \right\}$$

for all $\lambda = (\lambda_1, \lambda_2) > 0$
We can divide the objective by $\lambda_1 + \lambda_2$ without changing the optima, i.e. $\lambda_1' = \lambda_1/(\lambda_1 + \lambda_2)$, $\lambda_2' = \lambda_2/(\lambda_1 + \lambda_2)$ and $\lambda_1' + \lambda_2' = 1$ or

$$\lambda_2' = 1 - \lambda_1'$$

LPs with one parameter $0 \leq \lambda \leq 1$ and parametric objective

$$c(\lambda) := \lambda c^1 + (1 - \lambda)c^2$$

$$\min \left\{ c(\lambda)^T x : Ax = b, x \geq 0 \right\}$$ \hspace{1cm} (9)
We can divide the objective by $\lambda_1 + \lambda_2$ without changing the optima, i.e. $\lambda_1' = \lambda_1 / (\lambda_1 + \lambda_2)$, $\lambda_2' = \lambda_2 / (\lambda_1 + \lambda_2)$ and $\lambda_1' + \lambda_2' = 1$ or $\lambda_2' = 1 - \lambda_1'$.

LPs with one parameter $0 \leq \lambda \leq 1$ and parametric objective

$$c(\lambda) := \lambda c^1 + (1 - \lambda)c^2$$

$$\min \left\{ c(\lambda)^T x : Ax = b, x \geq 0 \right\} \quad (9)$$
Let \mathcal{B} be a feasible basis

- Recall reduced cost $\bar{c}_N = c_N - c_B^T B^{-1} N$
- Reduced cost for the parametric LP

$$\bar{c}(\lambda) = \lambda \bar{c}^1 + (1 - \lambda) \bar{c}^2$$

- Suppose $\hat{\mathcal{B}}$ is an optimal basis of (9) for some $\hat{\lambda}$
- $\bar{c}(\hat{\lambda}) \geq 0$
Let \mathcal{B} be a feasible basis

- Recall reduced cost $\bar{c}_N = c_N - c_B^T B^{-1} N$

- Reduced cost for the parametric LP

$$\bar{c}(\lambda) = \lambda \bar{c}^1 + (1 - \lambda) \bar{c}^2$$ \hspace{1cm} (10)

- Suppose $\hat{\mathcal{B}}$ is an optimal basis of (9) for some $\hat{\lambda}$

- $\bar{c}(\hat{\lambda}) \geq 0$
Let \mathcal{B} be a feasible basis

- Recall reduced cost $\bar{c}_N = c_N - c_B^T B^{-1} N$
- Reduced cost for the parametric LP

$$\bar{c}(\lambda) = \lambda \bar{c}^1 + (1 - \lambda) \bar{c}^2$$ \hspace{1cm} (10)

- Suppose $\hat{\mathcal{B}}$ is an optimal basis of (9) for some $\hat{\lambda}$
- $\bar{c}(\hat{\lambda}) \geq 0$
• Let \mathcal{B} be a feasible basis
• Recall reduced cost $\bar{c}_N = c_N - c_B^T B^{-1} N$
• Reduced cost for the parametric LP

$$\bar{c}(\lambda) = \lambda \bar{c}^1 + (1 - \lambda) \bar{c}^2$$

(10)

• Suppose $\hat{\mathcal{B}}$ is an optimal basis of (9) for some $\hat{\lambda}$
• $\bar{c}(\hat{\lambda}) \geq 0$
Let \mathcal{B} be a feasible basis

- Recall reduced cost $\bar{c}_N = c_N - c^T_B B^{-1} N$
- Reduced cost for the parametric LP

$$\bar{c}(\lambda) = \lambda \bar{c}^1 + (1 - \lambda) \bar{c}^2$$

(10)

- Suppose $\hat{\mathcal{B}}$ is an optimal basis of (9) for some $\hat{\lambda}$
- $\bar{c}(\hat{\lambda}) \geq 0$
Case 1: $\bar{c}^2 \geq 0$

- From (10) $\bar{c}(\lambda) \geq 0$ for all $\lambda < \hat{\lambda}$
- \hat{B} is optimal basis for all $0 \leq \lambda \leq \hat{\lambda}$

Case 2: There is at least one $i \in \mathcal{N}$ with $\bar{c}^2_i < 0$

- \Rightarrow there is $\lambda < \hat{\lambda}$ such that $\bar{c}(\lambda)_i = 0$
- $\lambda \bar{c}^1_i + (1 - \lambda) \bar{c}^2_i = 0$
- $\lambda (\bar{c}^1_i - \bar{c}^2_i) + \bar{c}^2_i = 0$
- $\lambda = \frac{-\bar{c}^2_i}{\bar{c}^1_i - \bar{c}^2_i}$
- Below this value \hat{B} is not optimal
Case 1: $\bar{c}^2 \geq 0$

- From (10) $\bar{c}(\lambda) \geq 0$ for all $\lambda < \hat{\lambda}$
- \hat{B} is optimal basis for all $0 \leq \lambda \leq \hat{\lambda}$

Case 2: There is at least one $i \in \mathcal{N}$ with $\bar{c}_i^2 < 0$

- \Rightarrow there is $\lambda < \hat{\lambda}$ such that $\bar{c}(\lambda)_i = 0$
- $\lambda \bar{c}_i^1 + (1 - \lambda)\bar{c}_i^2 = 0$
- $\lambda(\bar{c}_i^1 - \bar{c}_i^2) + \bar{c}_i^2 = 0$
- $\lambda = \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}$
- Below this value \hat{B} is not optimal
Case 1: $\bar{c}^2 \geq 0$

- From (10) $\bar{c}(\lambda) \geq 0$ for all $\lambda < \hat{\lambda}$
- \hat{B} is optimal basis for all $0 \leq \lambda \leq \hat{\lambda}$

Case 2: There is at least one $i \in \mathcal{N}$ with $\bar{c}^2_i < 0$

- \Rightarrow there is $\lambda < \hat{\lambda}$ such that $\bar{c}(\lambda)_i = 0$
- $\lambda \bar{c}^1_i + (1 - \lambda)\bar{c}^2_i = 0$
- $\lambda (\bar{c}^1_i - \bar{c}^2_i) + \bar{c}^2_i = 0$
- $\lambda = \frac{-\bar{c}^2_i}{\bar{c}^1_i - \bar{c}^2_i}$
- Below this value \hat{B} is not optimal
Case 1: \(\bar{c}^2 \geq 0 \)

- From (10) \(\bar{c}(\lambda) \geq 0 \) for all \(\lambda < \hat{\lambda} \)
- \(\hat{B} \) is optimal basis for all \(0 \leq \lambda \leq \hat{\lambda} \)

Case 2: There is at least one \(i \in \mathcal{N} \) with \(\bar{c}^2_i < 0 \)

- \(\Rightarrow \) there is \(\lambda < \hat{\lambda} \) such that \(\bar{c}(\lambda); i = 0 \)
- \(\lambda \bar{c}^1_i + (1 - \lambda)\bar{c}^2_i = 0 \)
- \(\lambda(\bar{c}^1_i - \bar{c}^2_i) + \bar{c}^2_i = 0 \)
- \(\lambda = \frac{-\bar{c}^2_i}{\bar{c}^1_i - \bar{c}^2_i} \)
- Below this value \(\hat{B} \) is not optimal
Case 1: $\bar{c}^2 \geq 0$

- From (10) $\bar{c}(\lambda) \geq 0$ for all $\lambda < \hat{\lambda}$
- \hat{B} is optimal basis for all $0 \leq \lambda \leq \hat{\lambda}$

Case 2: There is at least one $i \in \mathcal{N}$ with $\bar{c}_i^2 < 0$

- \Rightarrow there is $\lambda < \hat{\lambda}$ such that $\bar{c}(\lambda)_i = 0$

- $\lambda \bar{c}_i^1 + (1 - \lambda)\bar{c}_i^2 = 0$
- $\lambda(\bar{c}_i^1 - \bar{c}_i^2) + \bar{c}_i^2 = 0$
- $\lambda = \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}$

- Below this value \hat{B} is not optimal
Case 1: $\bar{c}^2 \geq 0$

- From (10) $\bar{c}(\lambda) \geq 0$ for all $\lambda < \hat{\lambda}$
- \hat{B} is optimal basis for all $0 \leq \lambda \leq \hat{\lambda}$

Case 2: There is at least one $i \in N$ with $\bar{c}_i^2 < 0$

- \Rightarrow there is $\lambda < \hat{\lambda}$ such that $\bar{c}(\lambda)_i = 0$
- $\lambda \bar{c}_i^1 + (1 - \lambda)\bar{c}_i^2 = 0$
- $\lambda (\bar{c}_i^1 - \bar{c}_i^2) + \bar{c}_i^2 = 0$
- $\lambda = \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}$
- Below this value \hat{B} is not optimal
Case 1: \(\bar{c}^2 \geq 0 \)
- From (10) \(\bar{c}(\lambda) \geq 0 \) for all \(\lambda < \hat{\lambda} \)
- \(\hat{B} \) is optimal basis for all \(0 \leq \lambda \leq \hat{\lambda} \)

Case 2: There is at least one \(i \in \mathcal{N} \) with \(\bar{c}^2_i < 0 \)
- \(\Rightarrow \) there is \(\lambda < \hat{\lambda} \) such that \(\bar{c}(\lambda)_i = 0 \)
- \(\lambda \bar{c}^1_i + (1 - \lambda)\bar{c}^2_i = 0 \)
- \(\lambda(\bar{c}^1_i - \bar{c}^2_i) + \bar{c}^2_i = 0 \)
 - \(\lambda = \frac{\bar{c}^2_i}{\bar{c}^1_i - \bar{c}^2_i} \)
- Below this value \(\hat{B} \) is not optimal
Case 1: $\bar{c}^2 \geq 0$

- From (10) $\bar{c}(\lambda) \geq 0$ for all $\lambda < \hat{\lambda}$
- \hat{B} is optimal basis for all $0 \leq \lambda \leq \hat{\lambda}$

Case 2: There is at least one $i \in N$ with $\bar{c}_i^2 < 0$

- \Rightarrow there is $\lambda < \hat{\lambda}$ such that $\bar{c}(\lambda)_i = 0$
- $\lambda \bar{c}_i^1 + (1 - \lambda)\bar{c}_i^2 = 0$
- $\lambda(\bar{c}_i^1 - \bar{c}_i^2) + \bar{c}_i^2 = 0$
- $\lambda = \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}$

- Below this value \hat{B} is not optimal
Case 1: $\bar{c}^2 \geq 0$

- From (10) $\bar{c}(\lambda) \geq 0$ for all $\lambda < \hat{\lambda}$
- \hat{B} is optimal basis for all $0 \leq \lambda \leq \hat{\lambda}$

Case 2: There is at least one $i \in \mathcal{N}$ with $\bar{c}_i^2 < 0$

- \Rightarrow there is $\lambda < \hat{\lambda}$ such that $\bar{c}(\lambda)_i = 0$
- $\lambda \bar{c}_i^1 + (1 - \lambda)\bar{c}_i^2 = 0$
- $\lambda(\bar{c}_i^1 - \bar{c}_i^2) + \bar{c}_i^2 = 0$
- $\lambda = \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}$
- Below this value \hat{B} is not optimal
\[\mathcal{I} = \{ i \in \mathcal{N} : \bar{c}_i^2 < 0, \bar{c}_i^1 \geq 0 \} \]

\[\lambda' := \max_{i \in \mathcal{I}} \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}. \] (11)

\(\hat{B} \) is optimal for all \(\lambda \in [\lambda', \hat{\lambda}] \)

As soon as \(\lambda < \lambda' \) new bases become optimal

Entering variable \(x_s \) has to be chosen where the maximum in (11) is attained for \(i = s \)
\[\mathcal{I} = \{ i \in \mathcal{N} : \bar{c}_i^2 < 0, \bar{c}_i^1 \geq 0 \} \]

\[\lambda' := \max_{i \in \mathcal{I}} \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}. \]

\(\hat{\mathcal{B}} \) is optimal for all \(\lambda \in [\lambda', \hat{\lambda}] \)

As soon as \(\lambda < \lambda' \) new bases become optimal

Entering variable \(x_s \) has to be chosen where the maximum in (11) is attained for \(i = s \)
\[I = \{ i \in N : \bar{c}_i^2 < 0, \bar{c}_i^1 \geq 0 \} \]

\[\lambda' := \max_{i \in I} \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}. \]

(11)

- \(\hat{B} \) is optimal for all \(\lambda \in [\lambda', \hat{\lambda}] \)
- As soon as \(\lambda < \lambda' \) new bases become optimal
- Entering variable \(x_s \) has to be chosen where the maximum in (11) is attained for \(i = s \)
\(\mathcal{I} = \{ i \in \mathcal{N} : \bar{c}_i^2 < 0, \bar{c}_i^1 \geq 0 \} \)

\[\lambda' := \max_{i \in \mathcal{I}} \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}. \quad (11) \]

- \(\hat{B} \) is optimal for all \(\lambda \in [\lambda', \hat{\lambda}] \)
- As soon as \(\lambda < \lambda' \) new bases become optimal
- Entering variable \(x_s \) has to be chosen where the maximum in (11) is attained for \(i = s \)
\[\mathcal{I} = \{ i \in \mathcal{N} : \bar{c}_i^2 < 0, \bar{c}_i^1 \geq 0 \} \]

\[\lambda' := \max_{i \in \mathcal{I}} \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}. \] (11)

\(\hat{B} \) is optimal for all \(\lambda \in [\lambda', \hat{\lambda}] \)

As soon as \(\lambda < \lambda' \) new bases become optimal

Entering variable \(x_s \) has to be chosen where the maximum in (11) is attained for \(i = s \)
Algorithm (Parametric Simplex for biobjective LPs)

Input: Data A, b, C for a biobjective LP.

Phase I: Solve the auxiliary LP for Phase I using the Simplex algorithm. If the optimal value is positive, STOP, $X = \emptyset$. Otherwise let B be an optimal basis.

Phase II: Solve the LP (9) for $\lambda = 1$ starting from basis B found in Phase I yielding an optimal basis \hat{B}. Compute \tilde{A} and \tilde{b}.

Phase III: While $I = \{i \in N : \bar{c}^2_i < 0, \bar{c}^1_i \geq 0\} \neq \emptyset$.

$$\lambda := \max_{i \in I} \frac{-\bar{c}^2_i}{\bar{c}^1_i - \bar{c}^2_i}.$$

$$s \in \text{argmax} \left\{ i \in I : \frac{-\bar{c}^2_i}{\bar{c}^1_i - \bar{c}^2_i} \right\}.$$

$$r \in \text{argmin} \left\{ j \in B : \frac{\tilde{b}_j}{\tilde{A}_{js}}, \tilde{A}_{js} > 0 \right\}.$$

Let $B := (B \setminus \{r\}) \cup \{s\}$ and update \tilde{A} and \tilde{b}.

End while.

Output: Sequence of λ-values and sequence of optimal BFSs.
Overview

1. Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums

2. Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example

3. Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples
Example

\[
\begin{align*}
\text{min} & \quad \begin{pmatrix}
3x_1 + x_2 \\
-x_1 - 2x_2
\end{pmatrix} \\
\text{subject to} & \quad \begin{align*}
x_2 & \leq 3 \\
3x_1 - x_2 & \leq 6 \\
x & \geq 0
\end{align*}
\end{align*}
\]

\[LP(\lambda)\]

\[
\begin{align*}
\text{min} & \quad (4\lambda - 1)x_1 + (3\lambda - 2)x_2 \\
\text{subject to} & \quad \begin{align*}
x_2 + x_3 & = 3 \\
3x_1 - x_2 + x_4 & = 6 \\
x & \geq 0
\end{align*}
\end{align*}
\]
Use Simplex tableaus showing reduced cost vectors \bar{c}^1 and \bar{c}^2

- Optimal basis for $\lambda = 1$ is $B = \{3, 4\}$, optimal basic feasible solution $x = (0, 0, 3, 6)$
- Start with Phase 3
• Use Simplex tableaus showing reduced cost vectors \bar{c}^1 and \bar{c}^2

• Optimal basis for $\lambda = 1$ is $B = \{3, 4\}$, optimal basic feasible solution $x = (0, 0, 3, 6)$

• Start with Phase 3
Use Simplex tableaus showing reduced cost vectors \bar{c}^1 and \bar{c}^2

Optimal basis for $\lambda = 1$ is $B = \{3, 4\}$, optimal basic feasible solution $x = (0, 0, 3, 6)$

Start with Phase 3
Iteration 1:

\bar{c}^1	3	1	0	0	0
\bar{c}^2	-1	-2	0	0	0
x_3	0	1	1	0	3
x_4	3	-1	0	1	6

$\lambda = 1, \bar{c}(\lambda) = (3, 1, 0, 0), \mathcal{B}^1 = \{3, 4\}, x^1 = (0, 0, 3, 6)$

$I = \{1, 2\}, \lambda' = \max \left\{ \frac{1}{3+1}, \frac{2}{1+2} \right\} = \frac{2}{3}$

$s = 2, r = 3$
Iteration 2

<table>
<thead>
<tr>
<th>\bar{c}^1</th>
<th>3</th>
<th>0</th>
<th>-1</th>
<th>0</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{c}^2</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>x^2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>x^4</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

$\lambda = 2/3$, $\bar{c}(\lambda) = (5/3, 0, 0, 0)$, $B^2 = \{2, 4\}$, $x^2 = (0, 3, 0, 9)$

$I = \{1\}$, $\lambda' = \max \left\{ \frac{1}{3+1} \right\} = \frac{1}{4}$

$s = 1$, $r = 4$
Iteration 3

<table>
<thead>
<tr>
<th>\bar{c}^1</th>
<th>0</th>
<th>0</th>
<th>-2</th>
<th>-1</th>
<th>-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{c}^2</td>
<td>0</td>
<td>0</td>
<td>7/3</td>
<td>1/3</td>
<td>9</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td>1/3</td>
<td>1/3</td>
<td>3</td>
</tr>
</tbody>
</table>

$\lambda = 1/4, \bar{c}(\lambda) = (0, 0, 5/4, 0), B^3 = \{1, 2\}, x^3 = (3, 3, 0, 0), I = \emptyset$
Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$

Basic feasible solutions x^1, x^2, x^3

In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2.

Basis $B^1 = (3, 4)$ and BFS $x^1 = (0, 0, 3, 6)$ are optimal for $\lambda \in [2/3, 1]$.

Basis $B^2 = (2, 4)$ and BFS $x^2 = (0, 3, 0, 9)$ are optimal for $\lambda \in [1/4, 2/3]$, and

Basis $B^3 = (1, 2)$ and BFS $x^3 = (3, 3, 0, 0)$ are optimal for $\lambda \in [0, 1/4]$.

Objective vectors for basic feasible solutions: $Cx^1 = (0, 0)$, $Cx^2 = (3, -6)$, and $Cx^3 = (12, -9)$
Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$

Basic feasible solutions x^1, x^2, x^3

In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2.

Basis $B^1 = (3, 4)$ and BFS $x^1 = (0, 0, 3, 6)$ are optimal for $\lambda \in [2/3, 1]$.

Basis $B^2 = (2, 4)$ and BFS $x^2 = (0, 3, 0, 9)$ are optimal for $\lambda \in [1/4, 2/3]$, and

Basis $B^3 = (1, 2)$ and BFS $x^3 = (3, 3, 0, 0)$ are optimal for $\lambda \in [0, 1/4]$.

Objective vectors for basic feasible solutions: $Cx^1 = (0, 0)$, $Cx^2 = (3, -6)$, and $Cx^3 = (12, -9)$
Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$

Basic feasible solutions x^1, x^2, x^3

In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2.

- Basis $B^1 = (3, 4)$ and BFS $x^1 = (0, 0, 3, 6)$ are optimal for $\lambda \in [2/3, 1]$.
- Basis $B^2 = (2, 4)$ and BFS $x^2 = (0, 3, 0, 9)$ are optimal for $\lambda \in [1/4, 2/3]$, and
- Basis $B^3 = (1, 2)$ and BFS $x^3 = (3, 3, 0, 0)$ are optimal for $\lambda \in [0, 1/4]$.

Objective vectors for basic feasible solutions: $Cx^1 = (0, 0), Cx^2 = (3, -6)$, and $Cx^3 = (12, -9)$
- Weight values $\lambda^1 = 1$, $\lambda^2 = 2/3$, $\lambda^3 = 1/4$, $\lambda^4 = 0$
- Basic feasible solutions x^1, x^2, x^3
- In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2.
- Basis $B^1 = (3, 4)$ and BFS $x^1 = (0, 0, 3, 6)$ are optimal for $\lambda \in [2/3, 1]$.
- Basis $B^2 = (2, 4)$ and BFS $x^2 = (0, 3, 0, 9)$ are optimal for $\lambda \in [1/4, 2/3]$, and
- Basis $B^3 = (1, 2)$ and BFS $x^3 = (3, 3, 0, 0)$ are optimal for $\lambda \in [0, 1/4]$.
- Objective vectors for basic feasible solutions: $Cx^1 = (0, 0)$, $Cx^2 = (3, -6)$, and $Cx^3 = (12, -9)$
- Weight values $\lambda^1 = 1$, $\lambda^2 = 2/3$, $\lambda^3 = 1/4$, $\lambda^4 = 0$
- Basic feasible solutions x^1, x^2, x^3
- In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2.
- Basis $B^1 = (3, 4)$ and BFS $x^1 = (0, 0, 3, 6)$ are optimal for $\lambda \in [2/3, 1]$.
- Basis $B^2 = (2, 4)$ and BFS $x^2 = (0, 3, 0, 9)$ are optimal for $\lambda \in [1/4, 2/3]$, and
- Basis $B^3 = (1, 2)$ and BFS $x^3 = (3, 3, 0, 0)$ are optimal for $\lambda \in [0, 1/4]$.
- Objective vectors for basic feasible solutions: $Cx^1 = (0, 0)$, $Cx^2 = (3, -6)$, and $Cx^3 = (12, -9)$
Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$

Basic feasible solutions x^1, x^2, x^3

In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2.

Basis $B^1 = (3, 4)$ and BFS $x^1 = (0, 0, 3, 6)$ are optimal for $\lambda \in [2/3, 1]$.

Basis $B^2 = (2, 4)$ and BFS $x^2 = (0, 3, 0, 9)$ are optimal for $\lambda \in [1/4, 2/3]$, and

Basis $B^3 = (1, 2)$ and BFS $x^3 = (3, 3, 0, 0)$ are optimal for $\lambda \in [0, 1/4]$.

Objective vectors for basic feasible solutions: $Cx^1 = (0, 0)$, $Cx^2 = (3, -6)$, and $Cx^3 = (12, -9)$
Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$

Basic feasible solutions x^1, x^2, x^3

In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2.

- Basis $B^1 = (3, 4)$ and BFS $x^1 = (0, 0, 3, 6)$ are optimal for $\lambda \in [2/3, 1]$.
- Basis $B^2 = (2, 4)$ and BFS $x^2 = (0, 3, 0, 9)$ are optimal for $\lambda \in [1/4, 2/3]$, and
- Basis $B^3 = (1, 2)$ and BFS $x^3 = (3, 3, 0, 0)$ are optimal for $\lambda \in [0, 1/4]$.

Objective vectors for basic feasible solutions: $Cx^1 = (0, 0)$, $Cx^2 = (3, -6)$, and $Cx^3 = (12, -9)$
Values $\lambda = 2/3$ and $\lambda = 1/4$ correspond to weight vectors $(2/3, 1/3)$ and $(1/4, 3/4)$.

Contour lines for weighted sum objectives in decision are parallel to efficient edges.

\[
\begin{align*}
\frac{2}{3}(3x_1 + x_2) + \frac{1}{3}(-x_1 - 2x_2) &= \frac{5}{3}x_1 \\
\frac{1}{4}(3x_1 + x_2) + \frac{3}{4}(-x_1 - 2x_2) &= -\frac{5}{4}x_2
\end{align*}
\]
Values $\lambda = 2/3$ and $\lambda = 1/4$ correspond to weight vectors $(2/3, 1/3)$ and $(1/4, 3/4)$

Contour lines for weighted sum objectives in decision are parallel to efficient edges

\[
\begin{align*}
\frac{2}{3}(3x_1 + x_2) + \frac{1}{3}(-x_1 - 2x_2) &= \frac{5}{3}x_1 \\
\frac{1}{4}(3x_1 + x_2) + \frac{3}{4}(-x_1 - 2x_2) &= -\frac{5}{4}x_2
\end{align*}
\]

Feasible set in decision space and efficient set
Values $\lambda = 2/3$ and $\lambda = 1/4$ correspond to weight vectors
$(2/3, 1/3)$ and $(1/4, 3/4)$

Contour lines for weighted sum objectives in decision are parallel to efficient edges

$$
\frac{2}{3}(3x_1 + x_2) + \frac{1}{3}(-x_1 - 2x_2) = \frac{5}{3}x_1 \\
\frac{1}{4}(3x_1 + x_2) + \frac{3}{4}(-x_1 - 2x_2) = -\frac{5}{4}x_2
$$

Feasible set in decision space and efficient set
Weight vectors \((2/3, 1/3)\) and \((1/4, 3/4)\) are normal to nondominated edges.

Objective space and nondominated set.
Algorithm finds **all nondominated extreme points** in objective space and **one efficient bfs** for each of those

Algorithm **does not find all efficient solutions** just as Simplex algorithm does not find all optimal solutions of an LP

Example

\[
\begin{align*}
\min & \quad (x_1, x_2)^T \\
\text{subject to} & \quad 0 \leq x_i \leq 1 \quad i = 1, 2, 3 \\
\end{align*}
\]

Efficient set: \(\{ x \in \mathbb{R}^3 : x_1 = x_2 = 0, 0 \leq x_3 \leq 1 \} \)
Algorithm finds all nondominated extreme points in objective space and one efficient bfs for each of those.

Algorithm does not find all efficient solutions just as Simplex algorithm does not find all optimal solutions of an LP.

Example

\[
\begin{align*}
\text{min} & \quad (x_1, x_2)^T \\
\text{subject to} & \quad 0 \leq x_i \leq 1 \quad i = 1, 2, 3
\end{align*}
\]

Efficient set: \(\{x \in \mathbb{R}^3 : x_1 = x_2 = 0, 0 \leq x_3 \leq 1\}\)
Algorithm finds all nondominated extreme points in objective space and one efficient bfs for each of those.

Algorithm does not find all efficient solutions just as Simplex algorithm does not find all optimal solutions of an LP.

Example

\[
\begin{align*}
\text{min} & \quad (x_1, x_2)^T \\
\text{subject to} & \quad 0 \leq x_i \leq 1 \quad i = 1, 2, 3
\end{align*}
\]

Efficient set: \(\{ x \in \mathbb{R}^3 : x_1 = x_2 = 0, 0 \leq x_3 \leq 1 \} \)
Overview

1. Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums

2. Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example

3. Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples
\(\min \{ Cx : Ax = b, x \geq 0 \} \)

- Let \(B \) be a basis and \(\bar{C} = C - C_B A_B^{-1} A \) and \(R = \bar{C}_N \)
- How to calculate “critical” \(\lambda \) if \(p > 2 \)?

- At \(B_1 : \bar{C}_N = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix} \), \(\lambda' = 2/3 \), \(\lambda = (2/3, 1/3)^T \) and \(\lambda^T \bar{C}_N = (5/3, 0)^T \)
- At \(B_2 : \bar{C}_N = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \), \(\lambda' = 1/4 \), \(\lambda = (1/4, 3/4)^T \) and \(\lambda^T \bar{C}_N = (0, 5/4)^T \)
- Find \(\lambda \in \mathbb{R}^p, \lambda > 0 \) such that \(\lambda^T R \geq 0 \) (optimality) and \(\lambda^T r^j = 0 \) (alternative optimum) for some column \(r^j \) of \(R \)
- \min \{Cx : Ax = b, x \geq 0\}
- Let \(B \) be a basis and \(\bar{C} = C - C_BA_B^{-1}A \) and \(R = \bar{C}_N \)
- How to calculate “critical” \(\lambda \) if \(p > 2 \)?
- At \(B_1 : \bar{C}_N = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix} \), \(\lambda' = 2/3, \lambda = (2/3, 1/3)^T \) and \(\lambda^T\bar{C}_N = (5/3, 0)^T \)
- At \(B_2 : \bar{C}_N = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \), \(\lambda' = 1/4, \lambda = (1/4, 3/4)^T \) and \(\lambda^T\bar{C}_N = (0, 5/4)^T \)
- Find \(\lambda \in \mathbb{R}^p, \lambda > 0 \) such that \(\lambda^TR \geq 0 \) (optimality) and \(\lambda^Tr^j = 0 \) (alternative optimum) for some column \(r^j \) of \(R \)
\begin{itemize}
 \item \(\min \{ Cx : Ax = b, \ x \geq 0 \} \)
 \item Let \(B \) be a basis and \(\bar{C} = C - C_B A_B^{-1} A \) and \(R = \bar{C}_N \)
 \item How to calculate “critical” \(\lambda \) if \(p > 2 \)?
 \begin{itemize}
 \item At \(B_1 \) : \(\bar{C}_N = \begin{pmatrix}
 3 & 1 \\
 -1 & -2
 \end{pmatrix} \), \(\lambda' = 2/3, \lambda = (2/3, 1/3)^T \) and \(\lambda^T \bar{C}_N = (5/3, 0)^T \)
 \item At \(B_2 \) : \(\bar{C}_N = \begin{pmatrix}
 3 & -1 \\
 -1 & 2
 \end{pmatrix} \), \(\lambda' = 1/4, \lambda = (1/4, 3/4)^T \) and \(\lambda^T \bar{C}_N = (0, 5/4)^T \)
 \end{itemize}
 \item Find \(\lambda \in \mathbb{R}^p, \lambda > 0 \) such that \(\lambda^T R \geq 0 \) (optimality) and \(\lambda^T r^j = 0 \) (alternative optimum) for some column \(r^j \) of \(R \)
\end{itemize}
• \(\min \{ Cx : Ax = b, x \geq 0 \} \)

• Let \(B \) be a basis and \(\bar{C} = C - C_B A_B^{-1} A \) and \(R = \bar{C_N} \)

• How to calculate “critical” \(\lambda \) if \(p > 2 \)?

• At \(B_1 : \bar{C}_N = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix} \), \(\lambda' = 2/3, \lambda = (2/3, 1/3)^T \) and \(\lambda^T \bar{C}_N = (5/3, 0)^T \)

• At \(B_2 : \bar{C}_N = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \), \(\lambda' = 1/4, \lambda = (1/4, 3/4)^T \) and \(\lambda^T \bar{C}_N = (0, 5/4)^T \)

• Find \(\lambda \in \mathbb{R}^p, \lambda > 0 \) such that \(\lambda^T R \geq 0 \) (optimality) and \(\lambda^T r^j = 0 \) (alternative optimum) for some column \(r^j \) of \(R \)
\begin{itemize}
 \item \text{min}\{Cx : Ax = b, x \geq 0\}
 \item Let \(B \) be a basis and \(\bar{C} = C - C_B A_B^{-1} A \) and \(R = \bar{C}_N \)
 \item How to calculate “critical” \(\lambda \) if \(p > 2 \)?
 \item At \(B_1 : \bar{C}_N = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix} \), \(\lambda' = 2/3 \), \(\lambda = (2/3, 1/3)^T \) and \(\lambda^T \bar{C}_N = (5/3, 0)^T \)
 \item At \(B_2 : \bar{C}_N = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \), \(\lambda' = 1/4 \), \(\lambda = (1/4, 3/4)^T \) and \(\lambda^T \bar{C}_N = (0, 5/4)^T \)
 \item Find \(\lambda \in \mathbb{R}^p, \lambda > 0 \) such that \(\lambda^T R \succeq 0 \) (optimality) and \(\lambda^T r^j = 0 \) (alternative optimum) for some column \(r^j \) of \(R \)
\end{itemize}
\(\min \{ Cx : Ax = b, x \geq 0 \} \)

Let \(B \) be a basis and \(\bar{C} = C - C_BA_B^{-1}A \) and \(R = \bar{C}_N \)

How to calculate “critical” \(\lambda \) if \(p > 2 \)?

At \(B_1 : \bar{C}_N = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix} \), \(\lambda' = 2/3, \lambda = (2/3, 1/3)^T \) and \(\lambda^T \bar{C}_N = (5/3, 0)^T \)

At \(B_2 : \bar{C}_N = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \), \(\lambda' = 1/4, \lambda = (1/4, 3/4)^T \) and \(\lambda^T \bar{C}_N = (0, 5/4)^T \)

Find \(\lambda \in \mathbb{R}^p, \lambda > 0 \) such that \(\lambda^T R \geq 0 \) (optimality) and \(\lambda^T r^j = 0 \) (alternative optimum) for some column \(r^j \) of \(R \)
Lemma

If $\mathcal{X}_E \neq \emptyset$ then \mathcal{X} has an efficient basic feasible solution.

Proof.

- There is some $\lambda > 0$ such that $\min_{x \in \mathcal{X}} \lambda^T C x$ has an optimal solution.
- Thus $LP(\lambda)$ has an optimal basic feasible solution, which is an efficient solution of the MOLP.
Lemma

If $\mathcal{X}_E \neq \emptyset$ then \mathcal{X} has an efficient basic feasible solution.

Proof.

- There is some $\lambda > 0$ such that $\min_{x \in \mathcal{X}} \lambda^T C x$ has an optimal solution.
- Thus $LP(\lambda)$ has an optimal basic feasible solution, which is an efficient solution of the MOLP.
Lemma

If $\mathcal{X}_E \neq \emptyset$ then \mathcal{X} has an efficient basic feasible solution.

Proof.

- There is some $\lambda > 0$ such that $\min_{x \in \mathcal{X}} \lambda^T C x$ has an optimal solution.
- Thus $LP(\lambda)$ has an optimal basic feasible solution solution, which is an efficient solution of the MOLP.
Definition

1. A feasible basis \mathcal{B} is called **efficient basis** if \mathcal{B} is an optimal basis of $\text{LP}(\lambda)$ for some $\lambda \in \mathbb{R}^p$.

2. Two bases \mathcal{B} and $\hat{\mathcal{B}}$ are called **adjacent** if one can be obtained from the other by a single pivot step.

3. Let \mathcal{B} be an efficient basis. Variable x_j, $j \in \mathcal{N}$ is called **efficient nonbasic variable** at \mathcal{B} if there exists a $\lambda \in \mathbb{R}^p$ such that $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$, where r^j is the column of R corresponding to variable x_j.

4. Let \mathcal{B} be an efficient basis and let x_j be an efficient nonbasic variable. Then a feasible pivot from \mathcal{B} with x_j entering the basis (even with negative pivot element) is called an **efficient pivot** with respect to \mathcal{B} and x_j.
Definition

1. A feasible basis B is called **efficient basis** if B is an optimal basis of $LP(\lambda)$ for some $\lambda \in \mathbb{R}^p$.

2. Two bases B and \hat{B} are called **adjacent** if one can be obtained from the other by a single pivot step.

3. Let B be an efficient basis. Variable $x_j, j \in N$ is called **efficient nonbasic variable** at B if there exists a $\lambda \in \mathbb{R}^p$ such that $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$, where r^j is the column of R corresponding to variable x_j.

4. Let B be an efficient basis and let x_j be an efficient nonbasic variable. Then a feasible pivot from B with x_j entering the basis (even with negative pivot element) is called an **efficient pivot** with respect to B and x_j.
Definition

1. A feasible basis B is called efficient basis if B is an optimal basis of LP(λ) for some $\lambda \in \mathbb{R}^p$.

2. Two bases B and \hat{B} are called adjacent if one can be obtained from the other by a single pivot step.

3. Let B be an efficient basis. Variable $x_j, j \in \mathcal{N}$ is called efficient nonbasic variable at B if there exists a $\lambda \in \mathbb{R}^p$ such that $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$, where r^j is the column of R corresponding to variable x_j.

4. Let B be an efficient basis and let x_j be an efficient nonbasic variable. Then a feasible pivot from B with x_j entering the basis (even with negative pivot element) is called an efficient pivot with respect to B and x_j.

Matthias Ehrgott MOLP I
Definition

1. A feasible basis B is called **efficient basis** if B is an optimal basis of LP(λ) for some $\lambda \in \mathbb{R}^p$.

2. Two bases B and \hat{B} are called **adjacent** if one can be obtained from the other by a single pivot step.

3. Let B be an efficient basis. Variable $x_j, j \in N$ is called **efficient nonbasic variable** at B if there exists a $\lambda \in \mathbb{R}^p$ such that $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$, where r^j is the column of R corresponding to variable x_j.

4. Let B be an efficient basis and let x_j be an efficient nonbasic variable. Then a feasible pivot from B with x_j entering the basis (even with negative pivot element) is called an **efficient pivot** with respect to B and x_j.
• No efficient basis is optimal for all p objectives at the same time
• Therefore R always contains positive and negative entries

Proposition

Let B be an efficient basis. There exists an efficient nonbasic variable at B.
• No efficient basis is optimal for all p objectives at the same time
• Therefore R always contains positive and negative entries

Proposition

Let B be an efficient basis. There exists an efficient nonbasic variable at B.
• No efficient basis is optimal for all p objectives at the same time
• Therefore R always contains positive and negative entries

Proposition

Let B be an efficient basis. There exists an efficient nonbasic variable at B.
It is not possible to define efficient nonbasic variables by the existence of a column in R with positive and negative entries.

Example

$$ R = \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix} $$

- $\lambda^T r^2 = 0$ requires $\lambda_2 = 2\lambda_1$
- $\lambda^T r^1 \geq 0$ requires $-\lambda_1 \geq 0$, an impossibility for $\lambda > 0$
Lemma

Let \mathcal{B} be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from \mathcal{B} leads to an adjacent efficient basis $\hat{\mathcal{B}}$.

Proof.

- x_j efficient entering variable at basis \mathcal{B}
- \Rightarrow there is $\lambda \in \mathbb{R}^p_+$ with $\lambda^T R \geq 0$ and $\lambda^T r_j = 0$
- $\Rightarrow x_j$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let $\hat{\mathcal{B}}$ be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \geq 0$ and $\lambda^T r_j = 0$ at $\hat{\mathcal{B}}$, $\hat{\mathcal{B}}$ is an optimal basis for LP(λ) and therefore an adjacent efficient basis
Lemma

Let B be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from B leads to an adjacent efficient basis \hat{B}.

Proof.

- x_j efficient entering variable at basis B
- \Rightarrow there is $\lambda \in \mathbb{R}^p_+$ with $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$
- \Rightarrow x_j is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let \hat{B} be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$ at \hat{B}, \hat{B} is an optimal basis for LP(λ) and therefore an adjacent efficient basis
Lemma

Let \mathcal{B} be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from \mathcal{B} leads to an adjacent efficient basis $\hat{\mathcal{B}}$.

Proof.

- x_j efficient entering variable at basis \mathcal{B}
- \Rightarrow there is $\lambda \in \mathbb{R}^p$ with $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$
- $\Rightarrow x_j$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let $\hat{\mathcal{B}}$ be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$ at $\hat{\mathcal{B}}$, $\hat{\mathcal{B}}$ is an optimal basis for LP(λ) and therefore an adjacent efficient basis
Lemma

Let B be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from B leads to an adjacent efficient basis \hat{B}.

Proof.

- x_j efficient entering variable at basis B
- \Rightarrow there is $\lambda \in \mathbb{R}_+^p$ with $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$
- $\Rightarrow x_j$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let \hat{B} be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$ at \hat{B}, \hat{B} is an optimal basis for LP(λ) and therefore an adjacent efficient basis
Lemma

Let B be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from B leads to an adjacent efficient basis \hat{B}.

Proof.

- x_j efficient entering variable at basis B
- \Rightarrow there is $\lambda \in \mathbb{R}^p_+$ with $\lambda^T R \geq 0$ and $\lambda^T r_j = 0$
- $\Rightarrow x_j$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering

- Let \hat{B} be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \geq 0$ and $\lambda^T r_j = 0$ at \hat{B}, \hat{B} is an optimal basis for LP(λ) and therefore an adjacent efficient basis
Lemma

Let \mathcal{B} be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from \mathcal{B} leads to an adjacent efficient basis $\hat{\mathcal{B}}$.

Proof.

- x_j efficient entering variable at basis \mathcal{B}
- \Rightarrow there is $\lambda \in \mathbb{R}^p_+$ with $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$
- $\Rightarrow x_j$ is nonbasic variable with reduced cost 0 in $\text{LP}(\lambda)$
- Reduced costs of $\text{LP}(\lambda)$ do not change after a pivot with x_j entering
- Let $\hat{\mathcal{B}}$ be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$ at $\hat{\mathcal{B}}$, $\hat{\mathcal{B}}$ is an optimal basis for $\text{LP}(\lambda)$ and therefore an adjacent efficient basis
Lemma

Let B be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from B leads to an adjacent efficient basis \hat{B}.

Proof.

- x_j efficient entering variable at basis B
- \implies there is $\lambda \in \mathbb{R}^p_+$ with $\lambda^T R \geq 0$ and $\lambda^T r_j = 0$
- $\implies x_j$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let \hat{B} be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \geq 0$ and $\lambda^T r_j = 0$ at \hat{B}, \hat{B} is an optimal basis for LP(λ) and therefore an adjacent efficient basis
How to identify efficient nonbasic variables?

Theorem

Let B be an efficient basis and let x_j be a nonbasic variable. Variable x_j is an efficient nonbasic variable if and only if the LP

$$\begin{align*}
\text{max} & \quad e^t v \\
\text{subject to} & \quad Rz - r^j \delta + lv = 0 \\
& \quad z, \delta, v \geq 0
\end{align*}$$

has an optimal value of 0.

(12) is always feasible with $(z, \delta, v) = 0$.
How to identify efficient nonbasic variables?

Theorem

Let B be an efficient basis and let x_j be a nonbasic variable. Variable x_j is an efficient nonbasic variable if and only if the LP

$$\begin{align*}
\text{max} & \quad e^t v \\
\text{subject to} & \quad Rz - r^j \delta + l v = 0 \\
& \quad z, \delta, v \geq 0
\end{align*} \tag{12}$$

has an optimal value of 0.

(12) is always feasible with $(z, \delta, v) = 0$
Proof.

- By definition x_j is an efficient nonbasic variable if the LP

$$\begin{align*}
\text{min} \quad & 0^T \lambda = 0 \\
\text{subject to} \quad & R^T \lambda \geq 0 \\
& (r^j)^T \lambda = 0 \\
& I \lambda \geq e
\end{align*}$$

(13)

has an optimal objective value of 0, i.e. if it is feasible

- (13) is equivalent to

$$\begin{align*}
\text{min} \quad & 0^T \lambda = 0 \\
\text{subject to} \quad & R^T \lambda \geq 0 \\
& -(r^j)^T \lambda \geq 0 \\
& I \lambda \geq e
\end{align*}$$

(14)
Proof.

- By definition \(x_j \) is an efficient nonbasic variable if the LP

\[
\begin{cases}
\min & 0 \,^T \lambda = 0 \\
\text{subject to} & R \,^T \lambda \geq 0 \\
& (r^j)^T \lambda = 0 \\
& I \lambda \geq e
\end{cases}
\]

(13)

has an optimal objective value of 0, i.e. if it is feasible

- (13) is equivalent to

\[
\begin{cases}
\min & 0 \,^T \lambda = 0 \\
\text{subject to} & R \,^T \lambda \geq 0 \\
& - (r^j)^T \lambda \geq 0 \\
& I \lambda \geq e
\end{cases}
\]

(14)
Proof.

The dual of (14) is

\[
\begin{align*}
\max & \quad e^T v \\
\text{subject to} & \quad Rz - r^j \delta + l v = 0 \\
& \quad z, \delta, v \geq 0.
\end{align*}
\] (15)
Need to show: ALL efficient bases can be reached by efficient pivots

Definition

Two efficient bases \mathcal{B} and $\hat{\mathcal{B}}$ are called connected if one can be obtained from the other by performing only efficient pivots.

Theorem

All efficient bases are connected.
Need to show: ALL efficient bases can be reached by efficient pivots

Definition

Two efficient bases \mathcal{B} and $\hat{\mathcal{B}}$ are called connected if one can be obtained from the other by performing only efficient pivots.

Theorem

All efficient bases are connected.
Need to show: ALL efficient bases can be reached by efficient pivots

Definition

Two efficient bases \mathcal{B} and \mathcal{B}' are called *connected* if one can be obtained from the other by performing only efficient pivots.

Theorem

All efficient bases are connected.
Proof.

- B and \hat{B} two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p$ such that B and \hat{B} are optimal bases for LP(λ) and LP($\hat{\lambda}$)
- Parametric LP ($\Phi \in [0, 1]$) with objective function
 \[
 c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi)\lambda^T C
 \]
 (16)
- Assume \hat{B} is first basis (for $\Phi = 1$)
- After several pivots get an optimal basis \tilde{B} for LP(λ)
- Since $\lambda^* = \Phi \hat{\lambda} + (1 - \Phi)\lambda \in \mathbb{R}^p$ for all $\Phi \in [0, 1]$ all bases are optimal for LP(λ^*) for some $\lambda^* \in \mathbb{R}^p$, i.e. efficient
- If $\tilde{B} = B$, done
- Otherwise obtain B from \tilde{B} by efficient pivots: they are alternative optima for LP(λ)
Proof.

- \(B \) and \(\hat{B} \) two efficient bases
- \(\lambda, \hat{\lambda} \in \mathbb{R}^p \) such that \(B \) and \(\hat{B} \) are optimal bases for \(\text{LP}(\lambda) \) and \(\text{LP}(\hat{\lambda}) \)
- Parametric LP (\(\Phi \in [0, 1] \)) with objective function
 \[
 c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi)\lambda^T C
 \]
 (16)
- Assume \(\hat{B} \) is first basis (for \(\Phi = 1 \))
- After several pivots get an optimal basis \(\tilde{B} \) for \(\text{LP}(\lambda) \)
- Since \(\lambda^* = \Phi \hat{\lambda} + (1 - \Phi)\lambda \in \mathbb{R}^p \) for all \(\Phi \in [0, 1] \) all bases are optimal for \(\text{LP}(\lambda^*) \) for some \(\lambda^* \in \mathbb{R}^p \), i.e. efficient
- If \(\tilde{B} = B \), done
- Otherwise obtain \(B \) from \(\tilde{B} \) by efficient pivots: they are alternative optima for \(\text{LP}(\lambda) \)
Proof.

- \mathcal{B} and $\hat{\mathcal{B}}$ two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p$ such that \mathcal{B} and $\hat{\mathcal{B}}$ are optimal bases for $\text{LP}(\lambda)$ and $\text{LP}(\hat{\lambda})$
- Parametric LP ($\Phi \in [0, 1]$) with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi)\lambda^T C$$ (16)

- Assume $\hat{\mathcal{B}}$ is first basis (for $\Phi = 1$)
- After several pivots get an optimal basis $\tilde{\mathcal{B}}$ for $\text{LP}(\lambda)$
- Since $\lambda^* = \Phi \hat{\lambda} + (1 - \Phi)\lambda \in \mathbb{R}^p$ for all $\Phi \in [0, 1]$ all bases are optimal for $\text{LP}(\lambda^*)$ for some $\lambda^* \in \mathbb{R}^p$, i.e. efficient
- If $\tilde{\mathcal{B}} = \mathcal{B}$, done
- Otherwise obtain \mathcal{B} from $\tilde{\mathcal{B}}$ by efficient pivots: they are alternative optima for $\text{LP}(\lambda)$
Proof.

- \mathcal{B} and $\hat{\mathcal{B}}$ two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p$ such that \mathcal{B} and $\hat{\mathcal{B}}$ are optimal bases for LP(λ) and LP($\hat{\lambda}$)
- Parametric LP ($\Phi \in [0, 1]$) with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C$$

(16)

- Assume $\hat{\mathcal{B}}$ is first basis (for $\Phi = 1$)
 - After several pivots get an optimal basis $\tilde{\mathcal{B}}$ for LP(λ)
 - Since $\lambda^* = \Phi \hat{\lambda} + (1 - \Phi) \lambda \in \mathbb{R}^p$ for all $\Phi \in [0, 1]$ all bases are optimal for LP(λ^*) for some $\lambda^* \in \mathbb{R}^p$, i.e. efficient
 - If $\tilde{\mathcal{B}} = \mathcal{B}$, done
 - Otherwise obtain \mathcal{B} from $\tilde{\mathcal{B}}$ by efficient pivots: they are alternative optima for LP(λ)
Proof.

- B and \hat{B} two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p$ such that B and \hat{B} are optimal bases for LP(λ) and LP($\hat{\lambda}$)
- Parametric LP ($\Phi \in [0, 1]$) with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi)\lambda^T C \quad (16)$$

- Assume \hat{B} is first basis (for $\Phi = 1$)
- After several pivots get an optimal basis \tilde{B} for LP(λ)
 - Since $\lambda^* = \Phi \hat{\lambda} + (1 - \Phi)\lambda \in \mathbb{R}^p$ for all $\Phi \in [0, 1]$ all bases are optimal for LP(λ^*) for some $\lambda^* \in \mathbb{R}^p$, i.e. efficient
 - If $\tilde{B} = B$, done
 - Otherwise obtain B from \tilde{B} by efficient pivots: they are alternative optima for LP(λ)
Proof.

- \(\mathcal{B} \) and \(\hat{\mathcal{B}} \) two efficient bases
- \(\lambda, \hat{\lambda} \in \mathbb{R}_p^p \) such that \(\mathcal{B} \) and \(\hat{\mathcal{B}} \) are optimal bases for LP(\(\lambda \)) and LP(\(\hat{\lambda} \))
- Parametric LP (\(\Phi \in [0, 1] \)) with objective function

\[
c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C
\]

(16)

- Assume \(\hat{\mathcal{B}} \) is first basis (for \(\Phi = 1 \))
- After several pivots get an optimal basis \(\tilde{\mathcal{B}} \) for LP(\(\lambda \))
- Since \(\lambda^* = \Phi \hat{\lambda} + (1 - \Phi) \lambda \in \mathbb{R}_p^p \) for all \(\Phi \in [0, 1] \) all bases are optimal for LP(\(\lambda^* \)) for some \(\lambda^* \in \mathbb{R}_p^p \), i.e. efficient
- If \(\tilde{\mathcal{B}} = \mathcal{B} \), done
- Otherwise obtain \(\mathcal{B} \) from \(\tilde{\mathcal{B}} \) by efficient pivots: they are alternative optima for LP(\(\lambda \))
Proof.

- \(\mathcal{B} \) and \(\hat{\mathcal{B}} \) two efficient bases
- \(\lambda, \hat{\lambda} \in \mathbb{R}^p > \) such that \(\mathcal{B} \) and \(\hat{\mathcal{B}} \) are optimal bases for \(\text{LP}(\lambda) \) and \(\text{LP}(\hat{\lambda}) \)
- Parametric LP (\(\Phi \in [0, 1] \)) with objective function

\[
c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C \tag{16}
\]

- Assume \(\hat{\mathcal{B}} \) is first basis (for \(\Phi = 1 \))
- After several pivots get an optimal basis \(\tilde{\mathcal{B}} \) for \(\text{LP}(\lambda) \)
- Since \(\lambda^* = \Phi \hat{\lambda} + (1 - \Phi) \lambda \in \mathbb{R}^p > \) for all \(\Phi \in [0, 1] \) all bases are optimal for \(\text{LP}(\lambda^*) \) for some \(\lambda^* \in \mathbb{R}^p > \), i.e. efficient
- If \(\tilde{\mathcal{B}} = \mathcal{B} \), done
- Otherwise obtain \(\mathcal{B} \) from \(\tilde{\mathcal{B}} \) by efficient pivots: they are alternative optima for \(\text{LP}(\lambda) \)
Proof.

- \(B \) and \(\hat{B} \) two efficient bases
- \(\lambda, \hat{\lambda} \in \mathbb{R}^p \) such that \(B \) and \(\hat{B} \) are optimal bases for \(\text{LP}(\lambda) \) and \(\text{LP}(\hat{\lambda}) \)
- Parametric LP \((\Phi \in [0, 1]) \) with objective function
 \[
 c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C \quad (16)
 \]
- Assume \(\hat{B} \) is first basis (for \(\Phi = 1 \))
- After several pivots get an optimal basis \(\tilde{B} \) for \(\text{LP}(\lambda) \)
- Since \(\lambda^* = \Phi \hat{\lambda} + (1 - \Phi) \lambda \in \mathbb{R}^p \) for all \(\Phi \in [0, 1] \) all bases are optimal for \(\text{LP}(\lambda^*) \) for some \(\lambda^* \in \mathbb{R}^p \), i.e. efficient
- If \(\tilde{B} = B \), done
- Otherwise obtain \(B \) from \(\tilde{B} \) by efficient pivots: they are alternative optima for \(\text{LP}(\lambda) \)
3 cases
- $\mathcal{X} = \emptyset$, infeasibility
- $\mathcal{X} \neq \emptyset$ but $\mathcal{X}_E = \emptyset$, no efficient solutions
- $\mathcal{X} \neq \emptyset, \mathcal{X}_E \neq \emptyset$

result in three phase multiobjective Simplex algorithm

- Phase I: Solve $\min \{e^T z : Ax + lz = b, x \geq 0, z \geq 0\}$
 If optimal value is nonzero, $\mathcal{X} = \emptyset$
 Otherwise find bfs of $Ax = b, x \geq 0$ from optimal solution

- Phase II: Find efficient bfs by solving appropriate LP(λ)
 Note: LP(λ) can be unbounded even if $\mathcal{X}_E \neq \emptyset$
 Solve $\min \{u^T b + w^T Cx^0 : u^T A + w^T C \geq 0, w \geq e\}$
 If unbounded then $\mathcal{X}_E = \emptyset$
 Otherwise find optimal \hat{w} and solve
 $\min \{\hat{w} Cx : Ax = b, x \geq 0\}$
 Optimal bfs x^1 exists and is efficient bfs for MOLP

- Phase III: Starting from x^1 find all efficient bfs by efficient pivots, even with negative pivot elements
3 cases

- $\mathcal{X} = \emptyset$, infeasibility
- $\mathcal{X} \neq \emptyset$ but $\mathcal{X}_E = \emptyset$, no efficient solutions
- $\mathcal{X} \neq \emptyset$, $\mathcal{X}_E \neq \emptyset$

result in three phase multiobjective Simplex algorithm

Phase I: Solve $\min\{e^T z : Ax + lz = b, x \geq 0, z \geq 0\}$

- If optimal value is nonzero, $\mathcal{X} = \emptyset$
- Otherwise find bfs of $Ax = b, x \geq 0$ from optimal solution

Phase II: Find efficient bfs by solving appropriate $LP(\lambda)$

- Note: $LP(\lambda)$ can be unbounded even if $\mathcal{X}_E \neq \emptyset$

Solve $\min\{u^T b + w^T Cx^0 : u^T A + w^T C \geq 0, w \geq e\}$

- If unbounded then $\mathcal{X}_E = \emptyset$
- Otherwise find optimal \hat{w} and solve

$\min\{\hat{w} Cx : Ax = b, x \geq 0\}$

Optimal bfs x^1 exists and is efficient bfs for MOLP

Phase III: Starting from x^1 find all efficient bfs by efficient pivots, even with negative pivot elements
3 cases

- $\mathcal{X} = \emptyset$, infeasibility
- $\mathcal{X} \neq \emptyset$ but $\mathcal{X}_E = \emptyset$, no efficient solutions
- $\mathcal{X} \neq \emptyset$, $\mathcal{X}_E \neq \emptyset$

result in three phase multiobjective Simplex algorithm

- **Phase I:** Solve $\min \{ e^T z : Ax + Iz = b, x \geq 0, z \geq 0 \}$

 If optimal value is nonzero, $\mathcal{X} = \emptyset$

 Otherwise find bfs of $Ax = b, x \geq 0$ from optimal solution

- **Phase II:** Find efficient bfs by solving appropriate $LP(\lambda)$

 Note: $LP(\lambda)$ can be unbounded even if $\mathcal{X}_E \neq \emptyset$

 Solve $\min \{ u^T b + w^T Cx^0 : u^T A + w^T C \geq 0, w \geq e \}$

 If unbounded then $\mathcal{X}_E = \emptyset$

 Otherwise find optimal \hat{w} and solve

 $\min \{ \hat{w} Cx : Ax = b, x \geq 0 \}$

 Optimal bfs x^1 exists and is efficient bfs for MOLP

- **Phase III:** Starting from x^1 find all efficient bfs by efficient pivots, even with negative pivot elements
3 cases
- \(\mathcal{X} = \emptyset \), infeasibility
- \(\mathcal{X} \neq \emptyset \) but \(\mathcal{X}_E = \emptyset \), no efficient solutions
- \(\mathcal{X} \neq \emptyset \), \(\mathcal{X}_E \neq \emptyset \)

result in three phase multiobjective Simplex algorithm

Phase I: Solve \(\min \{ e^T z : Ax + Iz = b, x \geq 0, z \geq 0 \} \)
- If optimal value is nonzero, \(\mathcal{X} = \emptyset \)
- Otherwise find bfs of \(Ax = b, x \geq 0 \) from optimal solution

Phase II: Find efficient bfs by solving appropriate \(LP(\lambda) \)
- Note: \(LP(\lambda) \) can be unbounded even if \(\mathcal{X}_E \neq \emptyset \)
- Solve \(\min \{ u^T b + w^T C x^0 : u^T A + w^T C \geq 0, w \geq e \} \)
- If unbounded then \(\mathcal{X}_E = \emptyset \)
- Otherwise find optimal \(\hat{w} \) and solve
 \(\min \{ \hat{w} C x : Ax = b, x \geq 0 \} \)
 Optimal bfs \(x^1 \) exists and is efficient bfs for MOLP

Phase III: Starting from \(x^1 \) find all efficient bfs by efficient pivots, even with negative pivot elements
Algorithm (Multicriteria Simplex Algorithm.)

Input: Data A, b, C of an MOLP.

Initialization: Set $L_1 := \emptyset$, $L_2 := \emptyset$.

Phase I: Solve the LP $\min \{ e^T z : Ax + Iz = b, x, z \geq 0 \}$.
If the optimal value of this LP is nonzero, STOP, $X = \emptyset$.
Otherwise let x^0 be a basic feasible solution of the MOLP.

Phase II: Solve the LP
$\min \{ u^T b + w^T Cx^0 : u^T A + w^T C \geq 0, w \geq e \}$.
If the problem is infeasible, STOP, $X_E = \emptyset$.
Otherwise let (\hat{u}, \hat{w}) be an optimal solution.
Find an optimal basis B of the LP $\min \{ \hat{w}^T Cx : Ax = b, x \geq 0 \}$.
$L_1 := \{ B \}$, $L_2 := \emptyset$.
Algorithm

Phase III:

While $L_1 \neq \emptyset$

Choose B in L_1, set $L_1 := L_1 \setminus \{B\}$, $L_2 := L_2 \cup \{B\}$.

Compute \tilde{A}, \tilde{b}, and R according to B.

$\mathcal{EN} := \mathcal{N}$.

For all $j \in \mathcal{N}$.

Solve the LP $\max \{e^T v : Ry - r^i \delta + lv = 0; y, \delta, v \geq 0\}$.

If this LP is unbounded $\mathcal{EN} := \mathcal{EN} \setminus \{j\}$.

End for.

For all $j \in \mathcal{EN}$.

For all $i \in B$.

If $B' = (B \setminus \{i\}) \cup \{j\}$ is feasible and $B' \not\in L_1 \cup L_2$ then $L_1 := L_1 \cup B'$.

End for.

End for.

End while.

Output: L_2.
Example

- There can be exponentially many efficient bfs
 - \[
 \begin{align*}
 \min \quad & x_i & i = 1, \ldots, n \\
 \min \quad & -x_i & i = 1, \ldots, n \\
 \text{subject to} \quad & x_i \leq 1 & i = 1, \ldots, n \\
 & -x_i \leq 1 & i = 1, \ldots, n.
 \end{align*}
 \]

- \(n \) variables, \(m = 2n \) constraints, \(p = 2n \) objective functions
- all \(2^n \) extreme points of the feasible set are efficient
Example

- There can be exponentially many efficient bfs

\[
\begin{align*}
\min & \quad x_i && \quad i = 1, \ldots, n \\
\min & \quad -x_i && \quad i = 1, \ldots, n \\
\text{subject to} & \quad x_i \leq 1 && \quad i = 1, \ldots, n \\
& \quad -x_i \leq 1 && \quad i = 1, \ldots, n.
\end{align*}
\]

- \(n\) variables, \(m = 2n\) constraints, \(p = 2n\) objective functions
- all \(2^n\) extreme points of the feasible set are efficient
Example

There can be exponentially many efficient bfs

\[
\begin{align*}
\min \quad & x_i \quad i = 1, \ldots, n \\
\min \quad & -x_i \quad i = 1, \ldots, n \\
\text{subject to} \quad & x_i \leq 1 \quad i = 1, \ldots, n \\
& -x_i \geq 1 \quad i = 1, \ldots, n.
\end{align*}
\]

- \(n \) variables, \(m = 2n \) constraints, \(p = 2n \) objective functions
- all \(2^n \) extreme points of the feasible set are efficient
Example

- There can be exponentially many efficient bfs

\[
\begin{align*}
\min & \quad x_i & i = 1, \ldots, n \\
\min & \quad -x_i & i = 1, \ldots, n \\
\text{subject to} & \quad x_i & \leq 1 & i = 1, \ldots, n \\
& \quad -x_i & \leq 1 & i = 1, \ldots, n.
\end{align*}
\]

- \(n \) variables, \(m = 2n \) constraints, \(p = 2n \) objective functions
- all \(2^n \) extreme points of the feasible set are efficient
Overview

1. Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums

2. Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example

3. Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples
Example

\[
\begin{align*}
\text{min} & \quad \begin{pmatrix} 3x_1 + x_2 \\ -x_1 - 2x_2 \end{pmatrix} \\
\text{subject to} & \quad x_2 \leq 3 \\
& \quad 3x_1 - x_2 \leq 6 \\
& \quad x \geq 0
\end{align*}
\]

\text{LP(}\lambda\text{)}

\[
\begin{align*}
\text{min} & \quad (4\lambda - 1)x_1 + (3\lambda - 2)x_2 \\
\text{subject to} & \quad x_2 + x_3 = 3 \\
& \quad 3x_1 - x_2 + x_4 = 6 \\
& \quad x \geq 0.
\end{align*}
\]
Phase I: MOLP is feasible
\[x^0 = (0, 0) \]

Phase II: Optimal weight
\[\hat{w} = (1, 1) \]

Phase II: First efficient solution
\[x^2 = (0, 3) \]

Phase III: Efficient entering variables \(s^1, x^2 \)

Phase III: Efficient solutions
\[x^1 = (0, 0), x^3 = (3, 3) \]

Phase III: No more efficient entering variables
Phase I: MOLP is feasible
\[x^0 = (0, 0) \]

Phase II: Optimal weight
\[\hat{w} = (1, 1) \]

Phase II: First efficient solution
\[x^2 = (0, 3) \]

Phase III: Efficient entering variables \(s^1, x^2 \)

Phase III: Efficient solutions
\[x^1 = (0, 0), x^3 = (3, 3) \]

Phase III: No more efficient entering variables
Phase I: MOLP is feasible
\[x^0 = (0, 0) \]

Phase II: Optimal weight
\[\hat{w} = (1, 1) \]

Phase II: First efficient solution
\[x^2 = (0, 3) \]

Phase III: Efficient entering variables \(s^1, x^2 \)

Phase III: Efficient solutions
\[x^1 = (0, 0), x^3 = (3, 3) \]

Phase III: No more efficient entering variables
Phase I: MOLP is feasible
\[x^0 = (0, 0) \]
Phase II: Optimal weight
\[\hat{w} = (1, 1) \]
Phase II: First efficient solution
\[x^2 = (0, 3) \]
Phase III: Efficient entering variables \(s^1, x^2 \)
Phase III: Efficient solutions
\[x^1 = (0, 0), x^3 = (3, 3) \]
Phase III: No more efficient entering variables
• Phase I: MOLP is feasible
 \[x^0 = (0, 0) \]

• Phase II: Optimal weight
 \[\hat{w} = (1, 1) \]

• Phase II: First efficient solution
 \[x^2 = (0, 3) \]

• Phase III: Efficient entering variables \(s^1, x^2 \)

• Phase III: Efficient solutions
 \[x^1 = (0, 0), x^3 = (3, 3) \]

• Phase III: No more efficient entering variables
- Phase I: MOLP is feasible
 \[x^0 = (0, 0) \]
- Phase II: Optimal weight
 \[\hat{w} = (1, 1) \]
- Phase II: First efficient solution
 \[x^2 = (0, 3) \]
- Phase III: Efficient entering variables \(s^1, x^2 \)
- Phase III: Efficient solutions
 \[x^1 = (0, 0), x^3 = (3, 3) \]
- Phase III: No more efficient entering variables

![Graphical representation of Phase I, II, and III of a Multiobjective Simplex Algorithm](image)
Example

\[
\begin{align*}
\text{min} & \quad -x_1 - 2x_2 \\
\text{min} & \quad -x_1 + 2x_3 \\
\text{min} & \quad x_1 - x_3 \\
\text{subject to} & \quad x_1 + x_2 \leq 1 \\
& \quad x_2 \leq 2 \\
& \quad x_1 - x_2 + x_3 \leq 4.
\end{align*}
\]

Slack variables \(x_4, x_5, x_6\) introduced to write the constraints in equality form \(Ax = b\)
Phase I: $B = \{4, 5, 6\}$ is a basis with bfs $x^0 = (0, 0, 0, 1, 2, 4)$

Phase II:

$$\begin{align*}
\min & \quad u_1 + 2u_2 + 4u_3 \\
\text{subject to} & \quad u^T \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & -1 & 1 & 0 & 0 & 1 \end{pmatrix} + w^T \begin{pmatrix} -1 & -2 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \end{pmatrix} \geq 0 \\
& \quad w \geq e
\end{align*}$$

$\hat{w} = (1, 1, 1)$

$$\begin{align*}
\min & \quad -x_1 - 2x_2 + x_3 : Ax = b, x \geq 0 \\
B^1 = \{2, 5, 6\}, \quad x^1 = (0, 1, 0, 0, 1, 3) \text{ is efficient bfs,} \\
L_1 = \{\{2, 5, 6\}\}
\end{align*}$$
Phase I: $\mathcal{B} = \{4, 5, 6\}$ is a basis with bfs $x^0 = (0, 0, 0, 1, 2, 4)$

Phase II:

$$
\begin{array}{l}
\min \quad u_1 + 2u_2 + 4u_3 \\
\text{subject to} \quad u^T \begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & -1 & 1 & 0 & 0 & 1 \\
\end{pmatrix} + w^T \begin{pmatrix}
-1 & -2 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 \\
\end{pmatrix} \succeq 0 \\
w \succeq e
\end{array}
$$

$\hat{w} = (1, 1, 1)$

$$
\min \{ -x_1 - 2x_2 + x_3 : Ax = b, x \succeq 0 \}
$$

$\mathcal{B}^1 = \{2, 5, 6\}, \ x^1 = (0, 1, 0, 0, 1, 3) \text{ is efficient bfs,}$

$\mathcal{L}_1 = \{\{2, 5, 6\}\}$
Phase III
Iteration 1:
\(B^1 = \{2, 5, 6\}, \; L_1 = \emptyset, \; L_2 = \{\{2, 5, 6\}\} \)

<table>
<thead>
<tr>
<th></th>
<th>(\bar{c}^1)</th>
<th>(\bar{c}^2)</th>
<th>(\bar{c}^3)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(-1)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>(-1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(x_2)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(-1)</td>
<td>0</td>
<td>0</td>
<td>(-1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\mathcal{E}\mathcal{N} := \{1, 3, 4\} \)
Check x_1

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

LP has optimal solution, x_1 is efficient

Check x_3

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

LP has optimal solution, x_3 is efficient
- **Check** x_1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>-1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

LP has optimal solution, x_1 is efficient

- **Check** x_3

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>-1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

LP has optimal solution, x_3 is efficient
Check x_4

\[
\begin{array}{cccccc|c}
1 & 1 & 2 & -2 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 & -2 & 1 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

LP is unbounded, x_4 is not efficient

$\mathcal{EN} = \{1, 3\}$

Feasible pivot x_1 enters and x_2 leaves: basis $B^2 = \{1, 5, 6\}$

Feasible pivot x_3 enters and x_6 leaves: basis $B^3 = \{2, 3, 5\}$

$\mathcal{L}_1 := \{\{1, 5, 6\}, \{2, 3, 5\}\}$
Check x_4

\[
\begin{array}{ccccccc}
1 & 1 & 2 & -2 & 0 & 0 & 0 \\
1 & 0 & 2 & -2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

LP is unbounded, x_4 is not efficient

$\mathcal{E}_N = \{1, 3\}$

Feasible pivot x_1 enters and x_2 leaves: basis $\mathcal{B}_2 = \{1, 5, 6\}$

Feasible pivot x_3 enters and x_6 leaves: basis $\mathcal{B}_3 = \{2, 3, 5\}$

$L_1 := \{\{1, 5, 6\}, \{2, 3, 5\}\}$
Iteration 2:
\(B^2 = \{1, 5, 6\} \) with BFS \(x^2 = (1, 0, 0, 0, 2, 3) \)
\(L_1 = \{\{2, 3, 5\}\}, \ L_2 = \{\{2, 5, 6\}, \{2, 3, 5\}\} \)

\(\bar{c}^1 \)	0	-1	0	1	0	0	1
\(\bar{c}^2 \)	0	1	2	1	0	0	1
\(\bar{c}^3 \)	0	-1	-1	-1	0	0	-1
\(x_2 \)	1	1	0	1	0	0	1
\(x_5 \)	0	1	0	0	1	0	2
\(x_6 \)	0	-2	1	-1	0	1	3

\(\mathcal{EN} = \{2, 3, 4\} \)
Check x_2: Leads back to $B^1 = (2, 5, 6)$

Check x_3:

\[
\begin{array}{cccccccc}
-1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & -2 & 0 & 1 & 0 & 0 \\
-1 & -1 & -1 & 1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

x_3 not efficient

Check x_4:

\[
\begin{array}{cccccccc}
-1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & -1 & 0 & 1 & 0 & 0 \\
-1 & -1 & -1 & 1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

x_4 not efficient

$EN = \emptyset$
Check x_2: Leads back to $B^1 = (2, 5, 6)$

Check x_3:

\[
\begin{array}{cccccccc}
-1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & -2 & 0 & 1 & 0 & 0 \\
-1 & -1 & -1 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]

x_3 not efficient

Check x_4:

\[
\begin{array}{cccccccc}
-1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & -1 & 0 & 1 & 0 & 0 \\
-1 & -1 & -1 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]

x_4 not efficient

$\mathcal{E}N = \emptyset$
- Check x_2: Leads back to $B^1 = (2, 5, 6)$

- Check x_3:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

x_3 not efficient

- Check x_4

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

x_4 not efficient

\[\mathcal{E} \mathcal{N} = \emptyset \]
Check x_2: Leads back to $B^1 = (2, 5, 6)$

Check x_3:

$$
\begin{array}{cccccccc}
-1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\hline
1 & 2 & 1 & -2 & 0 & 1 & 0 & 0 \\
-1 & -1 & -1 & 1 & 0 & 0 & 0 & 1
\end{array}
$$

x_3 not efficient

Check x_4:

$$
\begin{array}{cccccccc}
-1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
\hline
1 & 2 & 1 & -1 & 0 & 1 & 0 & 0 \\
-1 & -1 & -1 & 1 & 0 & 0 & 0 & 1
\end{array}
$$

x_4 not efficient

$\mathcal{E}N = \emptyset$
Iteration 3

\[B^3 = \{2, 3, 5\} \text{ with bfs } x^3 = (0, 1, 5, 0, 1, 0) \]

\[L_1 = \emptyset, L_2 = \{\{2, 5, 6\}, \{1, 5, 6\}, \{2, 3, 5\}\} \]

\[
\begin{array}{ccccccc|c}
\bar{c}^1 & 1 & 0 & 0 & 2 & 0 & 0 & 2 \\
\bar{c}^2 & -5 & 0 & 0 & -2 & 0 & -2 & -10 \\
\bar{c}^3 & 3 & 0 & 0 & 1 & 0 & 1 & 5 \\
\hline
x_2 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
x_5 & -1 & 0 & 0 & -1 & 1 & 0 & 1 \\
x_3 & 2 & 0 & 1 & 1 & 0 & 1 & 5 \\
\end{array}
\]

\[\mathcal{EN} = \{1, 4, 6\} \]
Check x_1

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-5</td>
<td>-2</td>
<td>-2</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

x_4 is not efficient

Check x_4

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-5</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

x_4 is not efficient

Check x_6: Leads back to B^1
Check x_1

\[
\begin{array}{ccccccc|c}
-1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & -1 & 1 & 0 & 0 & 0 \\
-5 & -2 & -2 & 5 & 0 & 1 & 0 & 0 \\
3 & 1 & 1 & -3 & 0 & 0 & 1 & 0 \\
\end{array}
\]

x_4 is not efficient

Check x_4

\[
\begin{array}{ccccccc|c}
-1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & -2 & 1 & 0 & 0 & 0 \\
-5 & -2 & -2 & 2 & 0 & 1 & 0 & 0 \\
3 & 1 & 1 & -1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

x_4 is not efficient

Check x_6: Leads back to B^1
Check x_1

<table>
<thead>
<tr>
<th>-1</th>
<th>1</th>
<th>-1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-5</td>
<td>-2</td>
<td>-2</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

x_4 is not efficient

Check x_4

<table>
<thead>
<tr>
<th>-1</th>
<th>1</th>
<th>-1</th>
<th>-1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-5</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

x_4 is not efficient

Check x_6: Leads back to B^1
Iteration 4: $\mathcal{L}_1 = \emptyset$, STOP
Output: List of efficient bases
$\mathcal{B}^1 = \{2, 5, 6\}, \mathcal{B}^2 = \{1, 5, 6\}, \mathcal{B}^3 = \{2, 3, 5\}$

\[
x^1 = \{2, 5, 6\}
\]
\[
x^2 = \{1, 5, 6\}
\]
\[
x^3 = \{2, 3, 5\}
\]