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Part I

Cutting Planes for Mixed-Integer Linear Programs

1. Mixed-Integer Linear Programming (MILP): notation.

The Linear Programming (LP) relaxation.

Strengthening the LP relaxation by cutting planes.

How much cuts are important in the MILP software?

2. Cutting Planes for MILPs.

Families of cutting planes and their relationships.

3. Advanced topics.

Closures and separation.



1. MILP motivation

Motivation
Mixed integer linear programming is today one of the most widely
used techniques for dealing with optimization problems:

◮ Many optimization problems arising from practical
applications (such as, e.g., scheduling, project planning,
transportation, telecommunications, economics and finance,
timetabling) can be easily formulated as MILPs.

◮ Academic and commercial MILP solvers now available on the
market can solve hard MILPs in practice.



1. MILP notation

We consider an MILP of the form

(MILP) max cx
Ax ≤ b

x ≥ 0
xj ∈ Z,∀j ∈ I

(1)

with A ∈ R
m×n, c ∈ R

n, b ∈ R
m, I ⊆ {1, . . . , n},

corresponding to the mixed integer set

S := {x ∈ R
n : Ax ≤ b, x ≥ 0, xj ∈ Z, ∀j ∈ I} (2)

and to the underlying polyhedron

P := {x ∈ R
n : Ax ≤ b, x ≥ 0}. (3)

We assume for sake of simplicity S 6= ∅



1. MILP complexity

◮ In the general case, MILP is NP-hard, while Linear
Programming (LP) is polynomially solvable and can be
efficiently solved in practice.

◮ The classical approach for handling with MILP is the
branch-and-bound algorithm.

◮ Branch-and-bound can be improved by strengthening the LP
relaxation of each node of the search tree by means of valid
inequalities (cuts). ⇒ branch-and-cut.



1. Strengthening the LP relaxation

Generality

We are interested in general-purpose cutting planes: cutting planes
which can be derived without assuming any special structure for
the polyhedron P .

Validity

An inequality αx ≤ β is said to be valid for S if it is satisfied by all
x ∈ S .

Obtaining a valid inequality for a continuous set

Given P , any valid inequality for it is obtained as uAx ≤ β, where
u ∈ R

m
+ and β ≥ ub. (Farkas Lemma)



1. Strengthening the LP relaxation (cont.d)

Separation

Given a family of valid inequalities F and a solution x∗ ∈ P \ S ,
the Separation problem for F : is defined as:

Find an inequality αx ≤ β of F valid for S such that

αx∗ > β or show that none exists.

Iterative strengthening

1. solve the problem {max cx : x ∈ P} and get x∗

2. if x∗ ∈ S then STOP

3. solve the separation problem, add αx ≤ β to P and go to 1.



1. Are cutting planes fundamental in practice?

Table: Computing times (as geometric means) for 12 Cplex versions on
a testbed of 1,734 MILP instances: normalization wrt Cplex 11.0.

Cplex

version year better worse time

11.0 2007 – – 1.00
10.0 2005 201 650 1.91
9.0 2003 142 793 2.73
8.0 2002 117 856 3.56
7.1 2001 63 930 4.59
6.5 1999 71 997 7.47

6.0 1998 55 1060 21.30
5.0 1997 45 1069 22.57
4.0 1995 37 1089 26.29
3.0 1994 34 1107 34.63
2.1 1993 13 1137 56.16
1.2 1991 17 1132 67.90



2. Basic rounding

A basic rounding argument

If x ∈ Z and x ≤ f f 6∈ Z, then x ≤ ⌊f ⌋.

Using rounding

Consider an inequality αx ≤ β such that αj ∈ Z, j = 1, . . . , n in
the pure integer case I = {1, . . . , n}. If αx ≤ β, then αx ≤ ⌊β⌋ is
valid as well.

Example

x ∈ Z
2 such that x1 + x2 ≤ 1.9
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2. Chvátal-Gomory cuts, [Gomory 1958, Chvátal 1973]

Theorem
If x ∈ Z

n satisfies Ax ≤ b, then the inequality uAx ≤ ⌊ub⌋ is valid
for S for all u ≥ 0 such that uA ∈ Z

m.

Example

Consider the polyhedron given by the two inequalities

x1 + x2 ≤ 2

3x1 + x2 ≤ 5
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Theorem
If x ∈ Z

n satisfies Ax ≤ b, then the inequality uAx ≤ ⌊ub⌋ is valid
for S for all u ≥ 0 such that uA ∈ Z

m.

Example

Consider the polyhedron given by the two inequalities

x1 + x2 ≤ 2

3x1 + x2 ≤ 5

Let u1 = u2 = 1/2, then
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2. Chvátal-Gomory cuts, [Gomory 1958, Chvátal 1973]

Theorem
If x ∈ Z

n satisfies Ax ≤ b, then the inequality uAx ≤ ⌊ub⌋ is valid
for S for all u ≥ 0 such that uA ∈ Z

m.

Example

Consider the polyhedron given by the two inequalities

x1 + x2 ≤ 2

3x1 + x2 ≤ 5

Let u1 = u2 = 1/2, then

2x1 + x2 ≤ 3.5

and rounding we obtain

2x1 + x2 ≤ 3
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2. A simple disjunctive argument

Simple
If x ∈ R

n, x ≥ 0 and x satisfies both
∑n

i=1
a1i xi ≥ 1 or

∑n

i=1
a2i xi ≥ 1,

then x satisfies
n∑

i=1

max{a1i , a
2
i }xi ≥ 1

Example
If x ≥ 0 satisfies both
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2. Mixed-Integer Gomory Cuts [Gomory 1963]

Mixed-Integer Set in equality form

{x ∈ R
n
+ :

∑

j∈I

djxj +
∑

j 6∈I

gjxj = b} (4)

Let b = ⌊b⌋+ f0, f0 ∈]0, 1[ and dj = ⌊dj⌋+ fj , fj ∈ [0, 1[
Then, for some integer k ,

∑

j:fj≤f0

fjxj +
∑

j:fj>f0

(fj − 1)xj +
∑

j 6∈I

gjxj = k + f0,

which in turn implies, because k ≤ −1 OR k ≥ 0, that EITHER

∑

j:fj≤f0

fj

f0
xj −

∑

j:fj>f0

1− fj

f0
xj +

∑

j 6∈I

gj

f0
xj ≥ 1,

OR

−
∑

j:fj≤f0

fj

1− f0
xj +

∑

j:fj>f0

1− fj

1− f0
xj −

∑

j 6∈I

gj

1− f0
xj ≥ 1,



2. Mixed-Integer Gomory Cuts (cont.d)

Mixed-Integer Set in equality form
Applying the disjunctive argument previously introduced, one can write a
valid inequality which is indeed called Mixed-Integer Gomory cut (MIG):

∑

j:fj≤f0

fj

f0
xj +

∑

j:fj>f0

1− fj

1− f0
xj +

∑

j:gj>0

gj

f0
xj −

∑

j:gj<0

gj

1− f0
xj ≥ 1. (5)

Remark
When I = ∅ the MIG cut reduces to

∑

j:fj≤f0

fj

f0
xj +

∑

j:fj>f0

1− fj

1− f0
xj ≥ 1

which is of course stronger that the corresponding CG cut:

n∑

j=1

fj

f0
xj ≥ 1.



2. Mixed Integer Rounding Cuts (MIR) [Nemhauser &

Wolsey 1988]

Basic MIR Principle
Consider the 2-variable mixed-integer set

{x + y ≥ b, x ∈ R+, y ∈ Z}

y

x

y

b

x

MIR Cut
The inequality

x

b − ⌊b⌋
+ y ≥ ⌈b⌉

is clearly valid and together with the original inequality defines the
convex hull of the mixed-integer set.



2. Mixed Integer Rounding Cuts (cont.d)

General MIR cuts
With a slight change of notation for a mixed-integer set in “≤” form

{x ∈ R
n
+ :

∑

j∈I

djxj +
∑

j 6∈I

gjxj ≤ b}, (6)

the general MIR cut is written as ((·)+ denotes the max{0, ·})

∑

j∈I

⌊dj⌋+
(fj − f0)

+

1− f0
xj +

1

1− f0

∑

j:gj<0

gjxj ≤ ⌊b⌋, (7)

Sketch of proof
Relax set (6) as (valid because x ∈ R

n
+)

∑

j:fj≤f0

⌊dj⌋xj +
∑

j:fj>f0

djxj +
∑

j:gj<0

gjxj ≤ b.

Then, one can group things so as to reduce to a set −x + y ≤ b (as
before but with “≤” form) and use the basic MIR derivation for such a
case.



2. Relationship among cuts

Theorem (MIG versus MIR)
Given a mixed-integer set in “≤” form (6),
the MIR inequality (7) is identical to the MIG inequality (5)
derived from the mixed-integer set in “=” form (4)
obtained by adding a slack variable.

Hint
All cuts derived so far make use of a disjunctive argument.
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