
Intersection cut and disjunctive cuts

Pierre Bonami and Andrea Lodi

LIF, CNRS/Aix-Marseille Université and LabOR, Universitá di Bologna
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Intersection cuts [Balas 1970]

◮ Solve LP relaxation. Optimal
tableau:

xi = fi +
∑

j∈N

rjxj ∀i ∈ B.

xj ≥ 0 ∀j ∈ N

◮ If fi ∈ Z, ∀i ∈ B ∩ I problem solved.

◮ Suppose f 6∈ Z
2. b
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Intersection cuts [Balas 1970]

◮ Solve LP relaxation. Optimal
tableau:

xi = fi +
∑

j∈N

rjxj ∀i ∈ B.

xj ≥ 0 ∀j ∈ N

◮ If fi ∈ Z, ∀i ∈ B ∩ I problem solved.

◮ Suppose f 6∈ Z
2.

◮ Consider a convex set S
containing f in its interior but
no integral point.
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Intersection cuts [Balas 1970]

◮ Solve LP relaxation. Optimal
tableau:

xi = fi +
∑

j∈N

rjxj ∀i ∈ B.

xj ≥ 0 ∀j ∈ N

◮ If fi ∈ Z, ∀i ∈ B ∩ I problem solved.

◮ Suppose f 6∈ Z
2.

◮ Consider a convex set S
containing f in its interior but
no integral point.

◮ Compute the intersection of the
rays with the boundary of S.

◮ The inequality passing through
these point is valid and cuts off
f .
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Algebraic derivation of intersection cuts [Balas 1970]

Given a convex set S with no integral point in its interior and
f ∈ int(S), and a simplex tableau:

xi = fi +
∑

j∈N

rjxj ∀i ∈ B.

◮ for each j ∈ N :
◮ if ∃λj ≥ 0 such that f + λjr

j is on the boundary of S, let
ψj = 1

λj
.

◮ otherwise ψj = 0

◮ The cut
∑k

j∈N ψjxj ≥ 1 is valid.



Remark on Intersection cuts

A bigger convex set S yields to a better cut:
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Remark on Intersection cuts

A bigger convex set S yields to a better cut:
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Maximal Lattice free sets

Set that does not contain any integral point in its interior and
maximal by inclusion.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b



Maximal Lattice free sets

Set that does not contain any integral point in its interior and
maximal by inclusion.
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Maximal Lattice free sets

Set that does not contain any integral point in its interior and
maximal by inclusion.
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Maximal Lattice free sets

Set that does not contain any integral point in its interior and
maximal by inclusion.
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Maximal Lattice free sets

Set that does not contain any integral point in its interior and
maximal by inclusion.
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Maximal Lattice free sets

Set that does not contain any integral point in its interior and
maximal by inclusion.
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Unions of polyhedra

Given k polyhedra P1, . . . , Pk, we are interested in

conv
(

∪k
i=1Pi

)

P1

P2

P3



Unions of polyhedra

Given k polyhedra P1, . . . , Pk, we are interested in

conv
(

∪k
i=1Pi

)

P1

P2

P3

conv(P1 ∪ P2 ∪ P3)



Use in MILP

Continuous Relaxation

P = {x : Ax+Gy ≤ b}

Disjunction

xi ≤ k ∨ xi ≥ k + 1
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Use in MILP

Continuous Relaxation

P = {x : Ax+Gy ≤ b}

Disjunction

xi ≤ k ∨ xi ≥ k + 1

xi ≤ k xi ≥ k + 1



Theorem on unions of polyhedra

Remark
conv(∪k

i=1Pi) may not be a closed set: let
P1 = {x ∈ R

2 : x2 = 0} P2 = {x ∈ R
2 : x1 = 1, x2 = 1} then

conv(P1 ∪ P2) = {x ∈ R
2 : x2 < 1} ∪ P2.

P1

conv(P1 ∪ P2)

b
P2

Union of polyhedra Theorem

Let Pi = Qi + Ci be nonempty polyhedra for i = 1, . . . , k. Then
Q = conv(∪k

i=1Qi) is a polytope, C = cone(∪k
i=1Ci) is a

polyhedral cone and

clconv(∪k
i=1Pi) = Q+ C



Sketch of proof (leave out the case ∪ki=1Pi = ∅)

(i) Qi = conv(Vi) therefore Q = conv(∪k
i=1Vi) is a polytope.

(ii) Ci = cone(Ri) therefore C = cone(∪k
i=1Ri) is a polyhedral

cone.
(iii) to show: clconv(∪k

i=1Pi) ⊆ Q+C, conv(∪k
i=1Pi) ⊆ Q+C is

sufficient.
Let x ∈ conv(∪k

i=1Pi):

x =

k
∑

i=1

yiz
i with yi ≥ 0,

k
∑

i=1

yi = 1 and zi ∈ P i.

Then zi = wi + ri with wi ∈ Qi and ri ∈ Ci. Thus

x =

k
∑

i=1

yiw
i +

k
∑

i=1

yir
i ∈ Q+ C.



Sketch of proof (II)

(iv) Q+ C ⊆ clconv(∪k
i=1Pi).

Let x ∈ Q+ C. Then:

x =
k
∑

i=1
yiw

i +
k
∑

i=1
ri, with wi ∈ Qi, yi ≥ 0, xi ∈ Ci and

k
∑

i=1
yi = 1. Let I = {i : yi > 0}.

Define:

xǫ =
∑

i∈I

(

yi − ǫ
k

|I|

)

wi +
k

∑

i=1

ǫ

(

wi +
1

ǫ
ri

)

For ǫ > 0 small enough ǫ k
|I| ≥ 0 and xǫ ∈ conv(∪k

i=1Pi).
Furthermore limǫ→0 x

ǫ = x.



Balas Theorem

Let Pi = {x ∈ R
n : Aix ≤ bi} be polyhedra for i = 1, . . . , k, then

projx(Y ) = Q+ C

with

Y =



































Aix
i ≤ biyi for i = 1, . . . , k

k
∑

i=1
xi = x

k
∑

i=1
yi = 1

yi ≥ 0 for i = 1, . . . , k

Furthermore if ∪Pi = ∅ or Cj ⊆ conv(∪i:Pi 6=∅Ci):

projx(Y ) = clconv(∪k
i=1Pi)



Sketch of the proof (leave out the ∅ case)

(i) projx(Y ) ⊆ Q+ C.

Let (x, x1, y1, . . . , x
k, yk) ∈ Y . For i such that yi > 0 xi

yi
∈ Pi.

For i such that yi = 0, xi ∈ Ci.
(ii) Q+ C ⊆ projx(Y )
Let x ∈ Q+ C.

x =

k
∑

i=1

yiz
i+

k
∑

i=1

ri with yi ≥ 0,

k
∑

i=1

yi = 1, zi ∈ Qi and ri ∈ Ci.

For i such that yi > 0, let xi = yizi + ri. For i such that yi = 0,
let xi = ri. One can check that (x, x1, y1, . . . , x

k, yk) ∈ Y .



Separation of disjunctive cut

Let
PD = clconv(∪k

i=1Pi).

Separation Problem

Given x̂ ∈ R
n, find (α, β) in R

n+1 such that αTx ≤ β is valid for
PD and αTx > β or show that x̂ ∈ PD.

Find a solution to:

Aix
i ≤ biyi for i = 1, . . . , k

k
∑

i=1

xi = x̂

k
∑

i=1

yi = 1

yi ≥ 0 for i = 1, . . . , k

By Farkas Lemma, this system
has a solution if and only if:
∃ α ∈ R

n, β ∈ R,
u1, . . . , uk ∈ R

m
+ such that:

uiTAi = α i = 1, . . . , k

uiT b ≤ β i = 1, . . . , k

αT x̂ > β



Application to Mixed Integer Programming: split cuts

Consider the mixed-integer set:

S = {x ∈ R
n
+ : Ax ≤ b, xi ∈ Z, i ∈ I}

and its relaxation:

P = {x ∈ R
n
+ : Ax ≤ b}

Given (π, π0) ∈ Z
n such that πi = 0, ∀i 6∈ I, we consider the

folowing set:

P (π,π0) =

conv
((

P ∩
{

x ∈ R
n : πTx ≤ π0

})

∪
(

P ∩
{

x ∈ R
n : πTx ≥ π0 + 1

}))

Proposition

S ⊆ P (π,π0) ⊆ P

Valid inequalities for P (π,π0) are called split cuts [Cook,
Kannan and Schrijver, 1990].



Separating Split using Linear Programming

P (π,π0) = conv
((

P ∩
{

πTx ≤ π0

})

∪
(

P ∩
{

πTx ≥ π0 + 1
}))

Proposition[Balas 73]

Let x̂ ∈ P , x ∈ P (π,π0) if and only if the optimum of the
following LP is non-positive.

maxαT x̂− β

s.t.

uTA+ u0π ≥ α

vTA− v0π ≥ α (CGLP)

uT b+ u0π0 ≤ β

uT b− v0(π0 + 1) ≤ β

u, v ∈ R
m
+ , u0, v0 ≥ 0



The cut generation LP

◮ If x̂ is a vertex of P such that π0 < πTx < π0+1, always a
cut.

◮ If it has a positive solution, it is unbounded.

◮ Usually, impose a normalization constraint to bound it:

1. u0 + v0 = 1
2.

∑m

i=1
(ui + vi) + u0 + v0 = 1

◮ If π = ei : lift-and-project cut [Balas Ceria Cornuejols

93].

◮ For splits, and lift-and-project, can actually be solved in
the LP tableau [Balas Perregaard 2003].



Balas Jeroslow Strengthening

Let (α, β, u, v, u0 , v0) be a feasible solution of (CGLP) with

u0 > 0 and v0 > 0. Define m̂i = vT Ai−uT Ai

u0+v0
and

α̃i =

{

max{uTAi + u0⌈m̂i⌉, v
TAi − v0⌊m̂i⌋} if i ∈ I

min{uTAi, vTAi} otherwise.

Proof idea
For any m ∈ Z

n such that mi = 0 for i 6∈ I and mi ∈ Z for
i ∈ I, the following disjunction is valid:

(

πTx+mTx ≤ π0

)

∨
(

πTx+mTx ≥ π0

)

For u, v, u0, v0 fixed we can find m which give the best cut
coefficients for i ∈ I:

α̃i = max
mj∈Z

{min{uTAi + u0mi, v
TAi − v0mi}}


