
Cutting plane methods for integer and

combinatorial optimization

Pierre Bonami, Gérard Cornuéjols, Andrea Lodi

Hammamet, March 22-23, 2010

April 10, 2010



Part I

Cutting Planes for Mixed-Integer Linear Programs

1. Mixed-Integer Linear Programming (MILP): notation.

The Linear Programming (LP) relaxation.

Strengthening the LP relaxation by cutting planes.

How much cuts are important in the MILP software?

2. Cutting Planes for MILPs.

Families of cutting planes and their relationships.

3. Advanced topics.

Closures and separation.



3. Violated split cuts from the simplex tableau [Fischetti,

Lodi & Tramontani 2010]

◮ a violated split cut can be obtained for free from the tableau
basis

◮ such a split cut is an optimal solution of the CGLP truncated
with the “trivial” normalization

u0 + v0 = 1 (1)

◮ such a split cut is obtained by using only constraints which are
tight at x∗ (only tight constraints play a role in the cut
definition)



3. MIG vs. split cuts: further connections

A different normalization

m+n∑

i=1

ui +

m+n∑

i=1

vi + u0 + v0 = 1 (2)

has been used in the literature [Balas & Perregaard (2002,2003)].

◮ The CGLP optimal solution with normalization (1)
corresponds to a CGLP basic solution truncated with (2).

◮ By choosing an elementary disjunction of the form

xj ≤ ⌊x∗j ⌋ OR xj ≥ ⌈x∗j ⌉ (j ∈ I , x∗j fractional),

and computing the corresponding CGLP solution
(u∗, v∗, u∗0 , v

∗

0 ), then the Balas-Jeroslow strengthening
procedure applied to (u∗, v∗, u∗0 , v

∗

0 ) yields precisely the MIG
cut associated with the tableau row corresponding to the
basic variable xj .



3. MIG vs. split cuts: further connections (cont.d)

In practice:

◮ The GMI from the tableau (related to the basic variable xj
with j ∈ I , x∗j fractional) is a basic solution of CGLP

◮ Such a solution is optimal if CGLP is truncated with the
trivial normalization (1)
⇒ there is no need to solve the CGLP with (1)

◮ Such a solution is non-optimal (in general) if CGLP is
truncated with normalization (2)



3. MIG vs. split cuts: further connections (cont.d)

[Balas and Perregaard 2003]:

◮ Warm starting the CGLP with the solution associated with the
MIG from the tableau and solving the CGLP with
normalization (2) to optimality allows in practice to
strengthen the MIG.
⇒ MIG from tableau can be strengthened by using
normalization (2)

◮ There exists a precise correspondence between the CGLP
bases and the bases of the simplex tableau in the original
space of the variables (x , s):
⇒ the CGLP can be implicitly solved by working in the space
(x , s) instead of working in the double-sized CGLP space
(u, v , u0, v0)
⇒ Consistent speed-up



3. MIG vs. split cuts: further connections (cont.d)

Questions:

◮ Which is the impact of normalization (2) in practice?

◮ How much can we gain?



3. Comparing of normalizations
Table: 10 iterations of cuts. At each iteration one cut is generated from
any fractional variable.

Unstrengthened MIG vs. Optimal CGLP cuts
Unstrengthened MIG Optimal CGLP

Instance n.cuts gap% #S(u, v) n.cuts gap% #S(u, v)
bell3a 137 70.74 59.49 71 70.74 43.72
bell5 202 28.18 31.20 178 94.29 11.75

blend2 156 28.73 11.70 192 30.51 8.10
flugpl 93 15.15 7.57 92 18.36 5.85

gt2 191 98.71 14.52 196 93.46 10.28
lseu 152 32.94 14.34 196 41.33 9.17

∗m.share1 68 0.00 1.00 74 0.00 1.39
mod008 104 12.09 10.40 139 17.05 12.41
p0033 103 58.33 5.72 113 67.86 4.81
p0201 574 18.58 56.03 767 93.82 13.43
rout 445 8.52 135.39 434 24.26 68.07

∗stein27 235 0.00 19.74 252 0.00 6.53
vpm1 255 36.95 9.03 263 55.84 5.39
vpm2 424 42.08 71.72 403 74.96 17.27
avg. 236.333 37.583 35.593 253.667 56.873 17.521



3. An example: instance p0201

Within 10 rounds of cuts, we report the following indicators:

1. quality of the lower bound

2. average cuts’ density

3. cuts’ rank

4. average cardinality of the dual support S(u, v),
i.e., how many constraints used on average to generate a cut



3. Instance p0201: lower bound

6400

6600

6800

7000

7200

7400

7600

7800

1 2 3 4 5 6 7 8 9 10

Optimal CGLP

Unstr. GMI



3. Instance p0201: average cuts’ density

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Optimal CGLP

Unstr. GMI



3. Instance p0201: cuts’ rank

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Optimal CGLP

Unstr. GMI



3. Instance p0201: average cardinality of S(u, v)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Optimal CGLP

Unstr. GMI



3. Why is normalization (2) much better than (1)?

The normalization (1) takes care only of the disjunction:

1. only constraints which are tight at x∗ are used in the cut
derivation
⇒ the rank of the cuts becomes higher and higher very
quickly:

◮ weak cuts are more likely to be used as generating constraints
for other cuts

◮ round by round, cuts tend to be less effective.

2. constraints’ multipliers are not under control:

2.1 many constraints are used in the cut derivation
⇒ cuts becomes denser and denser;

2.2 multipliers can assume huge values and there is no control
outside the support of x∗

⇒ cut coefficients of the variables outside the support are not
under control.



3. Why is normalization (2) much better than (1)?

The normalization (2) has the following very nice properties:

1. the norm of the separated cuts tends to be smaller wrt the
constraints used for their generation (each multiplier < 1),
and small-norm constraints are implicitly penalized by the
normalization itself (sum of multipliers = 1) ⇒ low-rank
inequalities are separated.

◮ weak cuts are unlikely to be used
◮ round by round, cuts tend to remain more effective.

2. since low-rank inequalities are preferred and since the original
inequalities (rank-0) are generally sparse, the separated cuts
remain sparse.

3. all the multipliers are under control,
⇒ cut coefficients of the variables outside the support are
kept under control.


	Cutting Planes for Mixed-Integer Linear Programs

