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Mixed Integer Non-Linear Programming

min f(x)
s.t.
gi(x) <0 Vi=1,...,m
xe X CR"
Xj € 7 ViEIg{l,...,n}
» F:R” — R.
» g :R" = R,

» f and g; sufficiently smooth (¢ C' or better C?).



Why should we study MINLP’s?



Why should we study MINLP’s?

Because it is not well solved and:



Why should we study MINLP’s?

Because it is not well solved and:

» Rich source of applications for which solutions are needed.



Why should we study MINLP’s?

Because it is not well solved and:

» Rich source of applications for which solutions are needed.
» Many problems which combine non-linear phenomenon and
decision making ( )

> In particular problems in chemical engineering or which involve
physical phenomenon



Why should we study MINLP’s?

Because it is not well solved and:

» Rich source of applications for which solutions are needed.

» Many problems which combine non-linear phenomenon and
decision making ( )

> In particular problems in chemical engineering or which involve
physical phenomenon

» Some stochastic Integer Programs can be cast as

deterministic MINLPs.



Why should we study MINLP’s?

Because it is not well solved and:

» Rich source of applications for which solutions are needed.
» Many problems which combine non-linear phenomenon and
decision making ( )
> In particular problems in chemical engineering or which involve
physical phenomenon
» Some stochastic Integer Programs can be cast as
deterministic MINLPs.

» More powerful modeling framework than MILP (and more
natural for many engineers)



Why should we study MINLP’s?

Because it is not well solved and:

>
>

Rich source of applications for which solutions are needed.
Many problems which combine non-linear phenomenon and
decision making ( )
> In particular problems in chemical engineering or which involve
physical phenomenon
Some stochastic Integer Programs can be cast as
deterministic MINLPs.

More powerful modeling framework than MILP (and more
natural for many engineers)

We can rely on the progresses made in solving subproblems in
the last decades.
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Solving MINLP by fitting it into a “well solved” subproblem

From an MILP perspective

>

>

>

Remove/neglate non-linearities.
Approximate non-linearities by linear functions.

Approximate unidimensional non-linearities by mixed-integer
sets: SOS2[Beale1963, Forrest Tomlin 2007].

Most clever tricks handle arbitrary separable functions:
linked-SOS [Beale Forrest 1976]

From an NLP perspective

>

>

Remove/neglate integrity.

Round solutions to try to get “good” integer feasible solutions.
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Two classes of MINLP

Mixed Integer Convex Program
If the functions f(x) and g;(x) are convex.

» The continuous relaxation can be optimized to global
optimality using NLP algorithms.

» Problem is NP-Hard.

» Important sub-class (x) and g;(x) are second-order cone
representable.

Mixed Integer NonLinear Program

» NLP techniques only give a local optima.
» Here we will always assume that integer variables are bounded:

» Problem is undecidable when integer variables are unbounded
even if all functions are quadratic[Jeroslow 1973], or are
polynomials and problem has 10 variables [De Lorea et.
al. 2008].



Software for Mixed Integer Convex Programs

>

>

a-ECP [Westerlund and Lundqvist 2005], academic,
available in GAMS

Bonmin [B. et. al. 2006], open source, available
through COIN-OR, NEQOS and in GAMS.

Dicopt, commercial, available in GAMS.

FiIMINT [Abhishek, Leyffer and Linderoth 2010],
available through NEOS.

MINLP_BB [Leyffer 1998] recently upgraded [Leyffer
2010], academic.

SBB [Bussieck and Drud], commercial, available in GAMS.

Second order cone constrained

>

CPLEX, MOSEK, XPRESS,...



Software for Mixed Integer NonLinear Program
» Baron [Sahinidis, Tawarmalani 2003], commercial,
stand-alone and in GAMS.

» Couenne [Belotti et. al. 2009], open source,
available through COIN-OR.

» SCIP [Berhold et. al. 2010], academic, right now only
quadratic functions, general MINLP upcoming.

» LindoGlobal, commercial, available in GAMS.



Basic algorithmic ideas

Problems can be solved to optimality by branch-and-bound using
appropriate convex relaxations.

Convex relaxations
» for MICP: NLP relaxation obtained by dropping integrality
requirements.

» for MICP: Outer approximation linear approximation of the
problem.

» for MINLP: Sherali Adams relaxation obtained by convexifying
each non-convex term separately.

Use the relaxations to setup a branch-and-cut algorithm.



Outer Approximation [Duran, Grossmann 1986]

(assume linear objective)

min f(x)
s.t.

g(x) <0,
xi € LVieT.
Idea: linearize constraints at different points and build an
equivalent MILP:
J” contains suitably chosen
linearization points.
min f(x) P
()T (x =) +g(") <0
V(") eT
xeX, xieZViel.

(OA)



Separable MINLP

» f and g; can be constructed as finite recursive composition of

univariate and bivariate functions.
» Usually restricted to ¢1(x) = In(x), ¢2(x) = €*,
P3(x,y) =x+y, da(x,y) = xy, ¢5(x, ) = x*.
» Example:

F(x) = v + In(x)

is equivalent to:
f(x) = x3+xa = ¢3(x3,xa)
1
x3 = /x5 = ¢5(xs, 5)

X4 = In(x2) = gZ51(X2)

x5 = X1X2 = Pa(x1,x2)



Building convex relaxation for separable MINLP

» Adding appropriate number of variables, decompose each
separable function into atomic elements of the form:
Xntk = j(xkr) OF Xnrk = @j(Xkrs Xk )

» Using bounds on original variables, infer bounds on new
variables: [} < xpk < uj.

> For each x,k build an approximation of
conv({xprk = i(x), I < xw < upr})

Xk

Xk’




Building convex relaxation for separable MINLP

» Adding appropriate number of variables, decompose each
separable function into atomic elements of the form:
Xntk = j(xkr) OF Xnrk = @j(Xkrs Xk )

» Using bounds on original variables, infer bounds on new
variables: [} < xpk < uj.

> For each x,k build an approximation of
conv({xprk = i(x), I < xw < upr})

Xk

Xk’ Xk’




Building convex relaxation for separable MINLP

» Adding appropriate number of variables, decompose each
separable function into atomic elements of the form:
Xntk = j(xkr) OF Xnrk = @j(Xkrs Xk )

» Using bounds on original variables, infer bounds on new
variables: [} < xpk < uj.

> For each x,k build an approximation of
conv({xprk = i(x), I < xw < upr})

Xk Xk

Xk’ / Xk’
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Spatial branch-and-bound (sketch)

» Solve convex relaxation.

» Solution is not feasible,
branch on
X2 2> x5V X0 < X3

» First child add constraint
xp > x5 and update
convex relaxation.

» Second child add x» < x5
and update.



Part 1l

Disjunctive cuts for non-convex MINLPs



QCP

min a ] x

s.t.
T T _
X' Akx+ax+b<0 k=1...m
< x<u

» A, are symmetric but usualy not positive
semi-definite.

» All variables appearing in quadratic expressions
have finite bounds.
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min ag X
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constraint Y = xx .
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Reformulation of QCP

Introduce variables y; = x;x;:

min ag X

s.t.

(A, )4+ alx+b <0 k=1...m

Y = xx|

< x<u

» The only non-linearity of the problem is in the

constraint Y = xx'.

» Y —xx = 0is convex (can be handled by conic optimization),
» xx” — Y =0 is non-convex.
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RLT relaxation of QCP
Replace yj; = x;x; by its convex envelope given by RLT ineqalities
min ag x
s.t.

(A, Y)+alx+b. <0 k=1...m
I <x<u

max lixi + lixj — Il < y; < min lixj + ujxi — liu;
UjXj + uixj — uju; lixi + uixj — lju;

We know
Can be strengthened by the LMI inequality Y — xx" =0

Research Question?

Can we use the non-convex constraint xx” — Y = 0
to produce cuts for this relaxation?



Disjunctive Programming

Polyhedral Relaxation Disjunction
P={x:Ax>b I
{x: Ax > b} \/[Dkxzdk}
k=1

q
Pp = clconv || J (PN {x: D*x > d*})
k=1

Separation Problem

Given X € P show that X € Pp or find an inequality
separating X from Pp.



Disjunctive Programming

Theorem
X € Pp if and only if the optimal value of the following
Cut-Generation Linear Program (CGLP) is non-negative.
min aX — 3
s.t.

a=ufA+vEkDR | k=1...q; (CGLP)

B<ukb+vkd", k=1...q

uk vk >0, k=1...q9;



Applying Disjunctive Programming to QCP?

Polyhedral Relaxation Disjunction
P={x:Ax>b I
{x: Ax > b} \/[Dkxzdk}
k=1

What are the sources of
non-convexity in QCP?
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Applying Disjunctive Programming to QCP?

Polyhedral Relaxation Disjunction
P={x:Ax>b I
{x: Ax > b} \/[Dkxzdk]
k=1
Integrality Constraints x" =Y =0

oy 3 = = z 9ac



Cutting plane procedure
> Solve
min ag—x
s.t.

(A, Y)+alx+bc<0 I=1...m
I <x<u

max{ g = bl } < yij < min { lix + ujx; =
lixi + uix; —

uiXi + UiXj — uju;j

> Let (%, Y) be the solution and Z = ¥ — %&7.
» If Z =0 the solution satisfies Y — xxT = 0.

» Otherwise can we find inequalities that cut off (%, ¥)?

/,'U_,‘
liuj

|



Eigenvalues of Z = Y — X7

Z=07

Yes
Solution is fea-
sible for con-
straint
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7 =07

No

Z has non-zero eigenvalues g, ...

a>\k
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Eigenvalues of Z =Y — xxT Let ci,...,ck be
~ the corresponding
Z=07 eigenvectors
Yes No

Solution is fea-

sible for con- Z has non-zero eigenvalues Aq,..., Ak

straint

A <0 A >0

¢'Ye — (¢/x)? > 0is a
convex quadratic inequality
which cuts off (X, Y)

c,-T Yci — (c,-Tx)2 <0
iS a non-convex cut.

Imposes SDP condition Y — xx = 0 by quadratic cuts
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Cuts from > 0 eigenvalues?

Secant approximation

/

Gmin = min(X,y)ep cC X

/

emax = maX(ny)ep CTX

{cTYc < (c™x)%}



Cuts from > 0 eigenvalues?

>

/

Gmin == min(X,y)ep CTX

/

emax = maX(ny)ep CTX

DA



Cuts from > 0 eigenvalues?

0

AN

DA



Cuts from > 0 eigenvalues?

c™x <0 y c™x>0
c"Ye<pi(c™) +q1

c"Yec < pa(c"x) + g2 )




Cuts from > 0 eigenvalues?

//____________

\\\\\\
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Applying Disjunctive Programming to QCP

Polyhedral Relaxation Disjunction

\q/ [D*x > d*]

P = {x:Ax> b}

k

—_

Integrality Constraints

oy 3 = = z 9ac



Cutting Plane Algorithm (1)

(%. V)| Extract eigenval-
ues and eigenvec-
tors of Y — %7

Ai <0 Ai >0

' |

Solve convex
relaxation

(c™x)? < Y.ccT Y.ccT < (c™x)?

Convex quadratic cut

Derive disjunc-
tion

CGLP

Disjunctive cut
a'x>p




Error in secant approximation

Proposition

Let f(t) =t , and let

g(t) = t(a+ b) + ab represent the
secant approximation of f(t) in the
interval [a, b]; then

a— 2
maxeepap (F(£) — g(t)) = C2° .

Secant approximation is
better if the width of [a, b]
is smaller



Finding disjunctions in directions of small width
The width of outer approximation in direction ¢

n(c)= max c'x— min c’x
(x,Y)eOA (x,Y)eOA

We want ¢ such that:

» n(c) is as small as possible

» cTVe> (cT8)?

> Take c to be in the vector space spanned by the eigenvectors
of Y — %%T with positive eigenvalue.

UGMIP
Problem can be formulated as an MILP

» Add a penalty term to favor solutions with large curvature.

» A diversification scheme is used to obtain several disjunctions.



Cutting Plane Algorithm (II)

Solve convex

(%, §/) Extract eigenval-
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[ | |
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Disjunctive cut
a’x>p




Cutting Plane Algorithm (II) Version 1
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Cutting Plane Algorithm (II) Version 2

Solve convex

(%, \A/) Extract eigenval-
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[ ! |
(cTx)2 < Ye ¢ Yei < (¢ x)? UGMIP

Derive disjunc-
tion

CGLP

Disjunctive cut
a’x>p




Cutting Plane Algorithm (II) Version 3

(%, \A/) Extract eigenval-

Solve convex :
ues and eigenvec-

relaxation tors of ¥V — &7
A<0 | a>o0
[ ! |
(cTx)2 < Ye ¢ Yei < (¢ x)? UGMIP

Derive disjunc-
tion

CGLP

Disjunctive cut
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Experimental testing

Solvers

» Convex relaxations [POPT

» Eigenvalues computations LAPACK
» LP & MILP CPLEX10.1

» BONMIN based implementation.

Test bed
» 129 GlobalLIB instances (< 50 vars) reformulated as QCP.

> X1X2X3X4Xs
> (x1+x2)/x3 > 2x

Experimental setup

» 1 hour time limit.

opt(final relaxation) - opt(initial) % 100

> report % gap closed: opt(QCP) — opt(initial)



Gap closed for the 129 globallib instances with non-zero
duality gap

V1 V2 V3
>99.99 % gap closed 16 23 23
098-99.99 % gap closed 1 44 52
75-98 % gap closed 10 23 21
25-75 % gap closed 11 22 20
0-25 % gap closed 91 17 13
Average Gap Closed 24.80% | 76.49% | 80.86%




Gap closed for the 129 globallib instances with non-zero
duality gap

V1 V2 V3
>99.99 % gap closed 16 23 23
098-99.99 % gap closed 1 44 52
75-98 % gap closed 10 23 21
25-75 % gap closed 11 22 20
0-25 % gap closed 91 17 13
Average Gap Closed 24.80% | 76.49% | 80.86%

» V3 closes more than 98% gap on 75 instances.



Versions 2 and 3 vs. Version 1

gap closed gap closed
Instance V1 V2 V3 Instance Vi V2 V3
ex2.1.1 0.00% | 72.62% | 99.92% st-glmpkky | 0.00% | 99.80% | 99.71%
ex2.1.5 0.00% | 99.98% | 99.99% st-ht 000% | 99.81% | 99.89%
stjcbpaf2 | 0.00% | 99.47% | 99.61%
ex2,1,6 000% 9995% 9997% st_kr 0 00% 99 93% 99 95%
ex2.19 0.00% | 98.79% | 99.73% st.ml 0.00% | 99.96% | 99.96%
ex3.13 0.00% | 99.99% | 99.99% st panl 0.00% | 99.72% | 99.92%
ex3_1.4 0.00% | 86.31% | 99.57% st_pan2 0.00% | 68.54% | 99.91%
ex5.2.4 0.00% | 79.31% | 99.92% st_phl 0.00% | 99.98% | 99.98%
prob05 0.00% | 99.78% | 99.49% st_ph1l 0.00% | 99.46% | 98.19%
st_bpv2 0.00% | 99.99% | 99.99% stphl2 ) 0.00% | 99.49% | 99.62%
st_bsj2 0.00% | 99.98% | 99.96% stphl3 | 0.00% | 99.38% | 08.80%
_ st_ph14 0.00% | 99.85% | 99.86%
st_bsj4 0.00% | 99.86% | 99.80% phls | 000% | 0083% | 09.81%
st_e02 0.00% | 99.88% | 99.95% st_ph2 0.00% 99:93% ggjgg%
st_e07 0.00% | 99.97% | 99.97% st_ph20 0.00% | 99.98% | 99.98%
st_e08 0.00% | 99.81% | 99.89% st_ph3 0.00% | 99.98% | 99.98%
ste24 0.00% | 99.81% | 99.81% stphex | 0.00% | 99.96% | 99.96%
st.e26 0.00% | 99.96% | 99.96% st.gpe-m0 | 0.00% | 99.96% | 99.96%
st_e33 0.00% | 99.94% | 99.95% st-gpeml - 0.00% 99-993’ 99.98%
o o o st.qpc-m3a | 0.00% | 98.10% | 99.16%
St-ipl O'OOOA’ 72'6204 99'920% st.qpc-m3b | 0.00% | 100.00% | 100.00%
st_fpb 0.00% | 99.98% | 99.99% st_qpkl 0.00% 99.98% 99.98%
stfp6 0.00% | 99.92% | 99.97% st_rvl 0.00% | 96.19% | 98.44%
st_glmp_kk92 | 0.00% | 99.98% | 99.98% stz 0.00% | 99.96% | 99.95%




Version 2 vs. Version 3

gap closed

Instance V1 V2 V3
ex73_1 0.00% | 0.00% | 85.43%
ex9.2.3 0.00% | 0.00% | 47.17%
ex9.2.7 | 42.31% | 51.47% | 86.25%
stfp7b 0.00% | 22.06% | 55.51%
st_rv3 0.00% | 40.40% | 72.68%
ex9_2_1 | 54.54% | 60.04% | 92.02%
st_pan2 0.00% | 68.54% | 99.91%
ex2.1.1 0.00% | 72.62% | 99.92%

st_fpl 0.00% | 72.62% | 99.92%
ex5 2.4 0.00% | 79.31% | 99.92% A i
>
iy | 1743 | o7 azon | on 700 On 23 instances it closes at
stv7 | 0.00% | 45.43% | 62.28% least 10 % more gap.

st.apk3 | 0.00% | 33.53% | 50.04%
st_rv8 0.00% | 29.90% | 45.80%
st_e20 0.00% | 76.38% | 90.88%
ex8.1.8 0.00% | 76.49% | 90.88%
ex5_32 0.00% | 7.27% | 21.00%
ex3.1.4 0.00% | 86.31% | 99.57%
st_fp7c 0.00% | 44.26% | 57.10%
st.apk2 | 0.00% | 71.34% | 83.33%
st_rv9 0.00% | 20.56% | 31.64%
house 0.00% | 86.93% | 97.92%
ex7.32 0.00% | 59.51% | 70.26%




Linear Complementarity Constraints

» Some GloballLib problems have linear
complementarity constraints

xix; =0

» These constraints can be reformulated as
disjunctions

(x; = 0) V (x = 0)

which can be added to our medley of
disjunctions for deriving cuts.



Linear Complementarity Constraints

Without Using LCD Using LCD
Instance V2 V3 V2 V3
ex9_1.4 0.00% 1.55% | 100.00% | 99.97%
ex9.2.1 | 60.04% 92.02% | 99.95% | 99.95%
ex9. 22 | 88.29% 98.06% | 100.00% | 100.00%
ex9.2_3 0.00% 47.17% | 99.99% | 99.99%
ex9.2 4 | 99.87% 99.89% | 99.99% | 100.00%
ex9.2.6 | 87.93% 62.00% | 80.22% | 92.09%
ex9 2.7 | 51.47% 86.25% | 99.97% | 99.95%

Linear complementarity constraints can be ex-
ploited effectively in a disjunctive framework.




Marginal value of Quadratic Cuts

Solve convex

(%, §/) Extract eigenval-

ues and eigenvec-

relaxation tors of ¥V — &7
<o | a>o0
[ | |
(cTx)2 < Ye ¢ Yei < (¢ x)? UGMIP

Derive disjunc-
tion

CGLP

Disjunctive cut
a’™x>p
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Marginal value of Quadratic Cuts

Solve convex

(%, )A/) Extract eigenval-

ues and eigenvec-

V3-Dsj

relaxation tors of ¥V — &7
N<o | a>o0
[ ! |
(cTx)2 < Ye ¢ Yei < (¢ x)? UGMIP

Derive disjunc-
tion

CGLP

Disjunctive cut
a’™x>p




Marginal value of convex Quadratic constraints

Vi V2 V3| V2-Dsj | V3Ds
>99.99 % 16 23 23 1 1
98-99.99 % 1 44 52 29 33
75-98 % 10 23 21 10 10
25-75 % 11 22 20 29 24
0-25 % 91 17 13 60 61
Average Gap Closed | 24.80% | 76.49% | 80.86% | 41.54 % | 42.90%

» V2-Dsj closes 35%
» V3-Dsj closes 38 % less gap than V3.

less gap than V2.




Marginal Value of Disjunctive Programming

(%, )A/) Extract eigenval-

Solve convex .
ues and eigenvec-

relaxation tors of ¥V — &7
<o | a>o0
| I |
(cTx)2 < Ye ¢ Yei < (¢ x)? UGMIP

Derive disjunc-
tion

CGLP

Disjunctive cut
a’x>p




Marginal Value of Disjunctive Programming

(%. V)| Extract eigenval-

Solve convex .
ues and eigenvec-

relaxation tors of ¥ — &&T
A <0 A >0
| | |
(cTx)2 < Ye ¢ Yei < (¢ x)? UGMIP

Use secant ap-
proximation




Marginal Value of Disjunctive Programming V2-SA

(%, )A/) Extract eigenval-

Solve convex .
ues and eigenvec-

relaxation tors of ¥V — &7
A<0 | a>o0
[ { |
(cTx)2 < Ye ¢ Yei < (¢ x)? UGMIP

Use secant ap-
proximation




Marginal Value of Disjunctive Programming V3-SA

(%, )A/) Extract eigenval-

Solve convex .
ues and eigenvec-

relaxation tors of ¥V — &7
A<0 | a>o0
[ { |
(cTx)2 < Ye ¢ Yei < (¢ x)? UGMIP

Use secant ap-
proximation




Marginal value of Disjunctive Programming

V1 V2 V3| V2-SA | V3-SA
>99.99 % 16 23 23 24 27
98-99.99 % 1 44 52 4 6
75-98 % 10 23 21 17 25
25-75 % 11 22 20 26 22
0-25 % 91 17 13 58 49
Average Gap Closed | 24.80% | 76.49% | 80.86% | 44.40% | 52.56%

» V2-SA closes 32% less gap than V2.
» V3-SA closes 28 % less gap than V3.




Conclusion of experiments

> We are able to almost solve moderate size MIQCP to
optimality by using only cutting planes.

» Both SDP constraints and Disjunctive Programming are
necessary.

» The approach require lifting in a space of dimension O(n?)

» What about CPU times?

V1 V2
Average Gap Closed | 24.80% | 76.49%
CPU Times (sec.) 198.043 | 978.140




Conclusion of experiments

> We are able to almost solve moderate size MIQCP to
optimality by using only cutting planes.

» Both SDP constraints and Disjunctive Programming are
necessary.

» The approach require lifting in a space of dimension O(n?)

» What about CPU times?

V1 V2
Average Gap Closed | 24.80% | 76.49%
CPU Times (sec.) 198.043 | 978.140

Questions
Can we get similar cuts for more general MINLP?
Can we try to obtain better CPU time?
> Key problem: can we try to get a final formulation which can
be solved in a reasonable computing time (and in a small
space).



Disjunctive cuts for separable MINLP

» Adding appropriate number of variables, decompose each
separable function into atomic elements of the form:
Xnik = Oj(Xkr) OF Xpyk = Pj(Xkrs Xkrr)

» Using bounds on original variables, infer bounds on new
variables: [} < xpk < uj.

> For each x,k build an approximation of
conv({xprk = i(xw), I < xw < upr})
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Disjunctive cuts for separable MINLP

» Adding appropriate number of variables, decompose each
separable function into atomic elements of the form:
Xntk = j(xkr) OF Xnrk = @j(Xkrs Xk )

» Using bounds on original variables, infer bounds on new
variables: [} < xpk < uj.

> For each x,k build an approximation of
conv({xprk = i(xw), I < xw < upr})

:&k » Apply disjunction

| Xk < XV X > X

i > Strengthen the

| convexification: get

f disjunction

[

[

|

[

[

[

Xk < Rk \/ Xk > Xk
Alx < bt A’x < b2




Procedure for applying disjuncive cuts [Belotti 2009]

» Apply a spatial disjunction x, < & V xx > X, = build
sub-problems LP< and LPZ.

» Apply bound strengthening techniques to LP< and LPZ.

» Construct a CGLP and get a cut.

Implemented in Couenne.



Back to our RLT relaxation

minaoTx

s.t.
(A, Y)+alx+b. <0 k=1...m
I <x<u

maxd il =1l y; < min lixj + ujxi — liuj
/jX,' + uix; — Iju,-

UiXi + UjXj — Uju;

Can we build a relaxation in the x-space which is:

> as strong as the RLT-relaxation 7

|



Back to our RLT relaxation
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(A, Y)+alx+b. <0 k=1...m
I <x<u

max{ lixi ol =l } Sy = min{ lix = ujxi =
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UiXi + UjXj — Uju;
Y —xxT =0
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> as strong as the RLT-relaxation 7
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Back to our RLT relaxation

minaOTX

s.t.
(A, Y)+alx+b. <0 k=1...m
I <x<u

max{ lixi ol =l } Sy = min{ lix = ujxi =
lixi + uix; —

UiXi + UjXj — Uju;
Y —xxT =0

Can we build a relaxation in the x-space which is:
> as strong as the RLT-relaxation 7
» as strong as SDP+RLT relaxation (V1)?
> as strong as V2, V37

/,'UJ'
ljui

|



Projection theorem for RLT

Theorem
Suppose that X € RN satisfies [ <% < ujVj.
X feasible for RLT if and only if the following is non-positive.

min 7
s.t. DP .LP)
—(AY)+n>alk+ b, YkeM; (DProj
vy B) <Yy <y;(®), VijeN.
where
y,.JT(x) = max {uixj + upx; — ujuj, lixp + lixp — i} Vi, j

yi () = min {lx; + upxi — g, uixg + i — i} Vi,



Projection theorem for RLT

Theorem
Suppose that X € RN satisfies [ <% < ujVj.
X feasible for RLT if and only if the following is non-positive.

min 7

s.t.

—(A,Y)+n>a x+ b, VkeM;
Yy R)<Yi<y; (%), VijeN.

(DProjLP)

If DProjLP has positive objective value and (u, B, C) are optimal
dual multipliers then

Z(B,-jyij_(x)—C,JyU ) Zuk<akx+bk)_0 (2)

ij keM

is a valid inequality that cuts off X.



Projecting SDP+RLT relaxation

Theorem
Suppose that X € RN satisfies [ <% < ujVj.
X feasible for RLT if and only if the following is non-positive.

min 7

s.t.

—(AY)+n>alx+ b, VkeM; (DProjSDP)
Y +nl —&xT =0;

y; (%) < U_y() Vi,jeN.

If DProjSDP has positive objective value and (u, B, C, D) are
optimal dual multipliers then

TBX+Z ( iy (x) — D,-J-yijr(x)) —1—2 U (aka+ bk> <0 (3)

keM

is a valid inequality that cuts off x.



Projecting SDP+RLT relaxation

Theorem
Suppose that X € RN satisfies [ <% < ujVj.
X feasible for RLT if and only if the following is non-positive.

min 7

s.t.

—(AY)+n>alx+ b, VkeM; (DProjSDP)
Y +nl —&xT =0;

y; (%) < U_y() Vi,jeN.

If DProjSDP has positive objective value and (u, B, C, D) are
optimal dual multipliers then

TBX+Z< iy (x —D,-J-yijr(x))—l—z U (aka+bk> <0 (3)

keM

is a valid inequality that cuts off x.



Low dimensional projections: Eigen Reformulation

Reformulate x” Ax 4+ a”x 4+ b < 0 using spectral decomposition of
A=, )\kckckT:

2
> (cka) +alx+b+ Y Msc <0,
>0 k<0

vi=clx, Yk: \N<O,
sc=y2, Vk: A<O,

» ldentifies directions of convexity.
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Low dimensional projections: Eigen Reformulation

Reformulate x” Ax 4+ a”x 4+ b < 0 using spectral decomposition of
A=3" )\kckc,;r:

2
> <cka) +alx+b+ Y s <0,
>0 k<0

yk:cka, Vk: A<QO,
ska,f, Vk: M\<O,

L <yi < U

sk — (Lx + Ug) yk + Lx U > 0.

> Identifies directions of convexity.
» Identifies directions of maximal non-convexities.

» Build convex envelopes in these direction.



Low dimensional projections: Eigen Reformulation

Reformulate x” Ax 4+ a”x 4+ b < 0 using spectral decomposition of
A=, )\kckckT:

2
> (cka) +alx+b+ Y Msc <0,
>0 k<0

yk:cka, Vk: A<QO,
sk>y2, Yk A<,

Ly <yx < Uk

sk — (Lx + Ug) yk + Ly U > 0.

Identifies directions of convexity.
Identifies directions of maximal non-convexities.

Build convex envelopes in these direction.

vV v v Vv

Do that for all constraints and add to formulation: eigen
reformulation.



Low dimensional projections: Polars.
Eigen-reformulation uses projections in d-1 for building convex
envelopes.

Polarity Cuts
Do a 2-d projection and use polarity to generate cuts

» Compute extreme points in
2D space spanned by 2 ev

v » Lift points to non-linear
space.

» Compute cuts using polarity.
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-1.0000

-2.0000

-3.0000
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Computational results: projected formulations

ProjLP Eigen-value reformulation 4+ Projected RLT.
ProjLP+ adds 2-dim polar cuts

For both we can separate additional disjunctive cuts by using
spatial disjunctions:

I + uyg Ik + uk
(0= BTNV (02 25

Comparisons to gap closed by RLT relaxation.




Results

disjunctive cuts

ProjLP | ProjLP+ | ProjLP | ProjLP+ V1 V2
>99.99 19 23 19 23 16 23
98-99.99 5 21 22 31 1 44
75-98 17 18 35 33 10 23
25-75 26 32 34 23 11 22
0-25 57 30 14 14 87 13
0 4 4 4 4 0 0
Average Gap Closed 40.92% | 60.48 % | 70.65% 76.06% | 25.59% | 79.34%
Average Time taken (sec) 0.893 0.814 4.616 19.462 | 198.043 | 978.140
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Projecting SDP+RLT relaxation: box-QPs

Theorem
Suppose that X € RN satisfies [ <% < ujVj.
X feasible for RLT if and only if the following is non-positive.

"%+ b; (DProjSDP)

If DProjSDP has positive objective value and (u, B, C, D) are
optimal dual multipliers then

TBX+Z (Cavy () = Dy (x)) + 3 i (ax + be) <0 (4)

keM

is a valid inequality that cuts off x.



Projected Sub-gradient heuristic

Theorem
DProjSDP is equivalent to max{F(B) : B = 0}, where

F(B) = Y (A —B)" (vj (0) — x%)
iJ
3 (A - By)” (v (%) - &%)
iJ
+(RTAR) + (aT§< + b) .
initialize B as the projection of A onto the SDP cone.
Compute a sub-gradient of F(B) at B.

Perform line search along sub-gradient direction.
Update B and go to 2.

Ll



Results

% Gap Closed

Time Taken (sec)

Instance | ProjLP-SDP ProjLP ProjLP-SDP ProjLP
spar20* | 94.60 - 99.97 | 91.54 - 99.91 2.49 - 408.36 0.84 - 2.46
spar30* | 89.87 - 99.99 | 51.41 - 98.79 12.33 - 565.88 1.74 - 14.38
spar40* | 87.85 - 99.60 | 21.78 - 89.63 35.77 - 134.8 4.16 - 65.28
spar50* | 87.88 - 97.53 | 11.38 - 50.15 | 50.22 - 180.96 8.76 - 99.13
spar60* | 85.78 - 90.99 | 0.00 - 0.00 121.83 - 226.11 | 111.07 - 127.47
spar70* | 89.78 - 99.36 | 0.00 - 53.67 | 191.12 - 693.28 | 22.02 - 202.98
spar80* | 88.13-97.49 | 2.94 - 56.23 | 257.62 - 892.96 34.77 - 67.66
spar90* | 89.44 - 96.60 | 5.73-50.13 | 408.73 - 991.04 | 46.98 - 95.66
sparl00* | 92.15 - 96.46 | 8.17 - 51.79 | 538.03 - 1509.96 | 75.49 - 112.69
Average 95.19% 50.01% 280.50 37.89




Comparison with black-box SDP solvers

Time to solve

% Duality Gap Closed Time Taken (sec) last relaxation (sec)

Instance | SDPLR SDPA w3 SDPLR SDPA W3 w3
spar20* | 99 - 100 | 99 - 100 94 - 100 0.97 - 56 2-3.39 2 - 408 0.05 - 0.32
spar30* | 98- 100 | 98 - 100 90 - 100 3.57 - 243 16 - 29 12 - 565 0.06 - 0.89
spar40* | 97 - 100 | 97 - 100 | 88 - 99.6 10 - 515 105 - 157.83 35 - 134 0.16 - 1.18
spar50* | 96 - 100 | 96 - 100 88 - 98 41 - 926 438 - 589 50 - 180 0.13 - 0.86
spar60* | 99 - 100 | 99 - 100 85 - 90 88 - 532 1150 - 1408 121 - 226 0.53 - 1.55
spar70* | 98- 100 | 98 - 100 90 - 99 133 - 3600 2769 - 3721 191 - 693 0.48 - 1.1
spar80* | 98 - 100 | 98 - 100 88 - 98 965 - 5413 6618 - 8285 257 - 892 0.56 - 2.02
spar90* | 98 - 100 | 98 - 100 89 - 97 2403 - 7049 12838 - 17048 408 - 991 0.77 - 1.51
spar100* 98 - 99 98 - 99 92 - 97 | 5355 - 10295 | 23509 - 28604. | 538 - 1509 0.82-2
Average | 99.40% | 99.40% | 95.19% 1741.20 5247.04 280.50 0.67

Table: Summary Results: Comparison with SDP Solvers
No. Constraints
No. Variables Linear Convex (Non-Linear) | Computing Time (sec) | % Duality Gap Closed
Instances SDP Proj SDP | Proj | SDP Proj SDP Proj SDP Proj
(Quad)

spar100-025-1 | 5151 203 | 20201 156 1 119 5719.42 1.14 | 98.93% 92.36%
spar100-025-2 | 5151 201 | 20201 151 1 95 | 10185.65 1.52 [ 99.09% 92.16%
spar100-025-3 | 5151 201 | 20201 150 1 114 5407.09 1.24 | 99.33% 93.26%
spar100-050-1 | 5151 201 | 20201 150 1 98 | 10139.57 1.07 | 98.17% 93.62%
spar100-050-2 | 5151 201 | 20201 150 1 113 5355.20 1.26 | 98.57% 94.13%
spar100-050-3 | 5151 201 | 20201 150 1 97 7281.26 0.82 | 99.39% 95.81%
spar100-075-1 | 5151 201 | 20201 150 1 131 9660.79 2.00 | 99.19% 95.84%
spar100-075-2 | 5151 201 | 20201 150 1 109 6576.10 1.23 [ 99.18% 96.47%
spar100-075-3 | 5151 199 | 20201 147 1 90 | 10295.88 0.87 | 99.19% 96.06%




Part Il
Algotithms for Convex MINLPs



Convex MINLP

We now consider:
min  f(x)
sit. gi(x) <0 Vjed, (MINLP)
xeX, x € Z'”,
in the case when f and g are convex.
Given bounds (/, u;) = {(¢;, u;) | Vi € 1}, the NLP relaxation of
(MINLP) is
min  f(x)
sit. gi(x) <0 Vjed, (NLPR(/y, uy))
xeX; L <x<u.

and can be solved to optimality by a standard NLP solver.



NLP Branch-and-Bound

0.

Initialize:

L+ {(L/7 U/)} zZy = 00. X* NONE.
Terminate?

Is £ = (7 If so, the solution x* is optimal.
Select.

Choose and delete a problem N' = (//, uj) from L.

Evaluate.

Solve NLPR(//, u;) If it is infeasible, go to step 1, else let X'
be its solution.

Prune.

If £(X') > zy, go to step 1. If X' is fractional, go to step 5, else
let zy + f(X'), x* + %/, and delete from L all problems with
z] > zy. Go to step 1.

Divide.
Divide the feasible region of N’ into a number of smaller fea-
sible subregions, creating nodes N, N2 ... N For each

j=1,2,...,k, let zij < f(%") and add the problem N to
L. Goto 1.



Outer Approximation [Duran, Grossmann 1986]

min f(x)
s.t.
g(x) <0,
xeX,xieZViel.
Idea: linearize constraints at different points and build an
equivalent MILP.

min 7

st. > f(X)+ VFER) (x —X)
g(®) + Vgi(x) (x-x) <0 jeJ,
xeX, xe€Z Viel.



Outer approximation constraints

Let F:={x:x € X:gi(x) <0}
(gi : R" = R convex. )
Outer approximation constraint in

Vegi(9)" (x — )+gi(x) < gi(x) <0.

(valid for F by convexity of g;j and
definition of F.)
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Outer approximation constraints

Let F:={x:x € X:gi(x) <0}
(gi : R" = R convex. )
Outer approximation constraint in

Vegi(9)" (x — )+gi(x) < gi(x) <0.

(valid for F by convexity of g;j and
definition of F.)

> If g(x) = 0 tangent to feasible
region.

> If g(x) < 0 non-tight
constraint.

> If g(X) > 0 non-tight
constraint cutting off x.
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Outer approximation constraints

Let F:={x:x € X:gi(x) <0}
(gi : R" = R convex. )
Outer approximation constraint in x:

Ve ()7 (x — 2)+g(¥) < gi(x) <0.

(valid for F by convexity of g;j and
definition of F.)

> If g(x) = 0 tangent to feasible
region.

> If g(x) < 0 non-tight
constraint.

> If g(x) > 0 non-tight
constraint cutting off x.




Subproblems
Given X fixed NLP subproblem is:

minf (x)
sit. gi(x) <0, VjeJ (NLP(x/))
xeX;, xi=%;, Viel

If X; € Z for all i € I, and feasible: gives an upper bound.
fixed NLP feasibility subproblem is:

min 3" wig "
=1
st. xe X, x =%, (NLPF(%1))

where gj(x)" = max{0, gj(x)}
If NLP (%) is infeasible, NLP software will typically solve NLPF(%;).



Equivalent MILP formulation of convex MINLP

For each integer assignment % € K = Proj, (X) N Z!"l, let k be:
» An optimal solution to NLP(%;) if it is feasible.

» An optimal solution to NLPF(%/) otherwise.

Theorem (Duran Grossmann 86)

If X #10, f and g are convex, continuously differentiable, and a
constraint qualification holds for each x € K then
min 7
st.n>f(X)+VFR)(x—x) % €K, (MILP-OA)
g(X)+Vg(X) (x—%) <0 jeJ % ek,
xeX, xel.

has the same optimal value as MINLP.



OA-based reduced master problem
Let CC K
min 7
st.n>f(x)+VFx)T(x—%) %€k, (MP(K))
gi(x)+Vgi(x)T(x —x) <0 jeJ,xek,
xeX, xie€ZViel.

Reminder
Where for X € IC, X is the solution to
NLP(%) NLPF(%/):
minf (x)

s.t. gi(x) <0, VjeJ
xeX;, xi=Xj, Viel

m
min Y wigi(x)*
j=1

st. xeX, x =X,



Outer-Approximation Decomposition Algorithm

0.

Initialize.

zy < +00. z; < —o0. Let X0 be the optimal solution of con-
tinuous relaxation.

I+ {70} . Choose a convergence tolerance e.

Terminate?

Is zy — z; < € or (MP(K)) infeasible? If so zy is e—optimal.
Lower Bound

Let zyip(k) be the optimal value of MP(K) and (7}, X) its optimal
solution.

ZL < ZMP(K)

NLP Solve

Solve (NLP(%/)).

Let X' be the optimal (or minimally infeasible) solution.

Upper Bound?

Is X' feasible for (MINLP)? If so, zy < min(zy, f(X')).

Refine

K+ KuU{x'}and i« i+1.

Go to 1.



Remarks on OA deconposition

> Solving many MIPs can be a high cost.

» One does not need to solve MP(K) to optimiality, a solution €
better than current incumbent is enough.

> It is possible to design a similar algorithm without solving
NLPs.

Define a slightly different master problem:
min 7
st.n>f(X)+VFx)(x-—x%) €k (RM-ECP(K))
g(x)+ Vg (x)"(x—x)<0 jeJK) xek
xeX, x € 7!

where J(K) def {J € argmax;c, gj(X)}



ECP Algorithm [Westerlund and Lunqvist 98]

0.

Initialize.

zy + +00. z; < —o0. Choose convergence tolerances ¢, k.
K+ 0.

Terminate?

Is zy — z, < € or is (RM-ECP(K)) infeasible? If so zy is
e—optimal, with an associated solution that is k—feasible.
Lower Bound

Let zrm-ecp(k) be the optimal value of (RM-ECP(K)) and
(7', X") be its optimal solution.

Z| <= ZRM-ECP(K)

Upper bound and refine

Is gi(x') < k Vj € J?

If so, zy < min(zy, f(X')).

If not, K < K U {X'}, t € argmax; gj(%'), and J(K) + J(K) U
{t}

i<+ i+1. Goto 1.



LP/NLP Based BB [Quesada, Grossmann 1993]

0.

Initialize.

L+ {(L/7 U/)} zy + 4o0. x* + NONE.

Let X be the optimal solution of continuous relaxation.

K« {x}.

Terminate? Is £ = ()? If so, the solution x* is optimal.
Select. Choose and delete a problem N’ = (//, ui) from L.
Evaluate. Solve LP(K, I}, ul). If infeasible, go to 1, else let
(7, %") be its solution.

Prune. If i/ > zy, go to 1.

NLP Solve? Is %/ integer? If so, solve (NLP(%/)), otherwise go
to 8. Let X' be the optimal (or minimally infeasible) solution.
Upper bound? Is X' feasible for (MINLP) and f(X') < zy? If
50, X* X', zy f(Yi).

Refine. Let £ < KLU (X). Go to 3.

Divide. Divide the feasible region of N’ into a number of smaller
feasible subregions, creating nodes N'*, N'2,... N*. For each
J=1,2,...,k let z} + z i . and add the problem N
to L. Go to step 1. ; MPRU )



Improvements to cut generation in LP/NLP based BB

» Add more cuts with three rules of thumb [Linderoth]

1. Generate cuts early in the procedure.
2. Measure effect in term of bound improvement.
3. Stop when bound stalls.

» Three type of cuts proposed [Abishek et. al. 2010]:

1. ECP: generate cuts at current fractional LP optimum X;.
2. FixFRAC: Solve NLP(%).
3. NLP: Solve NLPR(/,i, u;) [also B. et. al. 2008].

» Also since relaxation is linear can use all cuts from MILP.

» Be careful not to overwhelm LP solver with too many cuts.



Comparison of state of the art solvers

Proportion of problems solved

alphaecp
bonmin-bb

filmint-sbc -+
minlpbb -
sbb

1
1 10 100 1000 10000
not more than x-times worst than best solver




Formulation of hulls of unions of convex sets

Let C = {gj(x) <0Vj=1,...,m0<x; <1Vi € |} be a bounded
convex set with gj, j = 1,..., m convex functions bounded in C.
For i€l and k = 0,1 define Cik ={x € C: x; = k}

Proposition ([Stubbs, Merhotra 1999])

conv(Cé U C{) = proj, (M (C))
with
X = Ay + A1z
1=X+ X\
yeClzed
Ao, A1 >0

M;(C) =

(By definition of convex hull)



Perspective function

For a given function gi(x) : R” - RU {00}, let

. zgi(x/z if z>0,
E(x.7) = _g,( /) ) |
limyoo0r Ag(X —x+x/A\)  ifz=0
» If g; is a convex function g; is also
convex.

» g; is positively homogeneous:
)\g','(X) = g,-()\x) YA0.

Zaxis




Convex formulation of the convex-hull
Let C={g(x,)\) <0,Vj=1,...,m,0<x <AViel}
Theorem ([Stubbs, Merhotra 1999, Ceria Soares
1999'])

conv(C{U C}) = proj, (M; (C))

with o
xX=y+z

1=X+ X\

M (C) =2 (y,xo0) € C,(z,\) e C
yi=0,zi=M\

Ao, A1 > 0)

More general statement for unbounded set



Separation problem in non-linear case

Let X € R"” be a point to cut define the problem:

min ||x — X||

X=y+z

1=X+ X\

(v;d0) € C(z,M) € €
yi=0,zi=M\

Ao, A1 >0

Theorem

Let X ¢ conv (Cé U Cl’) and X be an optimal solution to 5. For any
subgradient & of ||x — &|| at X, €T (x —X) > 0 is a valid linear
inequality that cuts off X.

(If dual Lagrange multipliers £ can be easily deduced from them).



Application to problems with indicator variables
We consider the simple mixed integer nonlinear set:
C={(x,z) e Rx{0,1} : x =0, if z=0,g(x) <0,/ <x<uifz=1}
By direct application of disjunctive programming:
conv(C) ={(x,z) e R x [0,1] : zI < x < zu, g(x,z) <0}

This reformulation of C is called perspective reformulation and has
been shown to be very effective [Frangioni, Gentile 2006
2007 2010, Giinluk Linderoth 2008 2009]

m n | #Sol. CPU | # Sol. CPU
20 100 7 12263 10 3.8
20 200 0 - 10 9.6

Table: Running times on Uncapacitated Quadratic Facility Location



Application to problems with indicator variables
We consider the simple mixed integer nonlinear set:
C={(x,z) e Rx{0,1} : x =0, if z=0,g(x) <0,/ <x<uifz=1}
By direct application of disjunctive programming:
conv(C) ={(x,z) e R x [0,1] : zI < x < zu, g(x,z) <0}

This reformulation of C is called perspective reformulation and has
been shown to be very effective [Frangioni, Gentile 2006
2007 2010, Giinluk Linderoth 2008 2009]

m n | #Sol. CPU | # Sol. CPU
20 100 7 12263 10 3.8
20 200 0 - 10 9.6

Table: Running times on Uncapacitated Quadratic Facility Location

Commercial :  Hassan Hijazi talk on Wednesday.



Second Order cone

Reminder
A cone K is a subset of R™ such that x € K implies Ax € K for all

A>0.

Definition
The Lorentz cone is Q™1 = {(t,t) € R™ x R : ||t|| < to}.
We define the partial order:

x2yey—xeQmtt

Second Order Cone Constraint

(Ax — b,u) =0
which is equivalent to

[|Ax — b|| < u



Mixed Integer Second Order Cone Programming

minc'x+h'y
|Aix + Gy —bi]| < (uf x+vy —w) i=1,... .k
x€Z" y e RP

Families of cuts for MISOCP

» Generalization of Chvéatal-Gomory [Cezik and Yiengar
2005].

> Generalization of MIR cuts [Atamtiirk and Narayan 2010].

» Lift-and-project cuts [Drewes 2009].



Mixed Integer Second Order Cone Programming

minc'x+h'y
|Aix + Gy —bi]| < (uf x+vy —w) i=1,... .k
x€Z" y e RP

Families of cuts for MISOCP

» Generalization of Chvéatal-Gomory [Cezik and Yiengar
2005].

> Generalization of MIR cuts [Atamtiirk and Narayan 2010].
» Lift-and-project cuts [Drewes 2009].

Commercial: Sarah Drewes talk.
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