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Basic algorithmic ideas



Mixed Integer Non-Linear Programming

min f (x)

s.t.

gj(x) ≤ 0 ∀j = 1, . . . ,m

x ∈ X ⊆ R
n

xi ∈ Z ∀i ∈ I ⊆ {1, . . . , n}

(1)

◮ f : Rn → R.

◮ gj : R
n → R.

◮ f and gj sufficiently smooth (∈ C 1 or better C 2).
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Why should we study MINLP’s?

Because it is not well solved and:

◮ Rich source of applications for which solutions are needed.

◮ Many problems which combine non-linear phenomenon and
decision making (0− 1 variables)

◮ In particular problems in chemical engineering or which involve
physical phenomenon

◮ Some stochastic Integer Programs can be cast as
deterministic MINLPs.

◮ More powerful modeling framework than MILP (and more
natural for many engineers)

◮ We can rely on the progresses made in solving subproblems in
the last decades.
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Solving MINLP by fitting it into a “well solved” subproblem

From an MILP perspective

◮ Remove/neglate non-linearities.

◮ Approximate non-linearities by linear functions.

◮ Approximate unidimensional non-linearities by mixed-integer
sets: SOS2[Beale1963, Forrest Tomlin 2007].

◮ Most clever tricks handle arbitrary separable functions:
linked-SOS [Beale Forrest 1976]

From an NLP perspective

◮ Remove/neglate integrity.

◮ Round solutions to try to get “good” integer feasible solutions.
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Two classes of MINLP

Mixed Integer Convex Program

If the functions f (x) and gj (x) are convex.

◮ The continuous relaxation can be optimized to global
optimality using NLP algorithms.

◮ Problem is NP-Hard.

◮ Important sub-class f (x) and gj (x) are second-order cone
representable.

Mixed Integer NonLinear Program

◮ NLP techniques only give a local optima.

◮ Here we will always assume that integer variables are bounded:

◮ Problem is undecidable when integer variables are unbounded
even if all functions are quadratic[Jeroslow 1973], or are
polynomials and problem has 10 variables [De Lorea et.

al. 2008].



Software for Mixed Integer Convex Programs

◮ α-ECP [Westerlund and Lundqvist 2005], academic,
available in GAMS

◮ Bonmin [B. et. al. 2006], open source, available
through COIN-OR, NEOS and in GAMS.

◮ Dicopt, commercial, available in GAMS.

◮ FilMINT [Abhishek, Leyffer and Linderoth 2010],
available through NEOS.

◮ MINLP BB [Leyffer 1998] recently upgraded [Leyffer

2010], academic.

◮ SBB [Bussieck and Drud], commercial, available in GAMS.

Second order cone constrained

◮ CPLEX, MOSEK, XPRESS,. . .



Software for Mixed Integer NonLinear Program

◮ Baron [Sahinidis, Tawarmalani 2003], commercial,
stand-alone and in GAMS.

◮ Couenne [Belotti et. al. 2009], open source,
available through COIN-OR.

◮ SCIP [Berhold et. al. 2010], academic, right now only
quadratic functions, general MINLP upcoming.

◮ LindoGlobal, commercial, available in GAMS.



Basic algorithmic ideas

Problems can be solved to optimality by branch-and-bound using
appropriate convex relaxations.

Convex relaxations

◮ for MICP: NLP relaxation obtained by dropping integrality
requirements.

◮ for MICP: Outer approximation linear approximation of the
problem.

◮ for MINLP: Sherali Adams relaxation obtained by convexifying
each non-convex term separately.

Use the relaxations to setup a branch-and-cut algorithm.



Outer Approximation [Duran, Grossmann 1986]

(assume linear objective)

min f (x)

s.t.

g(x) ≤ 0,

xi ∈ Z ∀i ∈ I.
Idea: linearize constraints at different points and build an
equivalent MILP:

(OA)



















min f (x)

Jg (x
k)T

(

x − xk
)

+ g(xk) ≤ 0
∀(xk) ∈ T

x ∈ X , xi ∈ Z ∀i ∈ I.

T contains suitably chosen
linearization points.



Separable MINLP

◮ f and gi can be constructed as finite recursive composition of
univariate and bivariate functions.

◮ Usually restricted to φ1(x) = ln(x), φ2(x) = ex ,
φ3(x , y) = x + y , φ4(x , y) = xy , φ5(x , α) = xα.

◮ Example:
f (x) =

√
x1x2 + ln(x2)

is equivalent to:

f (x) = x3 + x4 = φ3(x3, x4)

x3 =
√
x5 = φ5(x5,

1

2
)

x4 = ln(x2) = φ1(x2)

x5 = x1x2 = φ4(x1, x2)



Building convex relaxation for separable MINLP

◮ Adding appropriate number of variables, decompose each
separable function into atomic elements of the form:
xn+k = φj(xk′) or xn+k = φj (xk′ , xk′′)

◮ Using bounds on original variables, infer bounds on new
variables: li ≤ xn+k ≤ ui .

◮ For each xn+k build an approximation of
conv({xn+k = ψi (xk′), lk′ ≤ xk′ ≤ uk′})

xk = x3k′
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Part II

Disjunctive cuts for non-convex MINLPs



QCP

min aT0 x

s.t.

xTAkx + aTk x + bk ≤ 0 k = 1 . . .m

l ≤ x ≤ u

◮ Ak are symmetric but usualy not positive

semi-definite.

◮ All variables appearing in quadratic expressions
have finite bounds.
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Y = xxT
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constraint Y = xxT .
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Y = xxT
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◮ The only non-linearity of the problem is in the
constraint Y = xxT .

◮ Y − xxT < 0 is convex (can be handled by conic optimization),
◮ xxT − Y < 0 is non-convex.
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RLT relaxation of QCP

Replace yij = xixj by its convex envelope given by RLT ineqalities

min aT0 x

s.t.

〈Ak ,Y 〉+ aTk x + bk ≤ 0 k = 1 . . .m

l ≤ x ≤ u

max

{

ljxi + lixj − lj li
ujxi + uixj − ujui

}

≤ yij ≤ min

{

lixj + ujxi − liuj
ljxi + uixj − ljui

}

We know
Can be strengthened by the LMI inequality Y − xxT < 0

Research Question?

Can we use the non-convex constraint xxT − Y < 0
to produce cuts for this relaxation?



Disjunctive Programming

Polyhedral Relaxation

P = {x : Ax ≥ b}

Disjunction

q
∨

k=1

[

Dkx ≥ dk
]

PD = clconv

[

q
⋃

k=1

(

P ∩
{

x : Dkx ≥ dk
})

]

Separation Problem

Given x̂ ∈ P show that x̂ ∈ PD or find an inequality
separating x̂ from PD .



Disjunctive Programming

Theorem
x̂ ∈ PD if and only if the optimal value of the following
Cut-Generation Linear Program (CGLP) is non-negative.

min αx̂ − β
s.t.

α = ukA+ vkDk , k = 1 . . . q ;

β ≤ ukb + vkdk , k = 1 . . . q ;

uk , vk ≥ 0 , k = 1 . . . q ;

(CGLP)



Applying Disjunctive Programming to QCP?

Polyhedral Relaxation

P = {x : Ax ≥ b}

Disjunction

q
∨

k=1

[

Dkx ≥ dk
]

What are the sources of

non-convexity in QCP?
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Applying Disjunctive Programming to QCP?

Polyhedral Relaxation

P = {x : Ax ≥ b}

Disjunction

q
∨

k=1

[

Dkx ≥ dk
]

Integrality Constraints

◮ xj ∈ Z, j ∈ NI

◮ Elementary disjunctions

(xj ≤ k) ∨ (xj ≥ k + 1)

◮ GUB disjunctions

◮ Split disjunctions

xxT − Y < 0

?



Cutting plane procedure

◮ Solve

min aT0 x

s.t.

〈Ak ,Y 〉+ aTk x + bk ≤ 0 l = 1 . . .m

l ≤ x ≤ u

max

{

ljxi + lixj − lj li
ujxi + uixj − ujui

}

≤ yij ≤ min

{

lixj + ujxi − liuj
ljxi + uixj − ljui

}

◮ Let (x̂ , Ŷ ) be the solution and Ẑ = Ŷ − x̂ x̂T .

◮ If Ẑ = 0 the solution satisfies Y − xxT = 0.

◮ Otherwise can we find inequalities that cut off (x̂ , Ŷ )?
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Eigenvalues of Ẑ = Ŷ − x̂ x̂T

Ẑ = 0?

Solution is fea-
sible for con-
straint

Yes

Ẑ has non-zero eigenvalues λ1, . . . , λk

No

cTi Yci − (cTi x)2 ≥ 0 is a
convex quadratic inequality
which cuts off (x̂ , Ŷ )

λi < 0

cTi Yci − (cTi x)2 ≤ 0
is a non-convex cut.

λi > 0

Let c1, . . . , ck be
the corresponding
eigenvectors

Imposes SDP condition Y − xxT < 0 by quadratic cuts
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Cuts from > 0 eigenvalues?

θ̂
(

cT x ≤ θ
cTYc ≤ p1(c

T x) + q1

)

∨
(

cT x ≥ θ
cTYc ≤ p2(c

T x) + q2

)



Cuts from > 0 eigenvalues?

θ̂



Applying Disjunctive Programming to QCP

Polyhedral Relaxation

P = {x : Ax ≥ b}

Disjunction

q
∨

k=1

[

Dkx ≥ dk
]

Linear Outer Approxi-

mation of QCP defined
by incumbent solution.



Applying Disjunctive Programming to QCP

Polyhedral Relaxation

P = {x : Ax ≥ b}

Disjunction

q
∨

k=1

[

Dkx ≥ dk
]

Integrality Constraints

◮ xj ∈ Z, j ∈ NI

◮ Elementary disjunctions

(xj ≤ 0) ∨ (xj ≥ 1)

◮ Split disjunctions

◮ GUB disjunctions

xxT − Y < 0
θ



Cutting Plane Algorithm (I)

Solve convex
relaxation

Extract eigenval-
ues and eigenvec-
tors of Ŷ − x̂ x̂T

(x̂ , Ŷ )

(cT x)2 ≤ Y .ccT

λi < 0

Y .ccT ≤ (cT x)2

λi > 0

Derive disjunc-
tion

Disjunctive cut
αT x ≥ β

CGLP

Convex quadratic cut



Error in secant approximation

Error

Width

Proposition

Let f (t) = t2 , and let
g(t) = t(a+ b) + ab represent the
secant approximation of f (t) in the
interval [a, b]; then

maxt∈[a,b] (f (t)− g(t)) = (a−b)2

4 .

Secant approximation is
better if the width of [a, b]

is smaller



Finding disjunctions in directions of small width

The width of outer approximation in direction c

η(c) = max
(x ,Y )∈OA

cT x − min
(x ,Y )∈OA

cT x

We want c such that:

◮ η(c) is as small as possible

◮ cT Ŷ c > (cT x̂)2

◮ Take c to be in the vector space spanned by the eigenvectors
of Ŷ − x̂ x̂T with positive eigenvalue.

UGMIP
Problem can be formulated as an MILP

◮ Add a penalty term to favor solutions with large curvature.

◮ A diversification scheme is used to obtain several disjunctions.



Cutting Plane Algorithm (II)

Solve convex
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αT x ≥ β

CGLP

UGMIP



Cutting Plane Algorithm (II) Version 1
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Cutting Plane Algorithm (II) Version 3

Solve convex
relaxation
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Experimental testing

Solvers

◮ Convex relaxations Ipopt

◮ Eigenvalues computations LAPACK

◮ LP & MILP CPLEX10.1

◮ Bonmin based implementation.

Test bed

◮ 129 GlobalLIB instances (≤ 50 vars) reformulated as QCP.
◮ x1x2x3x4x5
◮ (x1 + x2)/x3 ≥ 2x1

Experimental setup

◮ 1 hour time limit.

◮ report % gap closed: opt(final relaxation) - opt(initial)
opt(QCP) - opt(initial) × 100



Gap closed for the 129 globallib instances with non-zero

duality gap

V1 V2 V3

>99.99 % gap closed 16 23 23

98-99.99 % gap closed 1 44 52

75-98 % gap closed 10 23 21

25-75 % gap closed 11 22 20

0-25 % gap closed 91 17 13

Average Gap Closed 24.80% 76.49% 80.86%



Gap closed for the 129 globallib instances with non-zero

duality gap

V1 V2 V3

>99.99 % gap closed 16 23 23

98-99.99 % gap closed 1 44 52

75-98 % gap closed 10 23 21

25-75 % gap closed 11 22 20

0-25 % gap closed 91 17 13

Average Gap Closed 24.80% 76.49% 80.86%

◮ V3 closes more than 98% gap on 75 instances.



Versions 2 and 3 vs. Version 1
gap closed

Instance V1 V2 V3

ex2 1 1 0.00% 72.62% 99.92%
ex2 1 5 0.00% 99.98% 99.99%
ex2 1 6 0.00% 99.95% 99.97%
ex2 1 9 0.00% 98.79% 99.73%
ex3 1 3 0.00% 99.99% 99.99%
ex3 1 4 0.00% 86.31% 99.57%
ex5 2 4 0.00% 79.31% 99.92%
prob05 0.00% 99.78% 99.49%
st bpv2 0.00% 99.99% 99.99%
st bsj2 0.00% 99.98% 99.96%
st bsj4 0.00% 99.86% 99.80%
st e02 0.00% 99.88% 99.95%
st e07 0.00% 99.97% 99.97%
st e08 0.00% 99.81% 99.89%
st e24 0.00% 99.81% 99.81%
st e26 0.00% 99.96% 99.96%
st e33 0.00% 99.94% 99.95%
st fp1 0.00% 72.62% 99.92%
st fp5 0.00% 99.98% 99.99%
st fp6 0.00% 99.92% 99.97%
st glmp kk92 0.00% 99.98% 99.98%

gap closed

Instance V1 V2 V3

st glmp kky 0.00% 99.80% 99.71%
st ht 0.00% 99.81% 99.89%
st jcbpaf2 0.00% 99.47% 99.61%
st kr 0.00% 99.93% 99.95%
st m1 0.00% 99.96% 99.96%
st pan1 0.00% 99.72% 99.92%
st pan2 0.00% 68.54% 99.91%
st ph1 0.00% 99.98% 99.98%
st ph11 0.00% 99.46% 98.19%
st ph12 0.00% 99.49% 99.62%
st ph13 0.00% 99.38% 98.80%
st ph14 0.00% 99.85% 99.86%
st ph15 0.00% 99.83% 99.81%
st ph2 0.00% 99.98% 99.98%
st ph20 0.00% 99.98% 99.98%
st ph3 0.00% 99.98% 99.98%
st phex 0.00% 99.96% 99.96%
st qpc-m0 0.00% 99.96% 99.96%
st qpc-m1 0.00% 99.99% 99.98%
st qpc-m3a 0.00% 98.10% 99.16%
st qpc-m3b 0.00% 100.00% 100.00%
st qpk1 0.00% 99.98% 99.98%
st rv1 0.00% 96.19% 98.44%
st z 0.00% 99.96% 99.95%



Version 2 vs. Version 3
gap closed

Instance V1 V2 V3

ex7 3 1 0.00% 0.00% 85.43%
ex9 2 3 0.00% 0.00% 47.17%
ex9 2 7 42.31% 51.47% 86.25%
st fp7b 0.00% 22.06% 55.51%
st rv3 0.00% 40.40% 72.68%
ex9 2 1 54.54% 60.04% 92.02%
st pan2 0.00% 68.54% 99.91%
ex2 1 1 0.00% 72.62% 99.92%
st fp1 0.00% 72.62% 99.92%
ex5 2 4 0.00% 79.31% 99.92%
ex8 1 7 77.43% 77.43% 95.79%
st rv7 0.00% 45.43% 62.28%
st qpk3 0.00% 33.53% 50.04%
st rv8 0.00% 29.90% 45.80%
st e20 0.00% 76.38% 90.88%
ex8 1 8 0.00% 76.49% 90.88%
ex5 3 2 0.00% 7.27% 21.00%
ex3 1 4 0.00% 86.31% 99.57%
st fp7c 0.00% 44.26% 57.10%
st qpk2 0.00% 71.34% 83.33%
st rv9 0.00% 20.56% 31.64%
house 0.00% 86.93% 97.92%
ex7 3 2 0.00% 59.51% 70.26%

◮ On 23 instances it closes at
least 10 % more gap.



Linear Complementarity Constraints

◮ Some GlobalLib problems have linear
complementarity constraints

xixj = 0

◮ These constraints can be reformulated as
disjunctions

(xi = 0) ∨ (xj = 0)

which can be added to our medley of
disjunctions for deriving cuts.



Linear Complementarity Constraints

Without Using LCD Using LCD

Instance V2 V3 V2 V3

ex9 1 4 0.00% 1.55% 100.00% 99.97%
ex9 2 1 60.04% 92.02% 99.95% 99.95%
ex9 2 2 88.29% 98.06% 100.00% 100.00%
ex9 2 3 0.00% 47.17% 99.99% 99.99%
ex9 2 4 99.87% 99.89% 99.99% 100.00%
ex9 2 6 87.93% 62.00% 80.22% 92.09%
ex9 2 7 51.47% 86.25% 99.97% 99.95%

Linear complementarity constraints can be ex-

ploited effectively in a disjunctive framework.



Marginal value of Quadratic Cuts

Solve convex
relaxation

Extract eigenval-
ues and eigenvec-
tors of Ŷ − x̂ x̂T

(x̂ , Ŷ )

(cTi x)2 ≤ cTi Yci

λi < 0

cTi Yci ≤ (cTi x)2

λi > 0

Derive disjunc-
tion

Disjunctive cut
αT x ≥ β

CGLP

UGMIP



Marginal value of Quadratic Cuts V2-Dsj

Solve convex
relaxation

Extract eigenval-
ues and eigenvec-
tors of Ŷ − x̂ x̂T

(x̂ , Ŷ )

(cTi x)2 ≤ cTi Yci

λi < 0

cTi Yci ≤ (cTi x)2

λi > 0

Derive disjunc-
tion

Disjunctive cut
αT x ≥ β

CGLP

UGMIP



Marginal value of Quadratic Cuts V3-Dsj

Solve convex
relaxation

Extract eigenval-
ues and eigenvec-
tors of Ŷ − x̂ x̂T

(x̂ , Ŷ )

(cTi x)2 ≤ cTi Yci

λi < 0

cTi Yci ≤ (cTi x)2

λi > 0

Derive disjunc-
tion

Disjunctive cut
αT x ≥ β

CGLP

UGMIP



Marginal value of convex Quadratic constraints

V1 V2 V3 V2-Dsj V3-Dsj

>99.99 % 16 23 23 1 1

98-99.99 % 1 44 52 29 33

75-98 % 10 23 21 10 10

25-75 % 11 22 20 29 24

0-25 % 91 17 13 60 61

Average Gap Closed 24.80% 76.49% 80.86% 41.54 % 42.90%

◮ V2-Dsj closes 35% less gap than V2.

◮ V3-Dsj closes 38 % less gap than V3.



Marginal Value of Disjunctive Programming

Solve convex
relaxation

Extract eigenval-
ues and eigenvec-
tors of Ŷ − x̂ x̂T

(x̂ , Ŷ )

(cTi x)2 ≤ cTi Yci

λi < 0

cTi Yci ≤ (cTi x)2

λi > 0

Derive disjunc-
tion

Disjunctive cut
αT x ≥ β

CGLP

UGMIP

θ



Marginal Value of Disjunctive Programming

Solve convex
relaxation

Extract eigenval-
ues and eigenvec-
tors of Ŷ − x̂ x̂T

(x̂ , Ŷ )

(cTi x)2 ≤ cTi Yci

λi < 0

cTi Yci ≤ (cTi x)2

λi > 0

Use secant ap-
proximation

UGMIP



Marginal Value of Disjunctive Programming V2-SA

Solve convex
relaxation

Extract eigenval-
ues and eigenvec-
tors of Ŷ − x̂ x̂T

(x̂ , Ŷ )

(cTi x)2 ≤ cTi Yci

λi < 0

cTi Yci ≤ (cTi x)2

λi > 0

Use secant ap-
proximation

UGMIP



Marginal Value of Disjunctive Programming V3-SA

Solve convex
relaxation

Extract eigenval-
ues and eigenvec-
tors of Ŷ − x̂ x̂T

(x̂ , Ŷ )

(cTi x)2 ≤ cTi Yci

λi < 0

cTi Yci ≤ (cTi x)2

λi > 0

Use secant ap-
proximation

UGMIP



Marginal value of Disjunctive Programming

V1 V2 V3 V2-SA V3-SA

>99.99 % 16 23 23 24 27

98-99.99 % 1 44 52 4 6

75-98 % 10 23 21 17 25

25-75 % 11 22 20 26 22

0-25 % 91 17 13 58 49

Average Gap Closed 24.80% 76.49% 80.86% 44.40% 52.56%

◮ V2-SA closes 32% less gap than V2.

◮ V3-SA closes 28 % less gap than V3.



Conclusion of experiments

◮ We are able to almost solve moderate size MIQCP to
optimality by using only cutting planes.

◮ Both SDP constraints and Disjunctive Programming are
necessary.

◮ The approach require lifting in a space of dimension O(n2)
◮ What about CPU times?

V1 V2

Average Gap Closed 24.80% 76.49%

CPU Times (sec.) 198.043 978.140



Conclusion of experiments

◮ We are able to almost solve moderate size MIQCP to
optimality by using only cutting planes.

◮ Both SDP constraints and Disjunctive Programming are
necessary.

◮ The approach require lifting in a space of dimension O(n2)
◮ What about CPU times?

V1 V2

Average Gap Closed 24.80% 76.49%

CPU Times (sec.) 198.043 978.140

Questions
Can we get similar cuts for more general MINLP?
Can we try to obtain better CPU time?

◮ Key problem: can we try to get a final formulation which can
be solved in a reasonable computing time (and in a small
space).



Disjunctive cuts for separable MINLP

◮ Adding appropriate number of variables, decompose each
separable function into atomic elements of the form:
xn+k = φj(xk′) or xn+k = φj (xk′ , xk′′)

◮ Using bounds on original variables, infer bounds on new
variables: li ≤ xn+k ≤ ui .

◮ For each xn+k build an approximation of
conv({xn+k = ψi (xk′), lk′ ≤ xk′ ≤ uk′})
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xn+k = φj(xk′) or xn+k = φj (xk′ , xk′′)

◮ Using bounds on original variables, infer bounds on new
variables: li ≤ xn+k ≤ ui .

◮ For each xn+k build an approximation of
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Disjunctive cuts for separable MINLP

◮ Adding appropriate number of variables, decompose each
separable function into atomic elements of the form:
xn+k = φj(xk′) or xn+k = φj (xk′ , xk′′)

◮ Using bounds on original variables, infer bounds on new
variables: li ≤ xn+k ≤ ui .

◮ For each xn+k build an approximation of
conv({xn+k = ψi (xk′), lk′ ≤ xk′ ≤ uk′})

x̂k ◮ Apply disjunction
xk ≤ x̂ ′k ∨ xk ≥ x̂ ′k .

◮ Strengthen the
convexification: get
disjunction

(

xk ≤ x̂k

A1x ≤ b1

)

∨

(

xk ≥ x̂k

A2x ≤ b2

)



Procedure for applying disjuncive cuts [Belotti 2009]

◮ Apply a spatial disjunction xk ≤ x̂ ′k ∨ xk ≥ x̂ ′k ⇒ build
sub-problems LP≤ and LP≥.

◮ Apply bound strengthening techniques to LP≤ and LP≥.

◮ Construct a CGLP and get a cut.

Implemented in Couenne.



Back to our RLT relaxation

min aT0 x

s.t.

〈Ak ,Y 〉+ aTk x + bk ≤ 0 k = 1 . . .m

l ≤ x ≤ u

max

{

ljxi + lixj − lj li
ujxi + uixj − ujui

}

≤ yij ≤ min

{

lixj + ujxi − liuj
ljxi + uixj − ljui

}

Can we build a relaxation in the x-space which is:

◮ as strong as the RLT-relaxation ?
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Back to our RLT relaxation

min aT0 x

s.t.

〈Ak ,Y 〉+ aTk x + bk ≤ 0 k = 1 . . .m

l ≤ x ≤ u

max

{

ljxi + lixj − lj li
ujxi + uixj − ujui

}

≤ yij ≤ min

{

lixj + ujxi − liuj
ljxi + uixj − ljui

}

Y − xxT � 0

Can we build a relaxation in the x-space which is:

◮ as strong as the RLT-relaxation ?

◮ as strong as SDP+RLT relaxation (V1)?

◮ as strong as V2, V3?



Projection theorem for RLT

Theorem
Suppose that x̂ ∈ R

N satisfies lj ≤ x̂j ≤ uj ∀j .
x̂ feasible for RLT if and only if the following is non-positive.

min η
s.t.
−〈Ak ,Y 〉+ η ≥ aTk x̂ + bk , ∀k ∈ M ;
y−ij (x̂) ≤ Yij ≤ y+ij (x̂) , ∀i , j ∈ N .

(DProjLP)

where

y−ij (x) = max {uixj + ujxi − uiuj , lixj + ljxi − li lj} ∀i , j
y+ij (x) = min {lixj + ujxi − liuj , uixj + ljxi − ui lj} ∀i , j .



Projection theorem for RLT

Theorem
Suppose that x̂ ∈ R

N satisfies lj ≤ x̂j ≤ uj ∀j .
x̂ feasible for RLT if and only if the following is non-positive.

min η
s.t.
−〈Ak ,Y 〉+ η ≥ aTk x̂ + bk , ∀k ∈ M ;
y−ij (x̂) ≤ Yij ≤ y+ij (x̂) , ∀i , j ∈ N .

(DProjLP)

If DProjLP has positive objective value and (µ,B ,C ) are optimal
dual multipliers then

∑

i ,j

(

Bijy
−
ij (x)− Cijy

+
ij (x)

)

+
∑

k∈M

µk

(

aTk x + bk

)

≤ 0 (2)

is a valid inequality that cuts off x̂ .



Projecting SDP+RLT relaxation

Theorem
Suppose that x̂ ∈ R

N satisfies lj ≤ x̂j ≤ uj ∀j .
x̂ feasible for RLT if and only if the following is non-positive.

min η
s.t.
−〈Ak ,Y 〉+ η ≥ aTk x̂ + bk , ∀k ∈ M ;
Y + ηI − x̂ x̂T < 0 ;
y−ij (x̂) ≤ Yij ≤ y+ij (x̂), ∀i , j ∈ N .

(DProjSDP)

If DProjSDP has positive objective value and (µ,B ,C ,D) are
optimal dual multipliers then

xTBx+
∑

i ,j

(

Cijy
−
ij (x) − Dijy

+
ij (x)

)

+
∑

k∈M

uk

(

aTk x + bk

)

≤ 0 (3)

is a valid inequality that cuts off x̂.



Projecting SDP+RLT relaxation

Theorem
Suppose that x̂ ∈ R

N satisfies lj ≤ x̂j ≤ uj ∀j .
x̂ feasible for RLT if and only if the following is non-positive.

min η
s.t.
−〈Ak ,Y 〉+ η ≥ aTk x̂ + bk , ∀k ∈ M ;
Y + ηI − x̂ x̂T < 0 ;
y−ij (x̂) ≤ Yij ≤ y+ij (x̂), ∀i , j ∈ N .

(DProjSDP)

If DProjSDP has positive objective value and (µ,B ,C ,D) are
optimal dual multipliers then

xTBx+
∑

i ,j

(

Cijy
−
ij (x) − Dijy

+
ij (x)

)

+
∑

k∈M

uk

(

aTk x + bk

)

≤ 0 (3)

is a valid inequality that cuts off x̂.



Low dimensional projections: Eigen Reformulation

Reformulate xTAx + aTx + b ≤ 0 using spectral decomposition of
A =

∑

k λkckc
T
k :

∑

λk>0

λk

(

cTk x
)2

+ aT x + b +
∑

λk<0

λk sk ≤ 0,

yk = cTk x , ∀ k : λk < 0,

sk = y2k , ∀ k : λk < 0,

◮ Identifies directions of convexity.
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Low dimensional projections: Eigen Reformulation

Reformulate xTAx + aTx + b ≤ 0 using spectral decomposition of
A =

∑

k λkckc
T
k :

∑

λk>0

λk

(

cTk x
)2

+ aT x + b +
∑

λk<0

λk sk ≤ 0,

yk = cTk x , ∀ k : λk < 0,

sk ≥ y2k , ∀ k : λk < 0,

Lk ≤ yk ≤ Uk

sk − (Lk + Uk) yk + LkUk ≥ 0.

◮ Identifies directions of convexity.

◮ Identifies directions of maximal non-convexities.

◮ Build convex envelopes in these direction.



Low dimensional projections: Eigen Reformulation

Reformulate xTAx + aTx + b ≤ 0 using spectral decomposition of
A =

∑

k λkckc
T
k :

∑

λk>0

λk

(

cTk x
)2

+ aT x + b +
∑

λk<0

λk sk ≤ 0,

yk = cTk x , ∀ k : λk < 0,

sk ≥ y2k , ∀ k : λk < 0,

Lk ≤ yk ≤ Uk

sk − (Lk + Uk) yk + LkUk ≥ 0.

◮ Identifies directions of convexity.

◮ Identifies directions of maximal non-convexities.

◮ Build convex envelopes in these direction.

◮ Do that for all constraints and add to formulation: eigen
reformulation.



Low dimensional projections: Polars.

Eigen-reformulation uses projections in d-1 for building convex
envelopes.

Polarity Cuts

Do a 2-d projection and use polarity to generate cuts
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y1

y2

◮ Compute extreme points in
2D space spanned by 2 ev

◮ Lift points to non-linear
space.

◮ Compute cuts using polarity.



Computational results: projected formulations

ProjLP Eigen-value reformulation + Projected RLT.

ProjLP+ adds 2-dim polar cuts

For both we can separate additional disjunctive cuts by using
spatial disjunctions:

(

xk ≤
lk + uk

2

)

∨

(

xk ≥
lk + uk

2

)

.

Comparisons to gap closed by RLT relaxation.



Results

disjunctive cuts
ProjLP ProjLP+ ProjLP ProjLP+ V1 V2

>99.99 19 23 19 23 16 23

98-99.99 5 21 22 31 1 44

75-98 17 18 35 33 10 23

25-75 26 32 34 23 11 22

0-25 57 30 14 14 87 13

0 4 4 4 4 0 0

Average Gap Closed 40.92% 60.48 % 70.65% 76.06% 25.59% 79.34%

Average Time taken (sec) 0.893 0.814 4.616 19.462 198.043 978.140
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>99.99 19 23 19 23 16 23

98-99.99 5 21 22 31 1 44

75-98 17 18 35 33 10 23

25-75 26 32 34 23 11 22
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Projecting SDP+RLT relaxation: box-QPs

Theorem
Suppose that x̂ ∈ R

N satisfies lj ≤ x̂j ≤ uj ∀j .
x̂ feasible for RLT if and only if the following is non-positive.

min η
s.t.
−〈A,Y 〉+ η ≥ aT x̂ + b;
Y + ηI − x̂ x̂T < 0 ;
y−ij (x̂) ≤ Yij ≤ y+ij (x̂), ∀i , j ∈ N .

(DProjSDP)

If DProjSDP has positive objective value and (µ,B ,C ,D) are
optimal dual multipliers then

xTBx+
∑

i ,j

(

Cijy
−
ij (x) − Dijy

+
ij (x)

)

+
∑

k∈M

uk

(

aTk x + bk

)

≤ 0 (4)

is a valid inequality that cuts off x̂.



Projected Sub-gradient heuristic

Theorem
DProjSDP is equivalent to max{F (B) : B � 0}, where

F (B) =
∑

i ,j

(Aij − Bij)
+
(

y−ij (x̂)− x̂i x̂j

)

+
∑

i ,j

(Aij − Bij)
−
(

y+ij (x̂)− x̂i x̂j

)

+(x̂TAx̂) +
(

aT x̂ + b
)

.

1. initialize B̂ as the projection of A onto the SDP cone.

2. Compute a sub-gradient of F (B) at B̂.

3. Perform line search along sub-gradient direction.

4. Update B̂ and go to 2.



Results

% Gap Closed Time Taken (sec)

Instance ProjLP-SDP ProjLP ProjLP-SDP ProjLP

spar20* 94.60 - 99.97 91.54 - 99.91 2.49 - 408.36 0.84 - 2.46

spar30* 89.87 - 99.99 51.41 - 98.79 12.33 - 565.88 1.74 - 14.38

spar40* 87.85 - 99.60 21.78 - 89.63 35.77 - 134.8 4.16 - 65.28

spar50* 87.88 - 97.53 11.38 - 50.15 50.22 - 180.96 8.76 - 99.13

spar60* 85.78 - 90.99 0.00 - 0.00 121.83 - 226.11 111.07 - 127.47

spar70* 89.78 - 99.36 0.00 - 53.67 191.12 - 693.28 22.02 - 202.98

spar80* 88.13 - 97.49 2.94 - 56.23 257.62 - 892.96 34.77 - 67.66

spar90* 89.44 - 96.60 5.73 - 50.13 408.73 - 991.04 46.98 - 95.66

spar100* 92.15 - 96.46 8.17 - 51.79 538.03 - 1509.96 75.49 - 112.69

Average 95.19% 50.01% 280.50 37.89



Comparison with black-box SDP solvers

Time to solve
% Duality Gap Closed Time Taken (sec) last relaxation (sec)

Instance SDPLR SDPA W3 SDPLR SDPA W3 W3
spar20* 99 - 100 99 - 100 94 - 100 0.97 - 56 2 - 3.39 2 - 408 0.05 - 0.32
spar30* 98 - 100 98 - 100 90 - 100 3.57 - 243 16 - 29 12 - 565 0.06 - 0.89
spar40* 97 - 100 97 - 100 88 - 99.6 10 - 515 105 - 157.83 35 - 134 0.16 - 1.18
spar50* 96 - 100 96 - 100 88 - 98 41 - 926 438 - 589 50 - 180 0.13 - 0.86
spar60* 99 - 100 99 - 100 85 - 90 88 - 532 1150 - 1408 121 - 226 0.53 - 1.55
spar70* 98 - 100 98 - 100 90 - 99 133 - 3600 2769 - 3721 191 - 693 0.48 - 1.1
spar80* 98 - 100 98 - 100 88 - 98 965 - 5413 6618 - 8285 257 - 892 0.56 - 2.02
spar90* 98 - 100 98 - 100 89 - 97 2403 - 7049 12838 - 17048 408 - 991 0.77 - 1.51

spar100* 98 - 99 98 - 99 92 - 97 5355 - 10295 23509 - 28604. 538 - 1509 0.82 - 2
Average 99.40% 99.40% 95.19% 1741.20 5247.04 280.50 0.67

Table: Summary Results: Comparison with SDP Solvers

No. Constraints
No. Variables Linear Convex (Non-Linear) Computing Time (sec) % Duality Gap Closed

Instances SDP Proj SDP Proj SDP Proj SDP Proj SDP Proj
(Quad)

spar100-025-1 5151 203 20201 156 1 119 5719.42 1.14 98.93% 92.36%
spar100-025-2 5151 201 20201 151 1 95 10185.65 1.52 99.09% 92.16%
spar100-025-3 5151 201 20201 150 1 114 5407.09 1.24 99.33% 93.26%
spar100-050-1 5151 201 20201 150 1 98 10139.57 1.07 98.17% 93.62%
spar100-050-2 5151 201 20201 150 1 113 5355.20 1.26 98.57% 94.13%
spar100-050-3 5151 201 20201 150 1 97 7281.26 0.82 99.39% 95.81%
spar100-075-1 5151 201 20201 150 1 131 9660.79 2.00 99.19% 95.84%
spar100-075-2 5151 201 20201 150 1 109 6576.10 1.23 99.18% 96.47%
spar100-075-3 5151 199 20201 147 1 90 10295.88 0.87 99.19% 96.06%



Part III

Algotithms for Convex MINLPs



Convex MINLP

We now consider:

min f (x)

s.t. gj (x) ≤ 0 ∀j ∈ J, (MINLP)

x ∈ X , xI ∈ Z
|I |,

in the case when f and g are convex.
Given bounds (lI , uI ) = {(ℓi , ui) | ∀i ∈ I}, the NLP relaxation of
(MINLP) is

min f (x)

s.t. gj(x) ≤ 0 ∀j ∈ J, (NLPR(lI , uI ))

x ∈ X ; lI ≤ xI ≤ uI .

and can be solved to optimality by a standard NLP solver.



NLP Branch-and-Bound
0. Initialize:
L ← {(LI ,UI )}. zU =∞. x∗ ← NONE.

1. Terminate?
Is L = ∅? If so, the solution x∗ is optimal.

2. Select.
Choose and delete a problem N i = (l iI , u

i
I ) from L.

3. Evaluate.
Solve NLPR(l iI , u

i
I ). If it is infeasible, go to step 1, else let x̂ i

be its solution.
4. Prune.

If f (x̂ i ) ≥ zU , go to step 1. If x̂ i is fractional, go to step 5, else
let zU ← f (x̂ i ), x∗ ← x̂ i , and delete from L all problems with
z jL ≥ zU . Go to step 1.

5. Divide.
Divide the feasible region of N i into a number of smaller fea-
sible subregions, creating nodes N i1,N i2, . . . ,N ik . For each
j = 1, 2, . . . , k , let z ijL ← f (x̂ i ) and add the problem N ij to
L. Go to 1.



Outer Approximation [Duran, Grossmann 1986]

min f (x)

s.t.

g(x) ≤ 0,

x ∈ X , xi ∈ Z ∀i ∈ I.
Idea: linearize constraints at different points and build an
equivalent MILP.

min η

s.t. η ≥ f (x) +∇f (x)T (x − x)

gj (x) +∇gj(x)T (x − x) ≤ 0 j ∈ J,

x ∈ X , xi ∈ Z, ∀i ∈ I.



Outer approximation constraints
Let F := {x : x ∈ X : gi(x) ≤ 0}
(gi : R

n → R convex. )
Outer approximation constraint in x̄ :

∇gj(x̄)T (x − x̄)+gj(x̄) ≤ gj(x) ≤ 0.

(valid for F by convexity of gj and
definition of F .)
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definition of F .)

◮ If g(x̄) = 0 tangent to feasible
region.

◮ If g(x̄) < 0 non-tight
constraint.

◮ If g(x̄) > 0 non-tight
constraint cutting off x̄ .
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Subproblems

Given x̂I fixed NLP subproblem is:

minf (x)

s.t. gj(x) ≤ 0, ∀j ∈ J (NLP(x̂I ))

x ∈ X ; xi = x̂i , ∀i ∈ I .

If x̂i ∈ Z for all i ∈ I , and feasible: gives an upper bound.
fixed NLP feasibility subproblem is:

min
m
∑

j=1

wjgj(x)
+

s.t. x ∈ X , xI = x̂I , (NLPF(x̂I ))

where gj (x)
+ = max{0, gj (x)}

If NLP(x̂I ) is infeasible, NLP software will typically solve NLPF(x̂I ).



Equivalent MILP formulation of convex MINLP

For each integer assignment x̂I ∈ K = ProjxI (X ) ∩ Z
|I |, let k be:

◮ An optimal solution to NLP(x̂I ) if it is feasible.

◮ An optimal solution to NLPF(x̂I ) otherwise.

Theorem (Duran Grossmann 86)

If X 6= ∅, f and g are convex, continuously differentiable, and a
constraint qualification holds for each x ∈ K then

min η

s.t. η ≥ f (x) +∇f (x)T (x − x) x̂I ∈ K , (MILP-OA)

gj(x) +∇gj (x)T (x − x) ≤ 0 j ∈ J, x̂I ∈ K ,

x ∈ X , xI ∈ Z
I .

has the same optimal value as MINLP.



OA-based reduced master problem

Let K ⊆ K

min η

s.t. η ≥ f (x̄) +∇f (x̄)T (x − x̄) x̂ ∈ K, (MP(K))
gj(x̄) +∇gj (x̄)T (x − x̄) ≤ 0 j ∈ J, x̂ ∈ K,
x ∈ X , xi ∈ Z, ∀i ∈ I.

Reminder
Where for x̂ ∈ K, x is the solution to

NLP(x̂I )

minf (x)

s.t. gj (x) ≤ 0, ∀j ∈ J

x ∈ X ; xi = x̂i , ∀i ∈ I .

NLPF(x̂I ):

min
m
∑

j=1

wjgj(x)
+

s.t. x ∈ X , xI = x̂I ,



Outer-Approximation Decomposition Algorithm
0. Initialize.

zU ← +∞. zL ← −∞. Let x0 be the optimal solution of con-
tinuous relaxation.
K ←

{

x0
}

. Choose a convergence tolerance ǫ.
1. Terminate?

Is zU − zL < ǫ or (MP(K)) infeasible? If so zU is ǫ−optimal.
2. Lower Bound

Let zMP(K) be the optimal value of MP(K) and (η̂, x̂) its optimal
solution.
zL ← zMP(K)

3. NLP Solve
Solve (NLP(x̂I )).
Let x i be the optimal (or minimally infeasible) solution.

4. Upper Bound?
Is x i feasible for (MINLP)? If so, zU ← min(zU , f (x

i )).
5. Refine
K ← K ∪ {x i} and i ← i + 1.
Go to 1.



Remarks on OA deconposition

◮ Solving many MIPs can be a high cost.

◮ One does not need to solve MP(K) to optimiality, a solution ǫ
better than current incumbent is enough.

◮ It is possible to design a similar algorithm without solving
NLPs.

Define a slightly different master problem:

min η

s.t. η ≥ f (x̄) +∇f (x̄)T (x − x̄) x̄ ∈ K (RM-ECP(K))
gj(x̄) +∇gj (x̄)T (x − x̄) ≤ 0 j ∈ J(K) x̄ ∈ K
x ∈ X , xI ∈ Z

I

where J(K) def
= {j ∈ argmaxj∈J gj(x̄)}



ECP Algorithm [Westerlund and Lunqvist 98]

0. Initialize.
zU ← +∞. zL ← −∞. Choose convergence tolerances ǫ, κ.
K ← ∅.

1. Terminate?
Is zU − zL < ǫ or is (RM-ECP(K)) infeasible? If so zU is
ǫ−optimal, with an associated solution that is κ−feasible.

2. Lower Bound
Let zRM-ECP(K) be the optimal value of (RM-ECP(K)) and

(ηi , x i ) be its optimal solution.
zL ← zRM-ECP(K)

3. Upper bound and refine
Is gj(x̄

i ) < κ ∀j ∈ J?
If so, zU ← min(zU , f (x

i)).
If not, K ← K ∪ {x i}, t ∈ argmaxj gj(x̄

i ), and J(K)← J(K) ∪
{t}
i ← i + 1. Go to 1.



LP/NLP Based BB [Quesada, Grossmann 1993]

0. Initialize.
L ← {(LI ,UI )}. zU ← +∞. x∗ ← NONE.
Let x be the optimal solution of continuous relaxation.
K ← {x}.

1. Terminate? Is L = ∅? If so, the solution x∗ is optimal.
2. Select. Choose and delete a problem N i = (l iI , u

i
I ) from L.

3. Evaluate. Solve LP(K, l iI , uiI ). If infeasible, go to 1, else let
(η̂i , x̂ i ) be its solution.

4. Prune. If η̂i ≥ zU , go to 1.
5. NLP Solve? Is x̂ iI integer? If so, solve (NLP(x̂ iI )), otherwise go

to 8. Let x i be the optimal (or minimally infeasible) solution.
6. Upper bound? Is x i feasible for (MINLP) and f (x i) < zU? If

so, x∗ ← x i , zU ← f (x i).
7. Refine. Let K ← K ∪ (x). Go to 3 .
8. Divide. Divide the feasible region of N i into a number of smaller

feasible subregions, creating nodes N i1,N i2, . . . ,N ik . For each
j = 1, 2, . . . , k , let z ijL ← zMPR(K,l i

I
,ui

I
) and add the problem N ij

to L. Go to step 1.



Improvements to cut generation in LP/NLP based BB

◮ Add more cuts with three rules of thumb [Linderoth]

1. Generate cuts early in the procedure.
2. Measure effect in term of bound improvement.
3. Stop when bound stalls.

◮ Three type of cuts proposed [Abishek et. al. 2010]:

1. ECP: generate cuts at current fractional LP optimum x̂I .
2. FixFRAC: Solve NLP(x̂I ).
3. NLP: Solve NLPR(l iI , u

i
I ) [also B. et. al. 2008].

◮ Also since relaxation is linear can use all cuts from MILP.

◮ Be careful not to overwhelm LP solver with too many cuts.



Comparison of state of the art solvers



Formulation of hulls of unions of convex sets

Let C = {gj (x) ≤ 0∀j = 1, . . . ,m, 0 ≤ xi ≤ 1∀i ∈ I} be a bounded
convex set with gj , j = 1, . . . ,m convex functions bounded in C .
For i ∈ I and k = 0, 1 define Cik = {x ∈ C : xi = k}
Proposition ([Stubbs, Merhotra 1999])

conv
(

C i
0 ∪ C i

1

)

= projx (Mi (C ))

with

Mi (C ) =























x = λ0y + λ1z

1 = λ0 + λ1

y ∈ C i
0, z ∈ C i

1

λ0, λ1 ≥ 0























(By definition of convex hull)



Perspective function

For a given function gi (x) : R
n → R ∪ {∞}, let

g̃i (x , z) ≡
{

zgi(x/z) if z > 0,

limλ→0+ λg(x̃ − x + x/λ) if z = 0

◮ If gi is a convex function g̃i is also
convex.

◮ g̃i is positively homogeneous:
λg̃i (x) = g̃i (λx) ∀λ0.

Perspective of x^2

sqrt(u*v), u, v -sqrt(u*v), u, v
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Convex formulation of the convex-hull

Let C̃ = {g̃j (x , λ) ≤ 0, ∀j = 1, . . . ,m, 0 ≤ xi ≤ λ ∀i ∈ I}.
Theorem ([Stubbs, Merhotra 1999, Ceria Soares

19991])

conv
(

C i
0 ∪ C i

1

)

= projx
(

M̃i (C )
)

with

M̃i (C ) =































x = ỹ + z̃

1 = λ0 + λ1

(y , λ0) ∈ C̃ , (z , λ1) ∈ C̃

yi = 0, zi = λ1

λ0, λ1 ≥ 0


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




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













1More general statement for unbounded set



Separation problem in non-linear case

Let x̂ ∈ R
n be a point to cut define the problem:

min ||x − x̂ ||
x = ỹ + z̃

1 = λ0 + λ1

(y , λ0) ∈ C̃ , (z , λ1) ∈ C̃

yi = 0, zi = λ1

λ0, λ1 ≥ 0

(5)

Theorem
Let x̂ 6∈ conv

(

C i
0 ∪ C i

1

)

and x be an optimal solution to 5. For any
subgradient ξ of ||x − x̂ || at x, ξT (x − x) ≥ 0 is a valid linear
inequality that cuts off x̂.

(If dual Lagrange multipliers ξ can be easily deduced from them).



Application to problems with indicator variables

We consider the simple mixed integer nonlinear set:

C = {(x , z) ∈ R×{0, 1} : x = 0, if z = 0, g(x) ≤ 0, l ≤ x ≤ u if z = 1}

By direct application of disjunctive programming:

conv(C ) = {(x , z) ∈ R× [0, 1] : zl ≤ x ≤ zu, g̃(x , z) ≤ 0}

This reformulation of C is called perspective reformulation and has
been shown to be very effective [Frangioni, Gentile 2006

2007 2010, Günluk Linderoth 2008 2009]

m n # Sol. CPU # Sol. CPU
20 100 7 12263 10 3.8
20 200 0 - 10 9.6

Table: Running times on Uncapacitated Quadratic Facility Location
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Commercial : Hassan Hijazi talk on Wednesday.



Second Order cone

Reminder
A cone K is a subset of Rm such that x ∈ K implies λx ∈ K for all
λ ≥ 0.

Definition
The Lorentz cone is Qm+1 = {(t, t0) ∈ Rm × R : ||t|| ≤ t0}.
We define the partial order:

x � y ⇔ y − x ∈ Qm+1

Second Order Cone Constraint

(Ax − b, u) � 0

which is equivalent to

||Ax − b|| ≤ u



Mixed Integer Second Order Cone Programming

min cT x + hT y

||Aix + Giy − bi || ≤ (uTi x + vTi y − wi ) i = 1, . . . , k

x ∈ Z
n, y ∈ R

p

Families of cuts for MISOCP

◮ Generalization of Chvátal-Gomory [Cezik and Yiengar

2005].

◮ Generalization of MIR cuts [Atamtürk and Narayan 2010].

◮ Lift-and-project cuts [Drewes 2009].
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