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Mixed Integer Linear Programming

min cx
s.t. Ax = b

xj ∈ Z for j = 1, . . . , p
xj ≥ 0 for j = 1, . . . , n.

Common approach to solving MILP:

• First solve the LP relaxation. Basic optimal tableau:

xi = b̄i −
∑

j∈N āijxj for i ∈ B.

• If b̄i 6∈ Z for some i ∈ B ∩ {1, . . . , p}, add cutting planes:

For example Gomory 1963 Mixed Integer Cuts, Marchand and
Wolsey 2001 MIR inequalities, Balas, Ceria and Cornuéjols 1993
lift-and-project cuts, are used in commercial codes.



Corner Polyhedron [Gomory 1969]

Initial formulation:

xi = b̄i −
∑

j∈N āijxj for i ∈ B.

xj ∈ Z for j = 1, . . . , p
xj ≥ 0 for j = 1, . . . , n.

Corner formulation:

The key idea, introduced by Gomory in the late 1960s, is to drop
the nonnegativity restriction on all the basic variables xi , i ∈ B.

Note that in this relaxation we can drop the constraints
xi = b̄i −

∑
j∈N āijxj for all i ∈ B ∩ {p + 1, . . . , n} since these

variables xi are continuous and only appear in one equation and no
other constraint. Therefore from now on we assume that all basic
variables in are integer, i.e. B ⊆ {1, . . . , p}.



Corner Polyhedron

Therefore the corner formulation introduced by Gomory is

xi = b̄i −
∑

j∈N āijxj for i ∈ B

xi ∈ Z for i = 1, . . . , p
xj ≥ 0 for j ∈ N.

The convex hull of its feasible solutions is called the corner
polyhedron relative to the basis B and it is denoted by corner(B).

Note Any valid inequality for the corner polyhedron is valid for the
initial formulation.

Let P(B) be the linear relaxation of the corner polyhedron.
P(B) is a polyhedron whose vertices and extreme rays are simple
to describe and this will be useful in generating valid inequalities
for corner(B).



Corner Polyhedron

Relax nonnegativity on basic variables xi .

Example

f

r 1

r 2

Feasible set {
(

x3

x4

)
∈ Z2 :

(
x3

x4

)
= f + r1x1 + r2x2

where x1 ≥ 0, x2 ≥ 0}

Restricted to the (x3, x4)-space, P(B) is the blue region. The
feasible solutions are the integer points in the blue region, and
corner(B) is the convex hull of these points.



The Polyhedron P(B)
P(B) has a unique vertex x̄ where x̄i = b̄i , i ∈ B, xj = 0, j ∈ N.
The recession cone of P(B) is

xi = −∑
j∈N āijxj for i ∈ B

xj ≥ 0 for j ∈ N.

Since the projection of this cone onto RN is defined by the
inequalities xj ≥ 0, j ∈ N, its extreme rays are the vectors
satisfying at equality all but one nonnegativity constraints. Thus
there are |N| extreme rays, r̄ j for j ∈ N, defined by

r̄ j
h =




−āhj if h ∈ B,
1 if j = h,
0 if h ∈ N \ {j}.

Remark The vectors r̄ j , j ∈ N are linearly independent. Hence
P(B) is an |N|-dimensional polyhedron whose affine hull is defined
by the equations xi = b̄i −

∑
j∈N āijxj for i ∈ B.



The Polyhedron P(B)

xi = b̄i −
∑

j∈N āijxj for i ∈ B

xj ≥ 0 for j ∈ N.

Lemma Assume all data are rational. If the affine hull of P(B)
contains a point in Zp × Rn−p, then corner(B) is an
|N|-dimensional polyhedron. Otherwise corner(B) is empty.

Proof left as an exercise.



Corner Polyhedron Example

Consider the pure integer
program

max 1
2x2 + x3

x1 + x2 + x3 ≤ 2
x1 − 1

2x3 ≥ 0
x2 − 1

2x3 ≥ 0
x1 + 1

2x3 ≤ 1
−x1 + x2 + x3 ≤ 1

x1, x2, x3 ∈ Z
x1, x2, x3 ≥ 0.

0 1

1

2

b̄

x1

x2

v 1

v 3

v 2

This problem has 4 feasible solutions (0, 0, 0), (1, 0, 0), (0, 1, 0)
and (1, 1, 0), all satisfying x3 = 0. The intersection of the 5
inequalities in the formulation with the plane x3 = 0 is the darker
region in the figure.



Corner Polyhedron Example

We first write the problem in standard form by introducing
continuous slack or surplus variables x4, . . . , x8. Solving the LP
relaxation, we get

x1 = 1
2 +1

4x6 −3
4x7 +1

4x8

x2 = 1
2 +3

4x6 −1
4x7 −1

4x8

x3 = 1 −1
2x6 −1

2x7 −1
2x8

x4 = 0 −1
2x6 +3

2x7 +1
2x8

x5 = 0 +1
2x6 −1

2x7 +1
2x8

0 1

1

2

b̄

x1

x2

v 1

v 3

v 2

The optimal basic solution is x1 = x2 = 1
2 , x3 = 1,

x4 = . . . = x8 = 0.



Corner Polyhedron Example

Relaxing the nonnegativity of the basic variables and dropping the
two constraints relative to the continuous basic variables x4 and x5,
we obtain the corner formulation:

x1 = 1
2 +1

4x6 −3
4x7 +1

4x8

x2 = 1
2 +3

4x6 −1
4x7 −1

4x8

x3 = 1 −1
2x6 −1

2x7 −1
2x8

x1, x2, x3 ∈ Z
x6, x7, x8 ≥ 0.

0 1

1

2

b̄

x1

x2

v 1

v 3

v 2



Corner Polyhedron Example

Let P(B) be the linear relaxation of corner formulation. The
projection of P(B) in the space of original variables x1, x2, x3 is a
polyhedron with unique vertex b̄ = (1

2 , 1
2 , 1). The extreme rays of

its recession cone are v1 = (1
2 , 3

2 ,−1), v2 = (−3
2 ,−1

2 ,−1) and
v3 = (1

2 ,−1
2 ,−1).

x1 = 1
2 +1

4x6 −3
4x7 +1

4x8

x2 = 1
2 +3

4x6 −1
4x7 −1

4x8

x3 = 1 −1
2x6 −1

2x7 −1
2x8

x6, x7, x8 ≥ 0.

0 1

1

2

b̄

x1

x2

v 1

v 3

v 2



Corner Polyhedron Example

In the figure, the shaded region (both light and dark) is the
intersection of P(B) with the plane x3 = 0.

x1 = 1
2 +1

4x6 −3
4x7 +1

4x8

x2 = 1
2 +3

4x6 −1
4x7 −1

4x8

x3 = 1 −1
2x6 −1

2x7 −1
2x8

x6, x7, x8 ≥ 0.

0 1

1

2

b̄

x1

x2

v 1

v 3

v 2

Let P be defined by the inequalities of the initial formulation that
are satisfied at equality by the point b̄ = (1

2 , 1
2 , 1). The intersection

of P with the plane x3 = 0 is the dark shaded region.



Corner Polyhedron

Since variables xi , ∈ B are free integer variables, the corner
formulation can be reformulated as follows

∑
j∈N āijxj ≡ b̄i mod 1 for i ∈ B

xj ∈ Z for j ∈ {1, . . . , p} ∩ N
xj ≥ 0 for j ∈ N.

This point of view was introduced by Gomory and extensively
studied by Gomory and Johnson in the 1970’s.



Intersection Cuts [Balas 1971]
Inequalities that are valid for the corner polyhedron and that cut
off the basic solution x̄ .

Consider a closed convex set C ⊆ Rn such that x̄ ∈ int(C ).
Assume that the interior of C contains no point in Zp × Rn−p.

For each of the |N| extreme rays of corner(B), define

αj = max{α ≥ 0 : x̄ + αr̄ j ∈ C}.

Since x̄ is in the interior of C , αj > 0.
When the half-line {x̄ + αr̄ j : α ≥ 0} intersects the boundary of C ,
then αj is finite, the point x̄ + αj r̄

j belongs to the boundary of C .
When r̄j belongs the recession cone of C , we have αj = +∞.
Define 1

+∞ = 0. The inequality

∑

j∈N

xj

αj
≥ 1

is the intersection cut defined by C .



Intersection Cuts

Assume f 6∈ Z2.

Want to cut off the basic solution

(
x3

x4

)
= f , x1 = 0, x2 = 0.

f

r 1

r 2

S

Feasible set {
(

x3

x4

)
∈ Z2 :

(
x3

x4

)
= f + r1x1 + r2x2

where x1 ≥ 0, x2 ≥ 0}

Any convex set S with f ∈ int(S) and no integer point in int(S).



Intersection Cuts

Assume f 6∈ Z2.

Want to cut off the basic solution

(
x3

x4

)
= f , x1 = 0, x2 = 0.

f

r 1

r 2

S

intersection cut

Feasible set {
(

x3

x4

)
∈ Z2 :

(
x3

x4

)
= f + r1x1 + r2x2

where x1 ≥ 0, x2 ≥ 0}

Any convex set S with f ∈ int(S) and no integer point in int(S).
Intersection cut is obtained by intersecting the rays with the
boundary of S : α1 = 1

4 , α2 = 1
4 . Thus 4x1 + 4x2 ≥ 1.



Intersection Cuts

The corner formulation introduced by Gomory is

xi = b̄i −
∑

j∈N āijxj for i ∈ B

xi ∈ Z for i = 1, . . . , p
xj ≥ 0 for j ∈ N.

Basic solution x̄ where x̄i = b̄i , i ∈ B, xj = 0, j ∈ N.

Assume B ⊆ {1, . . . , p} and b̄ 6∈ Z|B|.

THEOREM Let C ⊂ Rn be a closed convex set whose interior
contains the point x̄ but no point in Zp × Rn−p. The intersection
cut defined by C is a valid inequality for corner(B).



Intersection Cuts

THEOREM Let C ⊂ Rn be a closed convex set whose interior
contains the point x̄ but no point in Zp × Rn−p. The intersection
cut defined by C is a valid inequality for corner(B).

PROOF The set of points of P(B) cut off by the intersection cut
is S := {x ∈ Rn : xi = b̄i −

∑
j∈N āijxj for i = 1, . . . , q,

xj ≥ 0, j ∈ N,
∑

j∈N
xj

αj
< 1}. We will show that S is contained in

the interior of C . Since the interior of C does not contain a point
in Zp × Rn−p, the theorem will follow.



Intersection Cuts

PROOF We need to show that S := {x ∈ Rn : xi =
b̄i −

∑
j∈N āijxj for i = 1, . . . , q, xj ≥ 0, j ∈ N,

∑
j∈N

xj

αj
< 1}

is contained in the interior of C .

Consider the polyhedron S̄ := {x ∈ Rn : xi =
b̄i −

∑
j∈N āijxj for i = 1, . . . , q, xj ≥ 0, j ∈ N,

∑
j∈N

xj

αj
≤ 1}.

S̄ is a |N|-dimensional polyhedron with vertices x̄ and x̄ + αj r̄
j for

αj finite, and extreme rays r̄j for αj = +∞.
Since the vertices of S̄ that lie on the hyperplane
{x ∈ Rn :

∑
j∈N

xj

αj
= 1} are the points x̄ + αj r̄

j for αj finite,

every point in S can be expressed as a convex combination of
points in the segments {x̄ + αr̄ j , 0 ≤ α < 1} for αj finite, plus a
conic combination of extreme rays r̄j , for αj = +∞.
Since the interior of C contains the segments {x̄ +αr̄ j , 0 ≤ α < 1}
for αj finite, and the rays r̄j for αj = +∞ belong to the recession
cone of C , the set S is contained in the interior of C . ¤



Intersection Cuts

Let K ⊆ Rn be a closed, convex set with the origin in its interior.
A standard concept in convex analysis (Minkowski, Rockafellar) is
that of gauge (sometimes called Minkowski function), which is the
function γK defined by

γK (r) = inf{t > 0 : r ∈ tK}, for r ∈ Rn.

For a scalar t > 0, the set tK is a scaled version of K , namely
{y = tx : x ∈ K}. In words, the gauge γK (r) is the smallest factor
t such that the scaled set tK contains the point r . The coefficients
αj of the intersection cut can be expressed in terms of the gauge
of C − x̄ , namely 1

αt
= γC−x̄(r̄j). Intersection cuts can therefore be

written as
∑

j∈N γC−x̄(r̄j)xj ≥ 1.



A Better Intersection Cut for our Example

f

r 1

r 2

S

Bigger convex set:

Octahedron f ∈ int(S) with no integral point in int(S).



A Better Intersection Cut for our Example

f

r 1

r 2

S

intersection cut

Bigger convex set:

Octahedron f ∈ int(S) with no integral point in int(S).

Better cut: α1 = 1
3 , α2 = 1

3 . Thus 3x1 + 3x2 ≥ 1.



Intersection Cuts
• Let C1, C2 be two closed convex sets whose interiors contain x̄
but no point of Zp × Rn−p. If C1 ⊂ C2, then the intersection cut
relative to C2 dominates the intersection cut relative to C1 for all
x ∈ Rn such that xj ≥ 0, j ∈ N.

• A closed convex set C whose interior contains x̄ but no point of
Zp × Rn−p is maximal if C is not strictly contained in a closed
convex set with the same properties. Any closed convex set whose
interior contains x̄ but no point of Zp × Rn−p is contained in a
maximal such set.

• One way of constructing a closed convex set C whose interior
contains x̄ but no point of Zp × Rn−p is the following.
A set K ⊂ Rp that contains no point of Zp in its interior is called
Zp-free. In the space Rp, construct a Zp-free closed convex set K
whose interior contains the projection of x̄ . The cylinder
C = K ×Rn−p is a closed convex set whose interior contains x̄ but
no point of Zp × Rn−p.



EXAMPLE: Intersection Cuts from Split Disjunctions

Consider a split disjunction πx ≤ π0 or πx ≥ π0 + 1, where
π ∈ Zp × {0}n−p and π0 ∈ Z.
K := {x ∈ Rp : π0 ≤

∑p
j=1 πjxj ≤ π0 + 1} is Zp-free and convex,

while the set C := K × Rn−p is {x ∈ Rn : π0 ≤ πx ≤ π0 + 1}.
Assume x̄ ∈ int(C ).

Define ε := πx̄ − π0. We have
0 < ε < 1. For j ∈ N, define:

αj :=




− ε

πr̄ j if πr̄ j < 0,
1−ε
πr̄ j if πr̄ j > 0,

+∞ otherwise,

where r̄ j are the rays of P(B).

πx ≥ π0 + 1

r 2

x̄ + α1r
1

x̄πx ≤ π0

r 1

x̄ + α2r
2

Intersection cut
∑

j∈N
xj

αj
≥ 1.



Gomory Mixed Integer Cuts from the Tableau

Let xi , i ∈ B be a basic integer variable, and suppose x̄i = b̄i is
fractional. We define π0 := bx̄ic, and for j = 1, . . . , p,

πj :=





bāijc if j ∈ N and fj ≤ f0,
dāije if j ∈ N and fj > f0,

1 if j = i ,
0 otherwise.

For j = p + 1, . . . , n, we define πj := 0.

Next we derive the intersection cut from the split disjunction
πx ≤ π0 or πx ≥ π0 + 1 as shown in the previous slide. We need
to compute αj , j ∈ N using our formula:

αj :=




− ε

πr̄ j if πr̄ j < 0,
1−ε
πr̄ j if πr̄ j > 0,

+∞ otherwise,

where r̄ j are the rays of P(B).



Gomory Mixed Integer Cuts from the Tableau

Let f0 = b̄i − bb̄ic and fj = āij − bāijc. We have

ε = πx̄ − π0 =
∑

h∈B

πhx̄h − π0 = x̄i − bx̄ic = f0.

Let j ∈ N. We have πr̄ j = πj r̄
j
j + πi r̄

j
i since r̄ j

h = 0 for all
h ∈ N \ {j} and πh = 0 for all h ∈ B \ {i}. Therefore

πr̄ j =




bāijc − āij = −fj if 1 ≤ j ≤ p and fj ≤ f0,
dāije − āij = 1− fj if 1 ≤ j ≤ p and fj > f0,

−āij if j ≥ p + 1.

Now αj follows. Therefore the intersection cut associated with the
split disjunction πx ≤ π0 or πx ≥ π0 + 1 is

∑

j∈N, j≤p
fj≤f0

fj
f0

xj+
∑

j∈N, j≤p
fj>f0

1− fj
1− f0

xj+
∑

p+1≤j≤n
āij>0

āij

f0
xj−

∑

p+1≤j≤n
āij<0

āij

1− f0
xj ≥ 1.

This is the GMI cut, since fi = 0 for i ∈ B.



Gomory Functions

0

1 1

0

a a

f0 f01− f0 1− f0

φ(a) ψ(a)

The Gomory formula looks complicated, and it may help to think
of it as an inequality of the form

p∑

j=1

φ(āij)xj +
n∑

j=p+1

ψ(āij)xj ≥ 1

where the functions φ and ψ, are

φ(a) := min{ f

f0
,
1− f

1− f0
} and ψ(a) := max{ a

f0
,
−a

1− f0
}.

with f = a− bac.



Intersection Cuts from Splits

This example shows that Gomory Mixed Integer cuts from the
tableau are intersection cuts from split disjunctions.

A natural question is whether the same statement is true for
Gomory Mixed Integer cuts derived from any linear combinations
of the equality constraints in the initial formulation.

A theorem of Nemhauser and Wolsey shows that this family of
cuts is exactly the family of split cuts.

So the question is whether every split cut can be derived as an
intersection cut from a split disjunction. This was answered
positively by Andersen, Cornuéjols and Li 2005. They show that
split cuts are intersection cuts relative to some basis, where the
(Zp × Rn−p)-free convex set defining the intersection cut is a split.



Split Rank of Intersection Cuts

Intersection cuts can have arbitrarily large split rank (Cook,
Kannan and Schrijver 1990).

Consider the polytope

P := {(x1, x2, y) ∈ R3
+ : x1 ≥ y ,

x2 ≥ y , x1 + x2 + 2y ≤ 2},
and let
S = {(x1, x2, y) ∈ P : x1, x2 ∈ Z}.

O A

B

C

The corner polyhedron corner(B) is the convex hull of the points
satisfying

x1 = 1
2 + 3

4s1 − 1
4s2 − 1

4s3
x2 = 1

2 − 1
4s1 + 3

4s2 − 1
4s3

s1, s2, s3 ≥ 0
x1, x2 ∈ Z



Split Rank of Intersection Cuts

Let K be the triangle conv{(0, 0), (2, 0), (0, 2)}, and C = K × R3.
Since K is lattice-free, C defines an intersection cut.

One can verify that this intersection cut is 1
2s1 + 1

2s2 + 1
2s3 ≥ 1.

Since y = 1
2 − 1

4s1− 1
4s2− 1

4s3, the intersection cut is equivalent to
y ≤ 0. Adding this single inequality to the initial formulation, we
obtain conv(S).

Cook, Kannan and Schrijver showed that y ≤ 0 does not have
finite split rank.

Dey and Louveaux 2009 study the split rank of intersection cuts
for problems with two integer variables. Surprisingly, they show
that all intersection cuts have finite split rank except for the ones
defined by lattice-free triangles with integral vertices and an
integral point in the middle of each side. The triangle K defined
above is of this type.



Intersection Cuts ≡ Corner Polyhedron

We showed earlier that intersection cuts are valid for corner(B).
The following theorem provides a converse statement.
We assume here that corner(B) is nonempty. Therefore corner(B)
has dimension |N|.
Inequalities

∑
j∈N γjxj ≥ γ0 with γj ≥ 0, j ∈ N and γ0 ≤ 0 are

implied by the nonnegativity constraints xj ≥ 0, j ∈ N and will be
called trivial.

Every nontrivial valid inequality for corner(B) can be written in
the form

∑
j∈N γjxj ≥ 1 with γj ≥ 0, j ∈ N. (Exercise).

We say that such an inequality is minimal if there is no other valid
inequality

∑
j∈N γ′jxj ≥ 1 for corner(B) such that γ′j ≤ γj for all

j ∈ N, and the inequality is strict for at least one index j ∈ N.

THEOREM Let
∑

j∈N γjxj ≥ 1 be a nontrivial minimal valid
inequality for corner(B) with rational coefficients. Then∑

j∈N γjxj ≥ 1 is an intersection cut.



Intersection Cuts ≡ Corner Polyhedron

PROOF

Consider the polyhedron

S = {x ∈ Rn :
∑

j∈N γjxj ≤ 1,

xj ≥ 0 for j ∈ N,
xi = b̄i −

∑
j∈N āijxj for i ∈ B}.

(1) No face of S containing x̄ has a point of Zp × Rn−p in its
relative interior. (Exercise)

Let S̃ = S + L where L = {0}p × Rn−p.
Since S is a rational polyhedron and the lineality space of S̃
contains L, S̃ = {x ∈ Rn :

∑p
j=1 c i

j xj ≤ di , i = 1, . . . , t} for some

integral vectors c1, . . . , ct ∈ Zp and d1, . . . , dt ∈ Z. (Indeed
{x ∈ Rp :

∑p
j=1 c i

j xj ≤ di , i = 1, . . . , t} is the projection of S
onto Rp.)



Intersection Cuts ≡ Corner Polyhedron

(2) No face of S̃ containing x̄ has a point of Zp × Rn−p in its
relative interior.

Proof of (2)

Let F̃ be a face of S̃ and let F = S ∩ F̃ .

Then F is a face of S and F̃ = F + L.

Therefore relint(F̃ ) = relint(F ) + L since L is in the lineality space
of F̃ .

Assume F̃ contains x̄ .

Since x̄ belongs to S and F = S ∩ F̃ , we have x̄ ∈ F .

Suppose there exists x̃ ∈ relint(F̃ ) ∩ Zp × Rn−p.

Then x̃ + L is contained in relint(F̃ ) ∩ (Zp × Rn−p).

Since relint(F̃ ) = relint(F ) + L, we have x̃ + L contains a point in
relint(F ) ∩ (Zp × Rn−p), a contradiction to (1). This proves (2).



Intersection Cuts ≡ Corner Polyhedron

(3) There exists a Zp-free convex set K ⊂ Rp such that the
cylinder C := K × Rn−p contains x̄ in its interior and S̃ ⊆ C.

Proof of (3): Assume, without loss of generality, that x̄ satisfies
at equality the first h constraints defining S̃ (possibly h = 0), and
none of the other constraints. That is

∑p
j=1 c i

j x̄j = di i = 1, . . . , h;∑p
j=1 c i

j x̄j < di i = h + 1, . . . , t.

Define d ′i = di +1 for i = 1, . . . , h and d ′i = di for i = h +1, . . . , t,
and let K = {x ∈ Rp :

∑p
j=1 c i

j xj ≤ d ′i , for i = 1, . . . , t}
and C = K × Rn−p.
Note that C = {x ∈ Rn :

∑p
j=1 c i

j xj ≤ d ′i , for i = 1, . . . , t}. By

construction, x̄ is in the interior of C and S̃ ⊆ C .

(2) implies that K is Zp-free. (Exercise)

This proves (3).



Intersection Cuts ≡ Corner Polyhedron

For h ∈ N, let βh be the largest β such that x̄ + β r̄h is in S .

Since 1 =
∑

j∈N γj(x̄j + βh r̄
h
j ) = γhβh, then γh = 1

βh
.

Let αj be the largest scalar such that x̄ + αj r̄
j is in C , j ∈ N.

Since S ⊆ S̃ ⊆ C , αj ≥ βj for every j ∈ N, hence γj ≥ 1
αj

.

Therefore the intersection cut defined by C , namely∑
j∈N xj/αj ≥ 1, dominates the inequality

∑
j∈N γjxj ≥ 1.

Since the latter is minimal, γj = 1
αj

, j ∈ N.

¤

COROLLARY Every nontrivial facet defining inequality for
corner(B) is an intersection cut.



Exercises
EXERCISE 1 Assume all data are rational. Show that if the affine
hull of P(B) contains a point in Zp × Rn−p, then corner(B) is an
|N|-dimensional polyhedron.

EXERCISE 2 Show that every nontrivial valid inequality for
corner(B) can be written in the form

∑
j∈N γjxj ≥ 1 with

γj ≥ 0, j ∈ N.

EXERCISE 3 (In the proof that every nontrivial minimal valid
inequality for corner(B) with rational coefficients is an intersection
cut.)
Show that no face of S containing x̄ has a point of Zp × Rn−p in
its relative interior.

EXERCISE 4 (In the proof that every nontrivial minimal valid
inequality for corner(B) with rational coefficients is an intersection
cut.)
Show that K is Zp-free.



Maximal lattice-free convex sets

As observed earlier, the best possible intersection cuts are the ones
defined by full-dimensional maximal (Zp × Rn−p)-free convex sets
in Rn, that is, full-dimensional subsets of Rn that are convex, their
interior contains no point in Zp × Rn−p, and are inclusionwise
maximal with the above two properties.

LEMMA Let C be a full-dimensional maximal (Zp × Rn−p)-free
convex set and let K be its projection onto Rp. Then K is a
full-dimensional maximal Zp-free convex set and C = K × Rn−p.

PROOF Since C is a Zp ×Rn−p-free convex set, its projection K is
a Zp-free convex set. Let K ′ be a maximal Zp-free convex set
containing K . Then the set K ′ × Rn−p is a (Zp × Rn−p)-free
convex set. Furthermore C ⊆ K × Rn−p ⊆ K ′ × Rn−p. Since C is
maximal, these three sets coincide and the result follows. ¤



Lovász’ Theorem

THEOREM
A set K ⊂ Rp is a full-dimensional maximal Zp-free convex set
if and only if
K is a polyhedron of the form K = P + L
where P is a polytope, L is a rational linear space,
dim(P) + dim(L) = p,
K does not contain any point of Zp in its interior and there is a
point of Zp in the relative interior of each facet of K .

cylinder

irrational hyperplane
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Maximal: each edge contains an integral point in its relative
interior.



Maximal Lattice-Free Convex Set

I Lattice-free convex set contains no integral point in its interior

f

Maximal: each edge contains an integral point in its relative
interior.
In the plane: it is a strip, a triangle or a quadrilateral.



Theorem [Lovász 1989]

A maximal lattice-free convex set in the plane (x1, x2) is one of the
following:

i) Irrational line ax1 + bx2 = c with a/b irrational;

ii) A strip c ≤ ax1 + bx2 ≤ c + 1
with a, b coprime integers, c integer;

iii) A triangle with an integral point in the relative interior of each
edge;

iv) A quadrilateral containing exactly four integral points, one in
the relative interior of each edge; The four integral points are
vertices of a parallelogram of area 1.



Zp-free Convex Sets and Valid Functions

Let B ∈ Rp be a lattice-free convex set with f ∈ int(B).

Define the function ψB : Rp → R as follows.

• Set ψB(r) = 0 for any vector r ∈ Rp in the recession cone of B.

• For any r ∈ Rp that is not in the recession cone of B, set
ψB(r) = 1

α where α > 0 is s.t. f + αr is on the boundary of B.

The inequality
∑

j∈N ψB(r j)xj ≥ 1 is valid for

xi = fi −
∑

j∈N r j
i xj for i ∈ B

xi ∈ Z for i ∈ B
xj ≥ 0 for j ∈ N.

(1)

where all the nonbasic variables are continuous.

DEFINITION A function ψ that defines a valid inequality∑
j∈N ψ(r j)xj ≥ 1 to (1) for any choice of data r j , j ∈ N is called a

valid function.



Minimal Valid Functions

A valid function ψ : Rp → R+ is minimal if there is no other valid
function ψ′ such that ψ′ ≤ ψ.

THEOREM(Borozan and Cornuejols 2009)

If ψ : Rp → R+ is a minimal valid function, then ψ is
• nonnegative
• piecewise linear
• positively homogeneous
• and convex.

Furthermore Bψ := {x ∈ Rp : ψ(x − f ) ≤ 1} is a maximal Zp-free
convex set containing f in its interior.
Conversely, any maximal Zp-free convex set B containing f in its
interior gives rise to a minimal valid function ψ.

Positively homogeneous means ψ(λr) = λψ(r) for any scalar
λ ∈ R+ and r ∈ Rp.



Maximal Lattice-Free Sets in the Plane

Split, triangles and quadrilaterals
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Maximal Lattice-Free Sets in the Plane

Split, triangles and quadrilaterals

f

f
f

generate valid inequalities
∑

j∈N ψ(r j)xj ≥ 1.

The corresponding valid functions ψ are simple to describe.



Proof of Lovaśz’ Theorem

Let K ⊂ Rp be a maximal Zp-free convex set.

We prove the theorem under the assumption that K is a bounded
set. We need to show that K is a polytope and that each of its
facets has an integer point in its relative interior.

Since we assume K bounded, there exist l , u in Zp such that K is
contained in the box B = {x ∈ Rp : li ≤ xi ≤ ui , i = 1 . . . p}.
Since K is a convex set, for each y ∈ B ∩ Zp, there exists an
half-space {x ∈ Rp : ayx ≤ by} containing K such that ayy = by

(separation theorem for convex sets).

Since B is a bounded set, B ∩ Zp is a finite set. Therefore
P = {x ∈ Rp : li ≤ xi ≤ ui , i = 1 . . . p, ayx ≤ by , y ∈ B ∩ Zp}
is a polytope.

By construction P is Zp-free and K ⊆ P.

Therefore K = P by maximality of K .



Proof of Lovaśz’ Theorem
We now show that each facet of K contains an integer point in its
relative interior.
Suppose, by contradiction, that facet Ft of K does not contain a
point of Zp in its relative interior.
Let atx ≤ bt be the inequality defining Ft .
Given ε > 0, let K ′ be the polyhedron defined by the same
inequalities that define K except the inequality αtx ≤ βt that has
been substituted with the inequality αtx ≤ βt + ε.
Since the recession cones of K and K ′ coincide, K ′ is a polytope.
Since K is a maximal Zp-free convex set and K ⊂ K ′, K ′ contains
points of Zp in its interior.
Since K ′ is a polytope, the number of points in K ′ ∩ Zp is finite.
Hence there exists one such point minimizing αtx , say z .
Let K ′′ be the polytope defined by the same inequalities that
define K except the inequality αtx ≤ βt that has been substituted
with the inequality αtx ≤ αtz .
By construction, K ′′ does not contain any point of Zp in its interior
and properly contains K , contradicting the maximality of K . ¤



Bound on the Number of Facets of Maximal Zp-Free
Polyhedra

Doignon 1973, Bell 1977 and Scarf 1977 show the following.

THEOREM Any full-dimensional maximal lattice-free convex
set K ⊆ Rp has at most 2p facets.

PROOF By Lovász’ theorem, each facet F contains an integral
point xF in its relative interior. If there are more than 2p facets,
then two integral points xF and xF ′ must be congruent modulo 2.
Now their middle point 1

2(xF + xF ′) is integral and it is in the
interior of K , contradicting the fact that K is lattice-free.


