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Motivation

Motivation I

In typical applications of energy management, one encounters systems
of the form Ax ≤ ξ, wherein ξ and A are subject to uncertainty.

Typically x needs to be decided upon prior to observing uncertainty

Knowledge of the distribution of ξ might be reasonable, but perhaps that
of A is less (so).
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Motivation

Motivation II

To take this into account, assume that the i th row ai follows the model:
ai (u) = āi + Piu,

With āi ∈ Rn, Pi is an n × ni matrix, and the uncertainty set u ∈ Ui =
{u ∈ Rni : ‖u‖ ≤ κi} is the ball of radius κi .

We thus express safety of x by using the following “robust chance con-
straint”:

P
[

A(u)x ≤ ξ ∀u ∈ U
]
≥ p. (1)
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Motivation

Motivation III

Well established theory from robust optimization gives that this is equiva-
lent to:

P
[

āT
i x + κi

∥∥∥PT
i x
∥∥∥ ≤ ξi i ∈ I

]
≥ p (2)
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Motivation

Motivation IV

An optimization problem involving such a robust chance constraint can be
seen as a special case of problems of the type:

General setting

finf := min
{

f (x) : P[ g(x , ξ) ≤ 0 ] ≥ p , x ∈ X
}

(3)

where ξ ∈ Rr is a random variable,

f : Rn → R is a convex function,

g = [gi ]i∈I is a mapping over a finite index set I such that each gi :
Rn × Rr → R is convex in the first argument,

X 6= ∅ is a bounded convex set.
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Motivation

Motivation V

ξ follows a discrete distribution with finite support, i.e., ξ ∈ {ξ1, ..., ξS}
associated probabilities π1, ..., πS

The constraint can be reformulated as

P[g(x , ξ) ≤ 0 ] ≥ p ≡


gi (x , ξs) ≤ Ms

i zs i ∈ I , s ∈ S∑
i∈S πs zs ≤ 1− p

zs ∈ {0, 1} s ∈ S


≡
{

G(x) ≤ Tz , z ∈ Z
}

The motivating problem becomes an MIQCQP problem
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Setting

Setting

Consider the following Mixed-Integer Non-Linear Problem (MINLP)

min
{

f (x) : G(x) ≤ Tz , z ∈ Z , x ∈ X
}

(4)

and for fixed z ∈ Z , the easier problem:

v(z) := min
{

f (x) : G(x) ≤ Tz , x ∈ X
}
, (5)

as well as the related Benders’ master problem:

v∗ := min
{

v(z) : z ∈ Z
}
, (6)
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Setting

Structure

Lemma ([van Ackooij et al.(2016)van Ackooij, Frangioni, and de Oliveira])
The mapping v is proper, convex, and bounded from below. If for a given
z ∈ Dom(v), the slave problem satisfies some appropriate constraint
qualification (e.g., Slater’s condition) so that the set Λ(z) ⊂ Rp

+ of optimal
Lagrange multipliers of the constraints G(x) ≤ Tz in (5) is nonempty, then
∂v(z) = −T>Λ(z).
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Setting

Cutting plane methods

The obvious idea is to replace v , only implicitly known, by its cutting plane
approximation:

v̌k (z) := max{ v j +
〈

w j , z − z j
〉

: j ∈ Ok } ≤ v(z) , (7)

and solve the approximated master problem
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Setting

Feasibility cuts

Since it may be so that some z /∈ Dom(v), we need to add feasibility cuts
to the master problem. Here for the sake of exposition, they can take the
elementary form of “no-good cuts”:

let S(z) = { s : zs = 0 } and Sk = S(zk ); then∑
s∈Sk zs ≥ 1 (8)

is a feasibility cut that excludes the point zk from the feasible set of the
master problem.
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Setting

Issues with this scheme

This simple cutting plane method suffers from the usual drawbacks

instability: even if a current iterate zk is close to optimal, a next one can
be arbitrarily far away

tailing off effect: slow convergence for high precision

Second, we have assumed available exact information of v , but computing
v(z) implies solving a (convex) NLP !
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Inexact v and Stabilization

Informative on-demand inexact oracles

To remedy this last point, let us assume available a procedure that, given
z ∈ Z , a descent target tar ∈ R ∪ {−∞,+∞} and a desired accuracy ε ≥ 0,
returns:

Informative on-demand inexact oracles

as function information, two values v and v̄ such that v ≤ v(z) ≤ v̄

as first-order information, a vector w ∈ Rp such that

v(·) ≥ v + 〈w , · − z〉 . (9)

holds

under the condition that, if v ≤ tar then v̄ − v ≤ ε
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Inexact v and Stabilization

How to obtain such oracles

dual approach: In several situations the problem defining v can be solved
by moving to the dual. We always have a valid lower bound and lin-
earization : eventually we will generate a primal feasible iterate (e.g.,
[van Ackooij and Malick(2016)])

Primal-dual approach: The problem defining v can be solved by a primal
dual method (e.g., interior points): we typically dispose of primal dual
pairs, which after a while becoming feasible.
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Inexact v and Stabilization

Two ideas of stabilization: trust region

The first possibility is to consider a trust-region stabilization:

zk ∈ arg min
{

v̌k (z) : z ∈ Z ,
∥∥∥z − ẑk

∥∥∥
1
≤ Bk

}
, (10)

this amounts to a local branching constraint:∑
s : ẑk

s =1

(1− zs) +
∑

s : ẑk
s =0

zi ≤ Bk (11)

One can force the master problem to explore the complement of past
regions
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Inexact v and Stabilization

Two ideas of stabilization: level

Disposing of a lower and upper bound on the optimal value (vlow, vup),
and level parameter vlev ∈ (vlow, vup) we define the level set:

Zk :=
{

z ∈ Z : v̌k (z) ≤ v k
lev

}
.

We set aside a past iterate called stability center ẑk .

Using a stability function ϕ(·; ẑk ) (for instance ϕ(·; ẑk ) =
∥∥.− ẑk

∥∥
2) we

solve
zk ∈ arg min

{
ϕ(z; ẑk ) : z ∈ Zk

}
(12)
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Inexact v and Stabilization

Some remarks

The trust region master problem is a MILP (even with reverse region con-
straints)

The level master (although “linear” here) is a (MI)QP in general. It can
have an empty feasible set. This is important information : the level pa-
rameter is a valid lower bound for the optimal value
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Trust region

The trust region method I

Initialization: Choose some initial parameters ε1 ≥ 0, γ > 0, v̂1 = ∞,
β > 0, pick some ẑ1.

Master problem: solve the trust region master problem to produce zk

Stopping test: Set ∆k := v k−1
up − v k

low. If ∆k > δ, keep trust region radius.
Else (∆k < δ), if the trust region radius is m, then stop zk is δ-optimal.
Otherwise increase trust region.

21 / 33



Introduction Benders Algorithms Results Summary

Trust region

The trust region method II

Oracle call : Call the oracle and receive (v k , v̄k ,wk ).

If the slave problem is infeasible, add a feasibility cut. Else set vk
up = min

{
vk−1
up , v̄k

}
and potentially update zup (the best solution)

If v̄k ≤ v̂k −β, then set ẑk+1 = zk , v̂k+1 = v̄k , choose arbitrary εk+1 go back
to the master problem

If vk ≤ vk
low + γ, then choose εk+1 ∈ [0, εk ), otherwise arbitrarily.

return to the master problem
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Trust region

Some comments

One can notice that only when the algorithm shows signs of convergence,
we need to ask for any precision. Otherwise, (almost none) is requested

One can establish finite convergence of the method to a δ-optimal solution
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Level Method

The Level-stabilized method I

Initialization: Choose some initial parameters ε1 ≥ 0, γ > 0, v̂1 = ∞,
β > 0, pick some ẑ1 ∈ Dom(v).

Stopping test: Set ∆k := v k−1
up − v k

low. If ∆k < δ, then stop zk is δ-optimal

Master problem: Pick any ẑk , vlev ∈ [v k
low, v k

up−δ). Solve the level master.
If it is infeasible, pick v k+1

low ∈ [v k
lev, v∗] and return to master problem. Else

we have produced zk
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Level Method

The Level-stabilized method II

Oracle call I: Call the oracle and receive (v k , v̄k ,wk ).

If the slave problem is infeasible, add a feasibility cut. Else set vk
up = min

{
vk−1
up , v̄k

}
and potentially update zup (the best solution)

If vk ≤ vk
lev, then choose εk+1 ∈ [0, εk ), otherwise arbitrarily.

Return to master problem
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Level Method

Some comments

One can notice that only when the algorithm shows signs of convergence,
we need to ask for any precision. Otherwise, (almost none) is requested

One can establish finite convergence of the method to a δ-optimal solution
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Experiments

Set up

We consider instances coming from the motivating example

We have generated several (random) instances with varying degrees of
sparsity, number of rows, columns, and scenarios, yielding a total of 252
instances

We benchmarked the methods against “monolithic” approach: Cplex
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Experiments

High precision δ = 10−4

Results with all instances Results for high sparsity instances
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Experiments

Lower precision δ = 10−3

Results with all instances Results for high sparsity instances
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Experiments

Comments

These preliminary results show the advantage of decomposition methods,
even without thoroughly testing precision and target management

The presence of sparsity seems to have a beneficial effect on the Benders
type of methods.
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Summary

In this talk we have discussed several generalizations of stabilized Benders
decomposition methods with oracles not requiring exactly solving the subprob-
lems. Nearly minimal requirements on handling accuracy were presented:
The discussed reference is:

W. van Ackooij, A. Frangioni, and W. de Oliveira. Inexact stabilized benders’
decomposition approaches: with application to chance-constrained problems
with finite support.
Computational Optimization And Applications, To appear:1–24, 2016.
doi: 10.1007/s10589-016-9851-z
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