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Motivation

Motivation |

m In typical applications of energy management, one encounters systems
of the form Ax < &, wherein £ and A are subject to uncertainty.

m Typically x needs to be decided upon prior to observing uncertainty

m Knowledge of the distribution of £ might be reasonable, but perhaps that
of Ais less (so).
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Motivation

Motivation I

m To take this into account, assume that the ith row a; follows the model:
ai(u) = a + P,

m With 3, € R", P; is an n x n; matrix, and the uncertainty set u € U; =
{ueR" :||u| < i} is the ball of radius x;.

m We thus express safety of x by using the following “robust chance con-

straint”:
P[A(u)x < ¢ Yuel]>p. (1)
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Motivation Il

m Well established theory from robust optimization gives that this is equiva-
lent to:
]P)[ é;'rX + Ki ‘

Pix| <& ier)=p )
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Motivation

Motivation IV

An optimization problem involving such a robust chance constraint can be
seen as a special case of problems of the type:

General setting

fie :=min{ f(x) : P[g(x,§) <0]>p, xe X} (3)

m where ¢ € R' is a random variable,
m f:R” — Ris a convex function,

B g = [gi]ie/ is @ mapping over a finite index set / such that each g; :
R" x R” — R is convex in the first argument,

B X # () is a bounded convex set.
< S eDF
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Motivation

Motivation V

m ¢ follows a discrete distribution with finite support, i.e., £ € {&1,...,&s}
associated probabilities 71, ..., 7s

m The constraint can be reformulated as

gi(x, %) < Mz iel,seS
Plg(x,£) <0]>p = DiesTsZs <1 —p
zs € {0,1} se S

{G(x)gTz,zeZ}

m The motivating problem becomes an MIQCQP problem
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Setting

Setting

m Consider the following Mixed-Integer Non-Linear Problem (MINLP)
mn{f(x) : Gx)< Tz, zeZ , xeX} (4)
m and for fixed z € Z, the easier problem:
v(z):=min{ f(x) : G(x)< Tz, xe X}, (5)
m as well as the related Benders’ master problem:

vii=min{v(z) : zeZ} , (6)
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Structure

Lemma ([van Ackooij et al.(2016)van Ackooij

The mapping v is proper, convex, and bounded from below. If for a given
z € Dom(v), the slave problem satisfies some appropriate constraint
qualification (e.g., Slater’s condition) so that the set A(z) C Rf of optimal
Lagrange multipliers of the constraints G(x) < Tz in (5) is nonempty, then
ov(z) = —TTA(2).
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Setting

Cutting plane methods

m The obvious idea is to replace v, only implicitly known, by its cutting plane
approximation:

Ww(z) = max{vj+<V|/j,z—z/> 1 JjeOk} < v(z), (7)

m and solve the approximated master problem
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Feasibility cuts

m Since it may be so that some z ¢ Dom(v), we need to add feasibility cuts
to the master problem. Here for the sake of exposition, they can take the
elementary form of “no-good cuts”:

mletS(z) ={s : zz=0} and S = S(z); then
DiseskZs > 1 (8)

is a feasibility cut that excludes the point z* from the feasible set of the
master problem.
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Issues with this scheme

This simple cutting plane method suffers from the usual drawbacks

m instability: even if a current iterate z is close to optimal, a next one can
be arbitrarily far away

m tailing off effect: slow convergence for high precision

Second, we have assumed available exact information of v, but computing
v(z) implies solving a (convex) NLP !
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Informative on-demand inexact oracles

To remedy this last point, let us assume available a procedure that, given

z € Z,adescenttarget tar € RU{—o0, 400} and a desired accuracy ¢ > 0,
returns:

Informative on-demand inexact oracles
m as function information, two values v and v such that v < v(z) < v
m as first-order information, a vector w € RP such that

vi)>v+(w, —2z) . ©)
holds

m under the condition that, if v < tarthenv —v < ¢
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How to obtain such oracles

m dual approach: In several situations the problem defining v can be solved
by moving to the dual. We always have a valid lower bound and lin-
earization : eventually we will generate a primal feasible iterate (e.g.,
[van Ackooij and Malick(2016)])

m Primal-dual approach: The problem defining v can be solved by a primal

dual method (e.g., interior points): we typically dispose of primal dual
pairs, which after a while becoming feasible.
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Two ideas of stabilization: trust region

m The first possibility is to consider a trust-region stabilization:
X ecargmin{w(z) : ze Z, Hz—%"H1 < Bk}, (10)

m this amounts to a local branching constraint:

S (1-z)+ > z<Bk (11)

- sk
s:25=1 s:25=0

m One can force the master problem to explore the complement of past
regions
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Two ideas of stabilization: level

m Disposing of a lower and upper bound on the optimal value (Viow, Vip),
and level parameter Vie, € (Viow, Vup) We define the level set:

Zi:={z€Z: w(z) <V, }.

m We set aside a past iterate called stability center 2*.

m Using a stability function ¢(-; 2¥) (for instance ¢(:; 2¢) = ||. — 2|,) we
solve
X cargmin{p(z;2") : ze )} (12)
«
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Some remarks

m The trust region master problem is a MILP (even with reverse region con-
straints)

m The level master (although “linear” here) is a (MI)QP in general. It can

have an empty feasible set. This is important information : the level pa-
rameter is a valid lower bound for the optimal value
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Trust region

The trust region method |

m [nitialization: Choose some initial parameters ¢1 > 0, v > 0, 7 = oo,
8 > 0, pick some 2'.

m Master problem: solve the trust region master problem to produce z*
m Stopping test: Set Ay 1= v/ — Vi If Ax > §, keep trust region radius.

Else (Ax < &), if the trust region radius is m, then stop z* is é-optimal.
Otherwise increase trust region.
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The trust region method Il

m Oracle call : Call the oracle and receive (v, Vi, W).

m If the slave problem is infeasible, add a feasibility cut. Else set vé‘p =min {vffg‘ , V"}

and potentially update z,, (the best solution)

m If i < U — B, then set 2K+1 = zK 4 = V, choose arbitrary 4.1 go back
to the master problem

m If vk < vE ++, then choose ex,1 € [0, =), otherwise arbitrarily.

m return to the master problem
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Trust region

Some comments

m One can notice that only when the algorithm shows signs of convergence,
we need to ask for any precision. Otherwise, (almost none) is requested

m One can establish finite convergence of the method to a §-optimal solution
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The Level-stabilized method |

m [nitialization: Choose some initial parameters ¢; > 0, v > 0, 7' = o,
B > 0, pick some 2' € Dom(v).

m Stopping test: Set Ay := v/ ' — vE . If Ax < 8, then stop z" is §-optimal

m Master problem: Pick any 2%, vi., € [vE.,, v, —6). Solve the level master.
If it is infeasible, pick v/*! € [vK.,, v*] and return to master problem. Else

we have produced z*
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The Level-stabilized method Il

m Oracle call I: Call the oracle and receive (v, Vk, Wk).

m Ifthe slave problem is infeasible, add a feasibility cut. Else set v{j

and potentially update z,, (the best solution)
m If vk < vE | then choose ek, 1 € [0, ), otherwise arbitrarily.

m Return to master problem

: k—1 —k
p:mln{vup ,v}
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Some comments

m One can notice that only when the algorithm shows signs of convergence,
we need to ask for any precision. Otherwise, (almost none) is requested

m One can establish finite convergence of the method to a §-optimal solution
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Experiments

Set up

m We consider instances coming from the motivating example

m We have generated several (random) instances with varying degrees of
sparsity, number of rows, columns, and scenarios, yielding a total of 252
instances

m We benchmarked the methods against “monolithic” approach: Cplex
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High precision § = 10~4
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Lower precision § = 1073

Performance profile based on CPU(s)
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Comments

m These preliminary results show the advantage of decomposition methods,
even without thoroughly testing precision and target management

m The presence of sparsity seems to have a beneficial effect on the Benders
type of methods.
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Summary

Summary

In this talk we have discussed several generalizations of stabilized Benders
decomposition methods with oracles not requiring exactly solving the subprob-
lems. Nearly minimal requirements on handling accuracy were presented:
The discussed reference is:

W. van Ackooij, A. Frangioni, and W. de Oliveira. Inexact stabilized benders’
decomposition approaches: with application to chance-constrained problems
with finite support.

Computational Optimization And Applications, To appear:1—24, 2016.

doi: 10.1007/s10589-016-9851-z
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