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Convex quadratic optimization
The QP to solve

The QP to solve

The problem to solve

(P)

{

infx∈Rn q(x)
l 6 Ax 6 u,

(1)

where q is a convex quadratic function defined at x ∈ R
n by

q(x) = g
T
x +

1

2
x

T
Hx

and

◦ g ∈ R
n

◦ H < 0 (NP-hard otherwise, (P) encompasses linear optimization),
◦ A is m × n,
◦ l , u ∈ R

m
satisfy l < u.

Also equality constraints in all solvers.
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

Can one still make progress in convex quadratic optimization?

The problem is polynomial and can be solved by

◦ active-set methods → probably non-polynomial,

◦ interior-point methods → polynomial,

◦ nonsmooth methods → polynomial on subclasses,

◦ other methods (including the augmented Lagrangian method).

Has this discipline been fully explored in the XXth century?
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

Observation 1. Odd behavior of Quadprog (Matlab). If the data is

g =





1
1
0



 , H =





1 0 0
0 4 2
0 2 1



 , x >





−1
−1
−1



 ,

Quadprog-active-set answers

Exiting: the solution is unbounded and at infinity;
Function value: 3.20000e+33

Very odd, since the problem has a unique solution, which is

x =





−1
−1
2



 and val(P) = −1.5.

It is a benign flaw, since if H y H + εI , Quadprog finds a near solution.
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

Quadprog-reflective-trust-region (default algorithm) answers

Optimization terminated: relative function value changing by
less than OPTIONS.TolFun.
Function value: -1.5

Correct answer!

Conclusion: the good algorithm may depend on the problem.
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

Observation 2. On the solvable convex QPs of the CUTEst collection:
r first group: 138 problems, solvers in Fortran or C++,
r second group: 58 problems (n 6 500), solver in Matlab.

Solvers % failure % too slow % infeasibility % other

Qpa (AS) 30 % 15 % 15 % –
Qpb (IP) 20 % 5 % 2 % 13 %
Ooqp (IP) 54 % 1 % 12 % 41 %

Quadprog (AS) 33 % 12 % 19 % 2 %

r “too slow”: requires more than 600 seconds,
r “infeasibility”: wrong diagnosis of infeasibility,
r
“other”: “too small stepsize”, “too small direction”, “ill-conditioning”, and “unknown”.
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

The problem does not come from some very difficult QPs.
For example, on the CUTEst problem QSCTAP1 (n = 480, nb = 480 lower bounds,
mI = 180 lower bounds, mE = 120):

r Qpa claims that the problem is unbounded,
r Qpb claims that the problem has a solution,
r Ooqp claims that the problem is infeasible,
r Quadprog stops on a too large number of iterations (> 104).

=⇒ Still progress to do.
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

Observation 3 (more important).

Most (all?) solvers do not give appropriate information
when the QP is special, they just return a flag.

Special means val(P) /∈ R below:
◦ val(P) ∈ R ⇐⇒ the problem has a solution (Frank-Wolfe [8; 1956]),
◦ val(P) = −∞ ⇐⇒ the problem is feasible and unbounded,
◦ val(P) = +∞ ⇐⇒ the problem is infeasible.

Appropriate means useful when the QP solver is used in the SQP algorithm for
solving a nonlinear optimization problem.

10 / 65

http://ccpforge.cse.rl.ac.uk/gf/project/cutest/wiki
http://www.galahad.rl.ac.uk
http://www.galahad.rl.ac.uk
http://pages.cs.wisc.edu/~swright/ooqp
http://www.mathworks.fr/fr/help/optim/ug/quadprog.html


Convex quadratic optimization
Goal of this study

Goal of this study

Having a robust and efficient active-set-like convex QP solver for the SQP
algorithm.

◦ Efficient of course!
◦ Robust =⇒ deals appropriately with the special cases.
◦ Other terms require to recall the definition of the SQP algorithm.
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Convex quadratic optimization
Goal of this study

The SQP algorithm for solving a nonlinear optimization problem

A standard generic nonlinear optimization problem consists in

(PEI )







infx f (x)
cE (x) = 0
cI (x) 6 0,

where f : Rn → R, cE : Rn → R
mE , and cI : R

n → R
mI are smooth (possibly non convex).

The osculating quadratic problem to (PEI ) at (xk , λk) is the problem in d :

(OQP)






infd ∇f (xk)
Td + 1

2
dT∇2

xxℓ(xk , λk)d
cE (xk ) + c′

E
(xk)d = 0

cI (xk) + c′
I
(xk)d 6 0,

whose multipliers are λQP

k
:= λk + µ.

One iteration of the local SQP/SQO algorithm: from (xk , λk ) to (xk+1, λk+1)

◦ If possible, solve (OQP), to get dk and λQP

k
.

◦ Update xk+1 := xk + dk and λk+1 := λQP

k
.
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Convex quadratic optimization
Goal of this study

Remarks

◦ There is a sequence of QP’s to solve

=⇒ interest to have a good QP solver.

◦ The (OQP) is NP-hard without convexity

=⇒ interesting to take Mk < 0 approximating ∇2
xxℓ(xk , λk ).

◦ If strict complementarity holds at the searched solution of (PEI ), the active constraints
of (OQP) are those of (PEI )

=⇒ active-set is interesting (only a single linear system to solve per iteration
asymptotically).
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The AL algorithm
The AL algorithm for a solvable convex QP

Towards the AL algorithm

The problem is transformed by using an auxiliary variable y :

(P)

{
infx∈Rn q(x)
l 6 Ax 6 u

y (P′)







inf(x,y)∈Rn×Rm q(x)
Ax = y
l 6 y 6 u.

Equality constraints penalized by the augmented Lagrangian

ℓr (x , y , λ) := q(x) + λT(Ax − y) +
r

2
‖Ax − y‖2.

At each iteration the AL algorithm [14, 15, 16, 3, 1, 18, 19; 1969-74] solves

inf
(x,y)∈Rn×[l,u]

ℓr (x , y , λ). (2)

The AL algorithm makes sense if it is easier to solve (2) than (P).
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The AL algorithm
The AL algorithm for a solvable convex QP

The AL algorithm for a solvable convex QP

One iteration, from (λk , rk) ∈ R
m × R++ to (λk+1, rk+1):

Compute (if possible, exit otherwise)

(xk+1, yk+1) ∈ arg min
(x,y)∈Rn×[l,u]

ℓrk (x , y , λk).

Update the multipliers

λk+1 = λk − rk sk+1, where sk+1 := yk+1 − Axk+1.

Stop if
sk+1 ≃ 0.

Update rk y rk+1 > 0: ρk := ‖sk+1‖/‖sk‖ and

rk+1 := max

(

1,
ρk

ρdes

)

rk .
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The AL algorithm
The AL algorithm for a solvable convex QP

Understanding the AL algorithm I
Update rule of λk

One iteration, from (λk , rk) ∈ R
m × R++ to (λk+1, rk+1):

Compute (if possible, exit otherwise)

(xk+1, yk+1) ∈ arg min
(x,y)∈Rn×[l,u]

ℓrk (x , y , λk).

Update the multipliers

λk+1 = λk − rk sk+1, where sk+1 := yk+1 − Axk+1.

Stop if
sk+1 ≃ 0.

Update rk y rk+1 > 0: ρk := ‖sk+1‖/‖sk‖ and

rk+1 := max

(

1,
ρk

ρdes

)

rk .
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The AL algorithm
The AL algorithm for a solvable convex QP

The secrets are in the dual space

The dual function δ : Rm → R, defined at λ ∈ R
m by

δ(λ) := − inf
(x,y)∈Rn×[l,u]

(

q(x) + λT(Ax − y)
)

.

◦ δ is convex, closed, and δ > −∞,
◦ dom δ 6= ∅ ⇐⇒ δ 6≡ +∞ ⇐⇒ δ ∈ Conv(Rm),
◦ piecewise quadratic (quadratic on each orthant).

If (P) ≡ (P ′) has a solution:

0 ∈ ∂δ(λ̄) ⇐⇒ λ̄ is a dual solution to (P ′).

The AL algorithm looks for a
λ̄ ∈ arg min δ.
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The AL algorithm
The AL algorithm for a solvable convex QP

AL algorithm = proximal algorithm on δ [17; 1973].

◦ If δ ∈ Conv(Rm) and rk > 0, this means that

λk+1 = arg min
λ∈Rm

(

δ(λ) +
1

2rk
‖λ− λk‖

2

)

.

One writes λk+1 = proxδ,rk (λk ).

◦ The optimality condition 0 ∈ ∂δ(λk+1) +
1
rk
(λk+1 − λk) and

λk+1 = λk − rk sk+1

imply that
sk+1 := yk+1 − Axk+1 is in ∂δ( λk+1

︸ ︷︷ ︸

not λk !

).

Hence it is an implicit subgradient method.

◦ Hence by looking for a λ such that 0 ∈ ∂δ(λ), the AL algorithm tries to vanish the
constraint y − Ax .
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The AL algorithm
The AL algorithm for a solvable convex QP

AL iterates minimizing the dual function for a solvable QP

◦ δ is piecewise quadratic

δ(λ) =
1

2
λTSλ+ (v+yλ)

Tλ+ Cst

◦ SD := arg min δ

◦ ∂δ(λk+1) contains

λk − λk+1

rk
= yk+1 − Axk+1

◦ small rk ’s in the figure

SD

λ1

λ2
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The AL algorithm
The AL algorithm for a solvable convex QP

Understanding the AL algorithm II
Update rule of rk

One iteration, from (λk , rk) ∈ R
m × R++ to (λk+1, rk+1):

Compute (if possible, exit otherwise)

(xk+1, yk+1) ∈ arg min
(x,y)∈Rn×[l,u]

ℓrk (x , y , λk).

Update the multipliers

λk+1 = λk − rk sk+1, where sk+1 := yk+1 − Axk+1.

Stop if
sk+1 ≃ 0.

Update rk y rk+1 > 0: ρk := ‖sk+1‖/‖sk‖ and

rk+1 := max
(

1, ρk
ρdes

)

rk .
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The AL algorithm
The AL algorithm for a solvable convex QP

The update rule of rk is based on the following global linear convergence result [6;
2005].

◦ If (P) has a solution, then the dual solution set SD 6= ∅ and

∀β > 0, ∃ L > 0, distSD
(λ0) 6 β implies that

∀ k > 1, ‖sk+1‖ 6 min
(

1, L
rk

)

‖sk‖,
(3)

where sk := yk − Axk .

◦ (3) comes from a quasi-global error bound on the dual solution set SD:

for any bounded set B ⊂ R
m, there is an L > 0, such that

∀λ ∈ SD + B : distSD
(λ) 6 L

(

inf
s∈∂δ(λ)

‖s‖

)

.
(4)

◦ The Lipschitz constant L is difficult to deduce from the data . . .
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The AL algorithm
The AL algorithm for a solvable convex QP

The Lipschitz constant L is difficult to deduce from the data . . .

Let m = 1 and l < 0 < u. Consider the problem
{

inf 0
l 6 0x 6 u,

The dual function reads

δ(λ) =

{

lλ if λ 6 0
uλ if λ > 0.

0 λ0λ1λ2

slope l

slope u

Hence SD = {0} and the quasi-global error bound reads

∀B > 0, ∃ L > 0, |λ| 6 B =⇒ |λ| 6







−Ll if λ < 0
0 if λ = 0
Lu if λ > 0.

Therefore, for B fixed, L ր ∞ when l ր 0 or u ց 0 (fix λ in the error bound).
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The AL algorithm
The AL algorithm for a solvable convex QP

The rule of the nonlinear solver Algencan [2; 2014]:

r0 = P[10−8,10+8 ]

(

10
max(1, |q(x0)|)

max(1, ‖Ax0 − y0‖2)

)

.

Motivation: balancing the objective and constraint parts of the ℓ2 penalty function.

In the previous example, the rule yields (whatever is l and u):

r0 = 10.

It does not catch the following fact:

for some problems, the appropriate r depends on
the distance from the optimal constraint value Ax̄ to [l , u]c .
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The AL algorithm
The AL algorithm for a solvable convex QP

In Oqla/Qpalm, L is guessed and rk is set by the observation of ρk := ‖sk+1‖/‖sk‖,
thanks to the global linear convergence:

∀β > 0, ∃ L > 0, distSD(λ0) 6 β implies that
∀ k > 1, ‖sk+1‖ 6

L
rk
‖sk‖.

Lower bound of L:

Linf,k := max
16i6k

ρi ri .

2 3 4 5 6 7 8 9 10 11
10

−1

10
0

10
1

10
2

10
3

L
in

f,
k

End of iteration k

Setting of rk+1:

rk+1 =
Linf,k

ρdes

.

With ρdes = 1/10, convergence occurs in 10..15 AL iterations.
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The AL algorithm
The AL algorithm for a solvable convex QP

Understanding the AL algorithm III
Effect of the update rule of rk for infeasible QPs

If the QP is infeasible:

‖sk‖ ց σ > 0 and

ρk :=
‖sk+1‖

‖sk‖
→ 1,

the rule (increases rk whenever ρk > ρdes [ρdes < 1]) =⇒ rk ր ∞,

the AL subproblems become ill-conditioned,

could stop when rk > r̄ , but
◦ difficult to find a universal threshold r̄ ,
◦ no information on the problem on return.

Can one have a global linear convergence when the QP is infeasible?
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The AL algorithm
Problem structure

The smallest feasible shift

It is always possible to find a shift s ∈ R
m such that

l 6 Ax + s 6 u is feasible for x ∈ R
n.

These feasible shifts are exactly those in S := [l , u] +R(A):

0

R(A)

[l , u]

s̄
S := [l , u] +R(A)

The smallest feasible shift s̄ := arg min{‖s‖ : s ∈ S}.

s̄ = 0 ⇐⇒ (P) is feasible.

27 / 65

The AL algorithm
Problem structure

The closest feasible problem

The shifted QPs (feasible iff s ∈ S , may be unbounded)

(Ps)

{

infx q(x)
l 6 Ax + s 6 u

and (P ′
s)







infx q(x)
Ax + s = y

l 6 y 6 u.
(5)

The closest feasible problems (feasible, may be unbounded)

(Ps̄)

{

infx q(x)
l 6 Ax + s̄ 6 u.

and (P ′
s̄)







infx q(x)
Ax + s̄ = y

l 6 y 6 u.
(6)

Claims clarified below ([21, 4])

The AL algorithm actually “solves” the closest feasible problem (Ps̄).

The speed of convergence is globally linear.

28 / 65



The AL algorithm
Detection of unboundedness (val(P) = −∞)

When is the AL algorithm well defined?

Proposition ([4])

For the convex QP (1), the following properties are equivalent:
(i) dom δ 6= ∅ (⇐⇒ δ 6≡ +∞ ⇐⇒ δ ∈ Conv(Rm)),
(ii) for some/any s ∈ S , the shifted QP (5) is solvable,
(iii) for some/any r > 0 and λ ∈ R

m, the AL subproblem (2) is solvable,
(iv) there is no d ∈ R

n such that gTd < 0, Hd = 0, and Ad ∈ [l , u]∞.

C∞ denotes the asymptotic/recession cone of a convex set C .

A direction like d in (iv) is called here an unboundedness direction.

The failure of these conditions can be detected on the first AL subproblem (2), by
finding a direction d such that

g
T
d < 0, Hd = 0, and Ad ∈ [l , u]∞.

Fundamental assumption: (i)-(iv) holds from now on.
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Feasibility and dual function

No duality gap:

the QP is feasible ⇐⇒ δ is bounded below.

◦ [⇒] (contrapositive) true for any convex problem by weak duality.
◦ [⇐] (contrapositive) δ 6≡ +∞ and δ → −∞ along s̄ 6= 0 (S is closed).

Consequence for a convex QP:

the QP is infeasible =⇒ δ is unbounded below

=⇒ {λk} blows up

(by the proximal interpretation).

One can say more.
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Level curves of the dual function δ (infeasible QP, H ≻ 0)

λ1 λ2
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Level curves of the dual function δ (infeasible QP, H = 0)

λ1

λ2
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

A surprising identity [4; 2016]

When dom δ 6= ∅,

S = R(∂δ).

Surprising since

◮ S only depends on the constraints of the QP,
◮ δ also depends on the objective of the QP.

We already know that S ∩ R(∂δ) 6= ∅:

S = [l , u] +R(A) ∋ sk+1 := yk+1 − Axk+1 ∈ ∂δ(λk+1) ⊂ R(∂δ).
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Convergence sk → s̄ [21; 1987]

“Intuitive proof”

S = [l , u] +R(A) ∋ sk := yk − Axk ∈ ∂δ(λk ) ⊂ R(∂δ).

◮ Trust the proximal algo: yk − Axk → the smallest element in R(∂δ).
◮ Now S = R(∂δ) =⇒ the smallest element in R(∂δ) is s̄.
◮ Hence sk := yk − Axk → s̄.
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Global linear convergence sk → s̄ [4; 2016]

(Ps̄) with solution ⇒ the dual solution set of (Ps̄), namely

S̃D := {λ ∈ R
m : s̄ ∈ ∂δ(λ)}

is nonempty and

∀β > 0, ∃ L > 0, dist
S̃D

(λ0) 6 β implies that

∀ k > 1, ‖sk+1 − s̄‖ 6
L
rk
‖sk − s̄‖.

(7)

Comments:

Similar to the solvable case, but with sk y sk − s̄,
s̄ is not known ⇒ more difficult to design an update rule for rk : instead of sk − s̄ ,
observe s ′k := sk − sk−1 → 0 globally linearly.
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The AL algorithm
The revised AL algorithm

The revised AL algorithm

Set λ0 ∈ R
m, r0 > 0, ρ′des ∈ ]0, 1[, and repeat for k = 0, 1, 2, . . .

Compute (if possible, exit with a direction of unboundedness otherwise)

(xk+1, yk+1) ∈ arg min
(x,y)∈Rn×[l,u]

ℓrk (x , y , λk).

Update the multipliers

λk+1 = λk − rksk+1, where sk+1 := yk+1 − Axk+1.

Stop if
A

T(Axk+1 − yk+1) ≃ 0 and P[l,u](Axk+1) ≃ yk+1.

Update rk y rk+1 > 0: s ′k := sk − sk−1, ρ
′
k := ‖s ′k+1‖/‖s

′
k‖, and

rk+1 := max

(

1,
ρ′k
ρ′
des

)

rk .
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Numerical results
The codes Oqla and Qpalm and the selected test-problems

Oqla and Qpalm

Implementation of the revised AL algorithm in two solvers [10], soon freely available at
https://who.rocq.inria.fr/Jean-Charles.Gilbert:

Oqla

◮ in C++,
◮ fast execution, but slow implementation,
◮ OO → easy to take into account new data structures, like Ooqp [9] (dense, sparse,

ℓ-BFGS, . . . ),
◮ AL subproblems solved by an active-set (AS) method,
◮ more than 1 year of work for one engineer!

Qpalm

◮ in Matlab,
◮ AL subproblems solved by an AS method,
◮ fast implementation, easy to try new ideas, but slow execution.

Main objective of these tests: is it worth continuing working on the development of Oqla/Qpalm?
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Numerical results
The codes Oqla and Qpalm and the selected test-problems

Selected Cutest problems

Comparison made on the Cutest collection of test-problems [13].

138 convex quadratic problems (all solvable, but 4?),
58 problems among them, with n 6 500 (for comparison in Matlab).
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Numerical results
Performance profiles

Reading performance profiles [7]
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Performance profiles drawn with Libopt [11].
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Numerical results
Performance profiles

Comparison of Oqla and Qpalm on iteration counters
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Close to each other (see x-axis [100.05
≃ 1.12] and y-axis [even scores]).

Difference in failures due to the slowness of Qpalm in Matlab (or still not clear).

41 / 65

Numerical results
Performance profiles

Comparison of Oqla and Qpalm on CPU time
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OQLA
QPALM

Oqla (in C++) is 10..2000 times faster than Qpalm (in Matlab).
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Numerical results
Comparison with active-set methods

Two more codes, which use active-set methods:

Oqla
◮ the standard QP solver of the Matlab optimization toolbox [20],
◮ Options ’Algorithm’ → ’active-set’ and ’LargeScale’ → ’off’ =⇒ active-set

method.

Qpa
◮ free code,
◮ from the Galahad library [12],
◮ in Fortran,
◮ uses preprocessing and preconditioning?
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Numerical results
Comparison with active-set methods

Comparison of Qpalm and Oqla on CPU time
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QPALM
QUADPROG

Qpalm is often twice faster than Oqla (but not always faster).

Qpalm is more robust than Oqla (81 % success to 67 %).

Progress is still possible with Qpalm.
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Numerical results
Comparison with active-set methods

Comparison of Oqla and Qpa on CPU time
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OQLA
QPA

Qpa is more often faster than Oqla, but not significantly.

Oqla and Qpa have the same robustness (73 % and 71 % success respectively).

Progress is still possible with Oqla.
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Numerical results
Comparison with interior-point methods

Two more codes, which use interior-point methods:

Ooqp
◮ free code,
◮ written by Gertz and Wright in 2003 [9],
◮ to show the interest of an OO implementation.

Qpb
◮ free code,
◮ from the Galahad library [12],
◮ in Fortran,
◮ uses preprocessing and preconditioning?
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Numerical results
Comparison with interior-point methods

Comparison of Oqla, Ooqp, and Qpb on CPU time
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OQLA
OOQP
QPB

IP methods are clearly faster than our AL+AS method (in particular with Ooqp).

Poor robustness of Ooqp =⇒ careful implementation yields much improvement?

Oqla is located between Qpb and Ooqp in terms of robustness.
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Numerical results
Comparison with interior-point methods

Behaviors in an SQP framework

Recall that one iteration of the SQP algorithm computes a PD solution (dQP, λQP) of the
OQP

min
l′6Ad6u′

(

gTd +
1

2
dTHd

)

and then updates (locally) the PD variables (x , λ) by

x+ := x + dQP and λ+ := λQP.

Close to the solution to the nonlinear problem, x+ ≃ x and λ+ ≃ λ, therefore a good guess
of the PD solution to the QP is available:

(0, λ).

Hence, it makes sense to see how the QP solvers behave when the starting point is close to
the solution to the QP.
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a primal-dual solution, on CPU time
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OQLA starting from solution
QPB starting from solution

Motivation: see whether Oqla can take advantage of a good starting point,

64 problems, for which an accurate primal-dual solution has been found,

Qpb has no warm restart.
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−8) primal-dual solution
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OQLA starting from solution perturbed at 1.e−8
QPB starting from solution perturbed at 1.e−8
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−7) primal-dual solution
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OQLA starting from solution perturbed at 1.e−7
QPB starting from solution perturbed at 1.e−7

51 / 65

Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−6) primal-dual solution
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OQLA starting from solution perturbed at 1.e−6
QPB starting from solution perturbed at 1.e−6
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−5) primal-dual solution
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OQLA starting from solution perturbed at 1.e−5
QPB starting from solution perturbed at 1.e−5
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−4) primal-dual solution
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OQLA starting from solution perturbed at 1.e−4
QPB starting from solution perturbed at 1.e−4
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−3) primal-dual solution
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OQLA starting from solution perturbed at 1.e−3
QPB starting from solution perturbed at 1.e−3
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−2) primal-dual solution
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OQLA starting from solution perturbed at 1.e−2
QPB starting from solution perturbed at 1.e−2
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−1) primal-dual solution
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OQLA starting from solution perturbed at 1.e−1
QPB starting from solution perturbed at 1.e−1
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (100) primal-dual solution
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OQLA starting from solution perturbed at 1.e+0
QPB starting from solution perturbed at 1.e+0

58 / 65



Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (101) primal-dual solution
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OQLA starting from solution perturbed at 1.e+1
QPB starting from solution perturbed at 1.e+1
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (102) primal-dual solution
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OQLA starting from solution perturbed at 1.e+2
QPB starting from solution perturbed at 1.e+2

Conclusion: for perturbations less than 100 %, the AL+AS solver Oqla is “more often better” than the IP solver
Qpb.
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Discussion and future work

Discussion

Oqla/Qpalm give interesting answers on infeasbile or unbounded QPs.

Oqla and Qpalm are not ridiculous, with respect to well established active-set solvers (Qpa),
and sometimes clearly better (Oqla).

The present version of Oqla/Qpalm is not as efficient as the IP solver Qpb, but much more
robust than Ooqp.

Oqla/Qpalm can take advantage of an estimate of the solution (not the case of the other
tested IP solvers) =⇒ nice for SQP.

Still many possible improvements:

◮ using preprocessing,
◮ inexact minimization of the AL subproblems (2), while keeping the global linear

convergence,
◮ trying other solvers of the AL subproblems (2), like IP or Newton-min,
◮ . . . .
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Discussion and future work

Future work

Can one preserve the global linear convergence of the AL algorithm when the AL subproblems (2) are
solved inexactly?

Try to use one (a few) interior point step(s) to solve the AL subproblems (2), in order to obtain
polynomiality.

Improve nonsmooth methods and use them to solve the AL subproblems (2), in order to gain in
efficiency.

Extend the result of Dean and Glowinski [5] to convex inequality constrained QP: for stricty convex
QP with the single equality constraint Ax = b, the Lagrangian relaxation

xk = arg minx∈Rn q(x) + λT
k (Ax − b)

λk+1 = λk + αk (Axk − b),

where αk is chosen is a compact of ]0, 2/µ1[, generates iterates that converge globally linearly to the
unique solution to the closest feasible problem

{

infx q(x)

AT(Ax − b) = 0.
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Discussion and future work

Future work (continued)

Show the global linear convergence of an AL algorithm for the more general problem (+ constraint
qualification):







infx∈E 〈g , x〉 + 1
2 〈Hx, x〉

Ax ∈ C
x ∈ X .

Two interesting instances:

◮ E = R
n, C = [l , u], X = ball =⇒ trust region problem,

◮ E = Sn, H = 0, C = {b}, X = Sn
+ =⇒ linear SDP problem.
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The end

Thank you very much for your attention!
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