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Outline

© General overview
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Robust optimization

@ How much do we know ?

Mean value Robust Distributionally Stochastic
(Deterministic) robust

()
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Robust optimization

@ Worst-case approach
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static VS adjustable

Static decisions --+ uncertainty revealed
Complexity Easy for LP ©, N'P-hard for combinatorial optimization @
MILP reformulation ©
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static VS adjustable

Static decisions --» uncertainty revealed
Complexity Easy for LP ©, N'P-hard for combinatorial optimization @
MILP reformulation ©

Two-stages decisions --» uncertainty revealed --+ more decisions
Complexity N'P-hard for LP ©, decomposition algorithms ©

Multi-stages decisions --» uncertainty --+ decisions --+ uncertainty --» ---

Complexity N'P-hard for LP ©®, cannot be solved to optimality @
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discrete uncertainty VS convex uncertainty

U = vertices(P)

Observation
In many cases, U ~ P.
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discrete uncertainty VS convex uncertainty

U = vertices(P)

Observation
In many cases, U ~ P.

Exceptions:

@ robust constraints f(x,u) < b and f non-concave in u

@ multi-stages problems with integer adjustable variables
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Outline

@ Static problems
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Robust combinatorial optimization

Combinatorial problem
o X C{0,1}", up € R"

co min ug x.
xeX
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Robust combinatorial optimization

Combinatorial problem
o X C{0,1}", up € R"

co min ug x.
xeX

Robust counterparts with cost uncertainty
Q@ XY c{0,1}" U CR"

u-co min max ug x
xeX ueld

© Regret version:

min max u(;rx — min ug—y
xeX uel yeX

= min max min (uOTX - ug—y)
xeX ueld yex
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General robust counterpart

X = Xcomb N xmnm .
X mb Combinatorial nature, known.

X™™ Numerical uncertainty: uJ-Tx < bj, j=1,..., m, uncertain.
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General robust counterpart

X = Xcomb N X num .

X comb Combinatorial nature, known.

XU Numerical uncertainty: uJ-Tx < bj, j=1,..., m, uncertain.
Robust counterpart
: T
min max iUy X : 1
{ maxdd (1)
Uu-co uJ-TXSbJ-7 j=1...,m, u €l (2)
ceqem |
.
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General robust counterpart

X = Xcomb N xnum .
X mb Combinatorial nature, known.

X" Numerical uncertainty: uJ-Tx < bj, j=1,..., m, uncertain.

Robust counterpart

. T
: 1
min { max i x (
U-Co ul x<bj, j=1,....m, u €U (2

alx<d,, k=1,...,¢ (3
x €{0,1}" } (4
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General robust counterpart

X = Xcomb N xnum .
xcomb Combinatorial nature, known.

XM Numerical uncertainty: uij < bj, j=1,..., m, uncertain.

Robust counterpart

min{ z (1)

Uu-co UJ-TX <bj, j=1,....,m, u €U, (2)
ugx <z, up €U 3)

alx<d,, k=1,...,¢ (4)

x € {0,1}" } (5)

Michael POSS Introduction to robust optimization May 30, 2017



General robust counterpart

X = Xcomb N xnum .
xcomb Combinatorial nature, known.

XM Numerical uncertainty: uij < bj, j=1,..., m, uncertain.

Robust counterpart

min{ : (1)

Uu-co UJ-TX <bj, j=1,....,m, u €U, (2)
ugx <z, up €U 3)

alx<d,, k=1,...,¢ (4)

x € {0,1}" } (5)

Examples: knapsack, constrained shortest path
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discrete uncertainty: U-CO is hard [Kouvelis and Yu, 2013]

The robust shortest path, assignment, spanning tree, ... are N'P-hard even
when |U| = 2.
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discrete uncertainty: U-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, ... are N'P-hard even
when |U| = 2.

Proof.

@ SELECTION PROBLEM: min
SCN,|S|=p jcs

@ ROBUST SEL. PROB.:  min max > u;
SCN,[S|=p u€l jes

ui

© PARTITION PROBLEM: min max aj, aj
SCN,|S|=|N|/2 (:ezs ie%\s )
@ Reduction: p = | L and U = {ut, u?} such that

= &k and = |N| Zak
= maxZu,—max(Za,, > ,-)

U jes i€eS ieN\S
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polyhedral uncertainty: U-CO is still hard (but solvable)

The robust shortest path, assignment, spanning tree, ... are N'P-hard even
when U has a compact description.

Proof.
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polyhedral uncertainty: U-CO is still hard (but solvable)

The robust shortest path, assignment, spanning tree, ... are N'P-hard even
when U has a compact description.

@ U = conv(ul, u?) = n equalities and 2 inequalities
Q@ u'x<bhb uveld & u'x<b ucextid)

.

Theorem (Ben-Tal and Nemirovski [1998])

Problem U-CO is equivalent to a mixed-integer linear program.

.
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Dualization - cost uncertainty

Theorem (Ben-Tal and Nemirovski [1998])

Consider o € R'™" and 3 € R/ that define polytope

U:={uveR] : ol u< B, k=1,...,1}

Problem minmaxu”

x Is equivalent to a compact MILP.
XEX uel

Dualizing the inner maximization: min maxu’
x€X ueld

I
minmin<q > Brzk >, akizk = X, i =1,...,n,z>0,,
xeX k=1

X =
/

k=1
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Dualization - cost uncertainty

Theorem (Ben-Tal and Nemirovski [1998])

Consider o € R'™" and 3 € R/ that define polytope

U:={uveR] : ol u< B, k=1,...,1}

Problem minmaxu”

x Is equivalent to a compact MILP.
XEX uel

Dualizing the inner maximization: min maxu’
x€X ueld

I
minmin<q > Brzk >, akizk = X, i =1,...,n,z>0,,
xeX k=1

X =
/

k=1

Robust constraint (e.g. the knapsack)
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Cutting plane algorithms [Bertsimas et al., 2016]

U C Uo, Uy C Y

Master problem
min{ z .

ulx<bj, j=1,....m u €U,

MP

ugx <z, uy€Us,

alx<de, k=1,....¢0

x € {0,1}" }
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Cutting plane algorithms [Bertsimas et al., 2016]

U C Uo, Uy C Y

Master problem

MP

min{ z .

ulx<bj, j=1,....m u €U,

ugx <z, uy€Us,

alx<de, k=1,....¢0

x € {0,1}" }

@ Solve MP — get X,z

@ Solve max u
up EUy

Michael POSS
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0

% and max u/ X — get do, .. ., im
u EU;
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0
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Cutting plane algorithms [Bertsimas et al., 2016]

U C Uo, Uy C Y

Master problem

min{ z .

ulx<bj, j=1,....m u €U,

MP

ugx <z, uy€Us,

alx<de, k=1,....¢0

x € {0,1}" }
v
@ Solve MP — get X,z
@ Solve max uj X and max u/ X — get i, ..., im
ug EUp u;eU;

QIf L70T)~( > Zor ﬁij( > b; then
o U + Ug U{do} and Uy + Z/{J* u{a;}

e go backto @

Michael POSS
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Simpler structure: U"-robust combinatorial optimization

o U = vertices(P): good, but need “simpler” P
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Simpler structure: U"-robust combinatorial optimization

e U = vertices(P): good, but need “simpler” P

A
U + by |.
Al
uy ﬂ1+=ﬁ1 >
Ur:{UiSUiSUi-i-ﬁi,i:l,---;” }
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Simpler structure: U"-robust combinatorial optimization

e U = vertices(P): good, but need “simpler” P

U + by |.

uy Ui+ i

n _
. uj — U;
UI—:{u;SU;SU;—i—u;,I:l,...,n,E ’A ’gr }
0

i=1 !
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U + by |.
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n _
. uj — U;
UI—:{u,'SU,'SU,'—i-U,',I:l,...,n,E ’A I§2 }
0

i=1 !

Michael POSS Introduction to robust optimization May 30, 2017 13 / 53



Simpler structure: U"-robust combinatorial optimization

e U = vertices(P): good, but need “simpler” P

uy Ui+ i

n —
_ uj — T
Z/{r:{UISU,‘SU[—F[}i,I:]—;---;n:E ’A I<15}
O

i=1 !
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Simpler structure: U"-robust combinatorial optimization

e U = vertices(P): good, but need “simpler” P

uy Ui+ i

n _—
r _ . u; — uj
U ={u,-§u,-§u,-+u,-,l:1,...,n,E '0. L <1 }

i=1
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lterative algorithms for "

n —
~ . up — uj
P = ﬁ,—gu,-§H;+u,-,/:1,...,n,§ Ll <r

u; -
i=1 !
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lterative algorithms for "

n
U" = vertices U;§U;§E;+0,-,i:1,...,n,§
i=1

=3 =25 r=2
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lterative algorithms for "

n —
uj — U
Z/lr—vertlces {u,ﬁu,§u,+u,,l—1 ,n,z . '<I'}>

Theorem (Bertsimas and Sim [2003], Goetzmann et al. [2011],

Alvarez-Miranda et al. [2013], Lee and Kwon [2014])

Cost uncertainty U"-CO = solving ~ n/2 problems CO.
Numerical uncertainty U"-CO = solving ~ (n/2)™ problems CO.
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Other convex U (recall that U < conv(if))

|
I/\
I/\
:I

=

n
Z( —7T;) < Q} = solving 2 problems CO
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Other convex U (recall that U < conv(if))

n
{H <u<u+a,y (u—10;) < Q} = solving 2 problems CO
i=1

v

n
{U <u<u+id, Y au < b} = solving n problems CO
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Other convex U (recall that U < conv(if))

n
{H <u<u+a,y (u—10;) < Q} = solving 2 problems CO
i=1

v

n
{U <u<u+id,y au < b} = solving n problems CO

Decision-dependent [Poss, 2013, 2014, Nohadani and Sharma, 2016]

n
{H <u<u+0a,y au < b(x)} = solving n problems CO
i=1
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Other convex U (recall that U < conv(if))

n
{ <u<u+ Z( —T;) < Q} = solving 2 problems CO

[Poss, 2017])

aju; < b} = solving n problems CO

Decision-dependent [Poss, 2013, 2014, Nohadani and Sharma, 2016]

n
{u <u<u+d, ) aju < b(x)} = solving n problems CO
i=1

[Mokarami and Hashemi, 2015]

n —_\2
{21 (‘“%“) < Q} = solving nmax; i; problems CO
1=
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Dynamic Programming [Klopfenstein and Nace, 2008, Monaci et al.,
2013, Poss, 2014]

F(s) = cheapest cost up to state s; F(O) =0

F(s) = igi(r;){F(p(s, M)+ u}, se€S\O
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Dynamic Programming [Klopfenstein and Nace, 2008, Monaci et al.,

2013, Poss, 2014]

F(s) = cheapest cost up to state s; F(O) =0

F(s) = m|n {F(p(s M)+ u}, se€S\O

lEq

Robust recurrence

F(s, @) = cheapest cost up to state s with o remaning deviations; F(O, ) =0
F(s,a) = ml(n {max(F(p(s, i), @) +a;, F(p(s, i), — 1) +T; + ;) },
i€q(s
seS\O,1<a<T,
F(s,0) = ml(n){F( p(s,i),0) +a;}, s e S\O.
i€q(s
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Are all problems easy?

Hard problems must have one of
@ non-constant number of robust “linear” constraints

@ ‘“non-linear” constraints/cost function

Theorem (Pessoa et al. [2015])
U" -robust shortest path with time windows is N'P-hard in the strong

Sense.
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Are all problems easy?

Hard problems must have one of
@ non-constant number of robust “linear” constraints

@ ‘“non-linear” constraints/cost function

Theorem (Pessoa et al. [2015])

U" -robust shortest path with time windows is N'P-hard in the strong
sense.

Theorem (Bougeret et al. [2016])

Minimizing the weighted sum of completion times is N'P-hard in the
strong sense.
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U"-TWSP is N'P-hard in the strong sense

ROBUST PATH WITH DEADLINES (UF—PD)
Input: Graph D = (N, A), 4,, I, a=0.

>

-1
<b

uj, k41 ips

1

x
Il

Question: There exists a path p =0~ ip ~> i3 ~> - --

~ d

foreach h=1,....1, uelU?
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U"-TWSP is N'P-hard in the strong sense

ROBUST PATH WITH DEADLINES (U4"-PD)
Input: Graph D = (N, A), 4,, I, a=0.
Question: There exists a path p=0~vip ~> i3~ -+~ d

>

-1
5 r
Ui < bjy, foreach h=1,.... [, ueld?

1

x
Il

INDEPENDENT SET (/S)

Input: An undirected graph G = (V, E) and a positive integer K.
Question: There exists W C V such that |W| > K and {i,j} € W for
each {i,j} € E?

Michael POSS Introduction to robust optimization May 30, 2017 18 / 53



We are given an instance of IS with |V| = n nodes and |E| = m

p1 p3 P2n—1

AN
OO0 0
/

p2 Ppa Pzn
Set W C V corresponds to path pw:

@ pw contains py; iff i € W
@ pw contains pyi_1 iff i ¢ W
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P2n—1

OO0 0
./

Set W C V corresponds to path pw:
@ pw contains py; iff i € W
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Observation

Parameters i and b are chosen such that
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We are given an instance of IS with |V| = n nodes and |E| = m

P2n—1

OO0 0
./

Set W C V corresponds to path pw:
@ pw contains py; iff i € W
@ pw contains pyi_1 iff i ¢ W

Observation

Parameters i and b are chosen such that

n—1
(1] mau>§ Z Uiy < by for pw & |[W| > K
ue
n+h—1 o
Q max > Uiy < bosn for pw & en={i,j} ¢ W
ue, k=1

Michael POSS Introduction to robust optimization May 30, 2017 19 / 53



Cutting plane algorithms 2

Master problem
min{ c'x :

MP f(x,u) <0, uelU”,
alx<dg, k=1,....0

x € {0,1}" }
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Cutting plane algorithms 2

Master problem

min{ c"x -
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Q solve MP — get X;  solve max f(X,u) — get i
ue
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Cutting plane algorithms 2

Master problem

min{ c"x -
MP f(x,u) <0, uelU”,
alx<dg, k=1,....0
x € {0,1}" }
Q solve MP — get X;  solve max f(X,u) — get i
ue

Q If f(X,d) >0 then U* < U* U {i}; go backto @

Examples [Agra et al., 2016]

n
Minimizing tardiness f(x,u) = > w; max{Ci(x, u) — d;,0}
i=1
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Cutting plane algorithms 2

min{ c"x -
MP f(x,u) <0, uelU”,
afx<d, k=1,...¢

x € {0,1}" }

Q solve MP — get X;  solve max f(X,u) — get i
ue

Q If f(X,d) >0 then U* < U* U {i}; go backto @

Examples [Agra et al., 2016]

n
Minimizing tardiness f(x,u) = > w; max{Ci(x, u) — d;,0}
i=1

i=1

J=1

Jj=1 =1

Lot-sizing f(x,u) = Xn: max {h;(Zi: X _é:l uj), p,-(Xi: Ui — XI: X,')}
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Cookbook for static problems

Dualization

good easy to apply

bad breaks combinatorial structure (e.g. shortest path)
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Cookbook for static problems

Dualization

good easy to apply
bad breaks combinatorial structure (e.g. shortest path)

v

Cutting plane algorithms (branch-and-cut)

good handle non-linear functions

bad implementation effort

Iterative algorithms, dynamic programming

good good theoretical bounds
bad solving n® problems can be too much
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Open questions

Knapsack/budget uncertainty
e Easy problems that turn A/P-hard

@ Approximation algorithms

Scheduling seems to be a good niche.
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Open questions

Knapsack/budget uncertainty
e Easy problems that turn A/P-hard

@ Approximation algorithms

Scheduling seems to be a good niche.

Ellipsoidal uncertainty
Axis-parallel N'P-hard in general? (known FPTAS)

General Approximation algorithms
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Outline

© Adjustable RO
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2-stages example: network design

Demands vectors {uy, ..., u,} that must be routed non-simultaneously

on a network to be designed.
3
2
2
1
1
2

= two-stages program:
© capacities

@ routing.

B O

Michael POSS Introduction to robust optimization May 30, 2017 24 /53



2-stages example: network design

Demands vectors {u1, ..., u,} that must be routed non-simultaneously

on a network to be designed.
3
2
2

= two-stages program:
Demands for scenario 1 Demands for scenario 2 Capacity cost per unit
H 2

L R

Michael POSS Introduction to robust optimization May 30, 2017 24 /53

© capacities

@ routing.




2-stages example: network design

Demands vectors {u1, ..., u,} that must be routed non-simultaneously

on a network to be designed.
3
2
2

= two-stages program:
Demands for scenario 1 Demands for scenario 2 Capacity cost per unit

{ —

Routing for scenario 1~ Routing for scenario 2 Capacity installation

© capacities

@ routing.
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multistage example: lot sizing

Given
@ Production costs ¢
@ Uncertain demands vectors
up = (U11, uig, ..., ult), oo Up = (Unl, Unp2, ..., Unt)
@ Storage costs h
Compute

@ A production plan that minimizes the costs
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multistage example: lot sizing - formulation

Variables
@ yi(u) production at period i for demand scenario u

@ xj(u) stock at the end of period i for demand scenario u
min 7y
t
st. v=2 Z(CIYi(U) + hixi(u))  vel
i=1

xip1(u) = xi(u) +yi(u) —ui i=1,...,t, ueld
X,y 20
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multistage example: lot sizing - formulation

Variables
@ yi(u) production at period i for demand scenario u

@ xj(u) stock at the end of period i for demand scenario u
min 7y
t
st. v=2 Z(CIYi(U) + hixi(u))  vel
i=1

xip1(u) = xi(u) +yi(u) —ui i=1,...,t, ueld
X,y 20

Something is wrong !
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Non-anticipativity - Example

Consider a lot-sizing problem with
o two different products A and B
@ at most 1 unit of product (A and B together) can be produced at
each period
@ two time periods
@ we know the demand of the current period at the beginning of the

period
@ two scenarios u and ' defined as follows:
t=1 t=2 t=1 t=2
u=| A: 0 2 , =1 A: 0 0 ,
B : 0 0 B : 0 2

Question Propose a feasible production plan
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Non-anticipativity - Example

Consider a lot-sizing problem with
o two different products A and B
@ at most 1 unit of product (A and B together) can be produced at
each period
@ two time periods
@ we know the demand of the current period at the beginning of the

period
@ two scenarios u and ' defined as follows:
t=1 t=2 t=1 t=2
u=| A: 0 2 , =1 A: 0 0 ,
B : 0 0 B : 0 2

Question Propose a feasible production plan
Answer The problem is infeasible !
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Non-anticipativity - Example

Consider a lot-sizing problem with

two different products A and B
at most 1 unit of product (A and B together) can be produced at
each period

two time periods
we know the demand of the current period at the beginning of the
period
two scenarios u and v defined as follows:
t=1 t=2 t=1 t=2
u=1| A: 0 2 , =1\ A: 0 0 ,
B : 0 0 B : 0 2

Question Propose a feasible production plan

Answer The problem is infeasible !

Why? Because scenarios u and v’ cannot be distinguished at the
beginning of period 1, i.e.

1

/
u :Ul
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Non-anticipativity - Example

Consider a lot-sizing problem with

two different products A and B
at most 1 unit of product (A and B together) can be produced at
each period

two time periods
we know the demand of the current period at the beginning of the
period
two scenarios u and v defined as follows:
t=1 t=2 t=1 t=2
u=| A: 1 2 , =1 A: 0 0 ,
B: 0 0 B : 1 2

Question Propose a feasible production plan

Answer The problem is infeasible !

Why? Because scenarios u and v’ cannot be distinguished at the
beginning of period 1, i.e.

1

/
u :Ul
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Graphical representation - scenario tree

period 0

period 1

period 2
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multistage example: lot sizing - formulation

Variables
@ y;(u) production at period i for demand scenario u

@ x;(u) stock at the end of period i for demand scenario u
min vy
t
st. y> ) (ayi(u)+ hixi(u))  uwel
i=1

xipt(u)=xi(u) +yi(u) —u i=1,...,t, uel
X,y 20
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multistage example: lot sizing - formulation

Variables
@ y;(u) production at period i for demand scenario u
@ x;(u) stock at the end of period i for demand scenario u

min -y
t
st. y> ) (ayi(u) + hixi(u))  uwel
i=1

xipt(u)=xi(u) +yi(u) —u i=1,...,t, ueld
yi(u) = yi(d") i=1,...,t,u,d eU,u ="
X,y >0
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multistage example: lot sizing - formulation

Variables
@ y;(u) production at period i for demand scenario u

@ x;(u) stock at the end of period i for demand scenario u
min vy
t .
s.t. v > Z(C,-y;(u') + h,'X,'(U)) uel
i=1

xiv1(u) = xi(u) +yi(u) —w i=1,...t, ucl
X,y 20

Michael POSS Introduction to robust optimization May 30, 2017 29 /53



2-stages integer example: knapsack

Given a capacity C, and a set of items / with profits ¢ and weights w(u),
find the subset of items N C | that maximizes its profit

such that
for each u € U, we can remove items in K(u) from N and the total weight

satisfies
Z wp(u) < C
neN\K(u)
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multistage integer example: lot sizing

Variables
@ yi(u) production at period i for demand scenario u
@ x;(u) stock at the end of period i for demand scenario u

@ z;(u) allowing production for period i for demand scenario u
min 7y
t .
st. y= Z(CIYI(UI) + hixi(u))  uelU
i=1

xip1(u) = xi(u) + yi(u') —u; i=1,....t,uecld
yi(u) < Mz;(u') i=1,...,t,ueld
x,y >0

z € {0, 1}
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Outline

@ Two-stages problems with real recourse
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Exact solution procedure

min ¢’ x
st. xe X
(P) Alwx+Ey(u)<b uveld (6)
where A(u) = A + " Agug.

We can replace (6) by

A(u)x + Ey(u) < b u € ext(U).
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Exact solution procedure

T

min ¢’ x
st. xe X
(P) Alwx+Ey(u)<b uveld (6)
where A(u) = A + " Agug.

We can replace (6) by

A(u)x + Ey(u) < b u € ext(U).

Idea of the proof:

ext(U) ext(U)
A(u*)x* + Ey(u*) < b & As (A(us)x™ + Ey(us)) < ) Ash
s=1 s=1
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Master problem

U*-LSP'

CTX

xeX.

Constraints corresponding to u € U*

min

s.t.

max (b— A°*)"x Z(Alkx*)Tvk
keK
(SPL) st. wuel

ETn=

17r=1

vE > 1 — (1 = u¥) ke K,meM

vE < uk ke K,meM

, v,’,ﬂ, >0,

ue{0,1}¥

y
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Two different approaches

Benders (b— A(u*)x)T7* <0. (7)
Row and column generation A(u*)x + Ey(u™) < b. (8)
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Two different approaches

Benders (b— A(u*)x)T7* <0. (7)
Row and column generation A(u*)x + Ey(u™) < b. (8)

Algorithm 2: RG and RCG

repeat
solve U*-LSP’;
let x* be an optimal solution;
solve (SPL);
let (u*,7*) be an optimal solution and z* be the optimal solution cost;
if z* > 0 then
RG: add constraint (7) to U*-LSP’;
RCG: add constraint (8) to U*-LSP’;

until z* > 0;
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Numerical results

K T trce tspr ( %) iter trg tpr
30 2 150 64 18 | 4967 13
30 3 301 78 19 T 213
30 4| 1500 90 27 T M
30 5| 1344 91 25 T M
40 2 365 69 21 | 6523 49
40 3| 1037 88 22 T M
40 4| 6879 96 30 T M
40 b5 | 5866 95 31 T M
40 6 T - - T M
50 2 694 73 23 T 98
50 3 | 4446 94 27 T M
50 4 | 22645 98 35 T M
50 5 T - - T M
50 6 T - - T M

Table: Results from Ayoub and Poss (2013) on a network design problem (Janos -
26/84).
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Outline

© Multi-stage problems with real recourse
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Decision rules

min ¢’ x

st. xe X

t
Ae(u)x + ZEtsys(us) <b t=1,...,T,ueld
s=1
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Decision rules

min ¢’ x

st. xe X

t
Ae(u)x + ZEtsys(us) <b t=1,...,T,ueld
s=1

@ We cannot use the previous decomposition anymore
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Decision rules

min ¢’ x

st. xe X

t
Ae(u)x + ZEtsys(us) <b t=1,...,T,ueld
s=1

@ We cannot use the previous decomposition anymore
@ We can use decision rules, e.g.

y(u) =yo+ ) yi.
keK
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Decision rules

min ¢’ x

st. xe X

t
Ae(u)x + ZEtsys(us) <b t=1,...,T,ueld
s=1

@ We cannot use the previous decomposition anymore
@ We can use decision rules, e.g.

y(u) =yo+ ) yi.
keK

@ The problem gets the structure of a static robust problem.
o Can be dualized.
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Decision rules

min ¢’ x

st. xe X

t
Ae(u)x + ZEtsys(us) <b t=1,...,T,ueld
s=1

We cannot use the previous decomposition anymore
We can use decision rules, e.g.

y(u) =yo+ ) yi.
keK

The problem gets the structure of a static robust problem.
Can be dualized.

More complex decision rules exist. Some can lead to exact
reformulations; others can be approximated efficiently.
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Decision rules

min ¢’ x

st. xe X

t
Ae(u)x + ZEtsys(us) <b t=1,...,T,ueld
s=1

We cannot use the previous decomposition anymore
We can use decision rules, e.g.

y(u)=yo + ZYkUk-
kekK
The problem gets the structure of a static robust problem.
Can be dualized.
More complex decision rules exist. Some can lead to exact
reformulations; others can be approximated efficiently.
@ Decision rules are “heuristic”: they provide feasible solutions, possibly
suboptimal.
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Decision rules: Example for network design problem

Static yka(U) = ykalk

Affine yia(U) = ykao + D YkahUn
hekK

Dynamic yk,(u) is an arbitrary function

0.25 | 2.612E+02 124 > 0.0
polska 0.1 | 2.874E+02 12.8 > 0.0
0.05 | 2,935E+02 10.9 > 0.0
0.25 | 2.949E+05 10.5 > 0.0
nobel-us 0.1 | 3.156E+05 9.2 > 0.0
0.05 | 3.198E+05 7.9 > 0.0
0.25 | 2.001E+05 4.7 5.4
atlanta 0.1 | 2.096E+05 34 3.6
0.05 | 2.117TE+05 2T 2.
0.25 | 9.852E+02 0.0 0.0
newyork 0.1 | 9.852E+02 0.0 0.0
0.05 | 9.852E+02 0.0 0.0
0.25 | 1.040E+01 T > 0.0
france 0.1 | 1.100E+01 6.4 > 0.0
0.05 | 1.120E401 > 5.4 > 0.0
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Dual bound

Question: Can we obtain some guarantee on the quality of the affine
solution 7
Answer: Using a dual model ...

o Robust Inventory Problem
15 X : ,

—upper bound exact cbjective value : ;
= = =lower bound (uniform distribution)

PO S W —

objective value

0 10 20 30 40 50 60 70
time periods
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Outline

@ Multi-stage with integer recourse
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What about integer adjustable variables 7

Notation v® = (uy,. .., us)
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What about integer adjustable variables 7

Notation v® = (uy,. .., us)

min ¢’ x

st. xeX

t
A(u)x + ) Ereys(u®) < be(u) t=1,...,T,ucld (9)

s=1

y(u) e Rb x zt2 uel
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What about integer adjustable variables 7

Notation v® = (uy,. .., us)

min ¢’ x

st. xeX

t
A(u)x + ) Ereys(u®) < be(u) t=1,...,T,ucld (9)

s=1

y(u) e Rb x zt2 uel

Observation

Constraints (9) are not equivalent to

t
Ar(u)x + Z Eisys(u®) < be(u) t=1,..., T, u € ext(U)
s=1
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2-stages example: knapsack

Solve
mac{ Y

Set N ieN
Capacity C s.t. Z u; X <C uvuel
Weights u ieN

Profit ¢

x,y(u) € {0, 1} }
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2-stages example: knapsack

Solve
mac{ e

Set N N
Capacity C . Z s — ) € € we
Weights u ieN

Profit ¢ Zy"(“) < K el
Removal limit K ieN

x,y(u) € {0,1} }
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2-stages example: knapsack

Solve
mac{ Y

Set N N
Capacity C . Z s — ) € € we
Weights u ieN

Profit ¢ Zy"(“) < K el
Removal limit K ieN

x,y(u) € {0,1} }

Example (U # ext(U))

Parameters N = {1,2}, u;=0,0;=1,¢=1, C=0, T=K=1
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2-stages example: knapsack

Solve
mac{ Y

Set N N
Capacity C . Z s — ) € € we
Weights u ieN

Profit ¢ Zy"(“) < K el
Removal limit K ieN

x,y(u) € {0,1} }

Example (U # ext(U))

Parameters N = {1,2}, u;=0,0;=1,¢=1, C=0, T=K=1
U" opt: x1 =1, x =0 with cost 1
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2-stages example: knapsack

Solve
mac{ Y

Set N N
Capacity C . Z s — ) € € we
Weights u ieN

Profit ¢ Zy"(“) < K el
Removal limit K ieN

x,y(u) € {0,1} }

Example (U # ext(U))

Parameters N = {1,2}, u;=0,0;=1,¢=1, C=0, T=K=1
U opt: x; = 1,x = 0 with cost 1, worst u: (0.5,0.5)
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2-stages example: knapsack

Solve
mac{ Y

Set N N
Capacity C . Z s — ) € € we
Weights u ieN

Profit ¢ Zy"(“) < K el
Removal limit K ieN

x,y(u) € {0,1} }

Example (U # ext(U))

Parameters N = {1,2}, u;=0,0;=1,¢=1, C=0, T=K=1
U" opt: x3 = 1,x = 0 with cost 1, worst u: (0.5,0.5)
ext(U") opt: x; = xo = 1 with cost 2
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2-stages example: knapsack

Solve
mac{ Y

Set N N
Capacity C . Z s — ) € € we
Weights u ieN

Profit ¢ Zy"(“) < K el
Removal limit K ieN

x,y(u) € {0,1} }

Example (U # ext(U))

Parameters N = {1,2}, u;=0,0;=1,¢=1, C=0, T=K=1
U" opt: x3 = 1,x = 0 with cost 1, worst u: (0.5,0.5)
ext(U") opt: x; = xo = 1 with cost 2, worst u: (1,0)
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Three lines of research have been proposed in the litterature:
© Partitioning the uncertainty set.
e U=U'U...UU"
o Constraints

t
Adu)x + Y Euys(uf) < be(u)  t=1,....T, uel
s=1

become

Ar(u)x +3F | Ersyst < be(u) t=1,...,T, uel’

Ae(u)x + St Ersysn < be(u) t=1,..., T, ucld”
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Three lines of research have been proposed in the litterature:
© Partitioning the uncertainty set.
e U=U'U...UU"
o Constraints

t
Adu)x + Y Euys(uf) < be(u)  t=1,....T, uel
s=1

become
Ar(u)x +3F | Ersyst < be(u) t=1,...,T, uel’
At(U)X‘i'Z;:l EtsYsn < be(u) t=1,...,T,uecl"
@ Row-and-column generation algorithms by Zhao and Zeng [2012]
Assumptions e Problems with complete recourse

o K(U) = K(ext(Ud))
Algorithms Nested row-and-column generation algorithms.
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Three lines of research have been proposed in the litterature:
© Partitioning the uncertainty set.
e U=U'U...UU"
o Constraints

t
Adu)x + Y Euys(uf) < be(u)  t=1,....T, uel
s=1

become

At(u)x—|—2§:1 Eisys1 < bi(u) t=1,...,T, uel"
At(U)X‘i'Z;:l EtsYsn < be(u) t=1,...,T,uecl"

@ Row-and-column generation algorithms by Zhao and Zeng [2012]
Assumptions e Problems with complete recourse
o K(U) = K(ext(Ud))
Algorithms Nested row-and-column generation algorithms.
© Non-linear decision rules proposed by Bertsimas and Georghiou [2015]

Michael POSS Introduction to robust optimization May 30, 2017 44 / 53



Dynamic partition [Bertsimas and Dunning, 2016, Postek

and den Hertog, 2016]

Partition P=U*U---UU"
Heuristic bound U-CO(P)

Algorithm
@ Solve U-CO(P)
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Dynamic partition [Bertsimas and Dunning, 2016, Postek

and den Hertog, 2016]

Partition P=U*U---UU"
Heuristic bound U-CO(P)

Algorithm
@ Solve U-CO(P)
@ Refine P, go back to @
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Dynamic partition [Bertsimas and Dunning, 2016, Postek

and den Hertog, 2016]

Partition P=U*U---UU"
Heuristic bound U-CO(P)

Algorithm
@ Solve U-CO(P)
@ Refine P, go back to @

\

Partition step

@ active vectors u lie in
different subsets

= Voronoi diagrams
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Dynamic partition [Bertsimas and Dunning, 2016, Postek

and den Hertog, 2016]

Partition P=U*U---UU"
Heuristic bound U-CO(P)

Algorithm
@ Solve U-CO(P)
@ Refine P, go back to @

\

Partition step

@ active vectors u lie in
different subsets

= Voronoi diagrams

U-CO('P) dimensions increases linearly with |P|
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Comparison of Bertsimas and Georghiou [2015], Bertsimas

and Dunning [2016], Postek and den Hertog [2016] on
lot-sizing.

wh

"(u) order a fixed amount g, at time i
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Comparison of Bertsimas and Georghiou [2015], Bertsimas

and Dunning [2016], Postek and den Hertog [2016] on
lot-sizing.

n
Wi

(u) order a fixed amount g, at time i

T

Method 1 6 8 10
Gap (%) | 13.0 103 116 149
Time (s)| 0.0 05 7.7 1086
Gap (%) | 114 93 113 149
Time (s)| 02 20 524 3093
Gap (%) | 115 14.1 157 157
Time (s)| 04 1.6 108 778
Gap (%) | 172 34.5 376 -
Time (s) | 3381 9181 28743 -

Our method (2 iter.)

Our method (3 iter.)

Postek and Den Hertog (2014)

Bertsimas and Georghiou (2015)
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Concluding remarks

Static problems

@ Numerical solution by dualization or decomposition algorithms.

@ U ‘nice” structure and non-linear objective = interesting open
problems
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Concluding remarks

Static problems

@ Numerical solution by dualization or decomposition algorithms.

@ U ‘nice” structure and non-linear objective = interesting open
problems

Adjustable problems

@ Hot topic

@ Very hard to solve!

@ Even good generic heuristic approaches would be interesting.
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S| EJCO: Robust Combinatorial Optimization

@ valid inequalities for robust MILPs,

@ decomposition algorithms for robust MILPs,

1A @ constraint programming approaches to

Computational = robust combinatorial optimization,
Optimization

@ heuristic and meta-heuristic algorithms for
hard robust combinatorial problems,

@ ad-hoc combinatorial algorithms,

@ novel applications of robust combinatorial
optimization,

@ multi-stage integer robust optimization,
Q springer @ recoverable robust optimization,

Deadline: July 15 2017
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