Introduction to robust optimization

Michael POSS

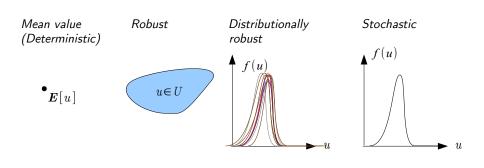
May 30, 2017

Outline

- General overview
- 2 Static problems
- 3 Adjustable RC
- 4 Two-stages problems with real recourse
- Multi-stage problems with real recourse
- 6 Multi-stage with integer recourse

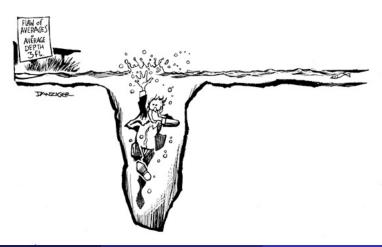
Robust optimization

• How much do we know ?



Robust optimization

Worst-case approach



static VS adjustable

Static decisions --- uncertainty revealed Complexity Easy for LP \circledcirc , \mathcal{NP} -hard for combinatorial optimization \circledcirc MILP reformulation \circledcirc

Two-stages decisions $--\rightarrow$ uncertainty revealed $--\rightarrow$ more decisions Complexity \mathcal{NP} -hard for LP \odot , decomposition algorithms \odot

Multi-stages decisions --+ uncertainty --+ decisions --+ uncertainty --+ \cdots Complexity \mathcal{NP} -hard for LP \odot , cannot be solved to optimality \odot

static VS adjustable

Static decisions --- uncertainty revealed Complexity Easy for LP \circledcirc , \mathcal{NP} -hard for combinatorial optimization \circledcirc MILP reformulation \circledcirc

Two-stages decisions --+ uncertainty revealed --+ more decisions Complexity \mathcal{NP} -hard for LP \odot , decomposition algorithms \odot

Multi-stages decisions --+ uncertainty --+ decisions --+ uncertainty --+ \cdots Complexity \mathcal{NP} -hard for LP \odot , cannot be solved to optimality \odot

static VS adjustable

```
Static decisions --\rightarrow uncertainty revealed 
Complexity Easy for LP \circledcirc, \mathcal{NP}-hard for combinatorial optimization \circledcirc 
MILP reformulation \circledcirc
```

```
Two-stages decisions --\rightarrow uncertainty revealed --\rightarrow more decisions 
Complexity \mathcal{NP}-hard for LP \odot, decomposition algorithms \odot
```

```
Multi-stages decisions -- uncertainty -- decisions -- uncertainty -- \cdots Complexity \mathcal{NP}-hard for LP \odot, cannot be solved to optimality \odot
```

discrete uncertainty VS convex uncertainty

$$\mathcal{U} = \mathsf{vertices}(\mathcal{P})$$

Observation

In many cases, $\mathcal{U} \sim \mathcal{P}$.

Exceptions

- robust constraints $f(x, u) \le b$ and f non-concave in u
- multi-stages problems with integer adjustable variables

discrete uncertainty VS convex uncertainty

$$\mathcal{U} = \mathsf{vertices}(\mathcal{P})$$

Observation

In many cases, $\mathcal{U} \sim \mathcal{P}$.

Exceptions:

- robust constraints $f(x, u) \le b$ and f non-concave in u
- multi-stages problems with integer adjustable variables

Outline

- General overview
- Static problems
- Adjustable RC
- 4 Two-stages problems with real recourse
- Multi-stage problems with real recourse
- 6 Multi-stage with integer recourse

Combinatorial problem

 $\bullet \ \mathcal{X} \subseteq \{0,1\}^n, u_0 \in \mathbb{R}^n$

$$CO \qquad \min_{x \in \mathcal{X}} u_0^T x.$$

Robust counterparts with cost uncertainty

$$\mathcal{U}\text{-}CO \qquad \min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} u_0^T x$$

Regret version:

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{u} \in \mathcal{U}} \left(u_0^T \mathbf{x} - \min_{\mathbf{y} \in \mathcal{X}} u_0^T \mathbf{y} \right)$$

 $\min_{\mathbf{x} \in \mathcal{X}} \max_{u \in \mathcal{U}} \min_{\mathbf{y} \in \mathcal{X}} \left(u_0^{i} \times - u_0^{i} y \right)$

Combinatorial problem

 $\bullet \ \mathcal{X} \subseteq \{0,1\}^n, u_0 \in \mathbb{R}^n$

$$CO \qquad \min_{x \in \mathcal{X}} u_0^T x.$$

Robust counterparts with cost uncertainty

$$\mathcal{U}$$
- CO $\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} u_0^T x$

2 Regret version:

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{u} \in \mathcal{U}} \left(u_0^T \mathbf{x} - \min_{\mathbf{y} \in \mathcal{X}} u_0^T \mathbf{y} \right)$$

$$\min_{\mathbf{x} \in \mathcal{X}} \min_{\mathbf{u} \in \mathcal{U}} \left(u_0^T \mathbf{x} - u_0^T \mathbf{y} \right)$$

Combinatorial problem

• $\mathcal{X} \subseteq \{0,1\}^n, u_0 \in \mathbb{R}^n$

$$CO \qquad \min_{x \in \mathcal{X}} u_0^T x.$$

Robust counterparts with cost uncertainty

$$\mathcal{U}$$
- CO $\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} u_0^T x$

Regret version:

$$\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} \left(u_0^T x - \min_{y \in \mathcal{X}} u_0^T y \right)$$

$$\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} \min_{y \in \mathcal{X}} \left(u_0^T x - u_0^T y \right)$$

Combinatorial problem

•
$$\mathcal{X} \subseteq \{0,1\}^n, u_0 \in \mathbb{R}^n$$

$$CO \qquad \min_{x \in \mathcal{X}} u_0^T x.$$

Robust counterparts with cost uncertainty

$$\mathcal{U}$$
- CO $\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} u_0^T x$

Regret version:

$$\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} \left(u_0^T x - \min_{y \in \mathcal{X}} u_0^T y \right)$$

$$= \min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} \min_{y \in \mathcal{X}} \left(u_0^T x - u_0^T y \right)$$

$$\mathcal{X} = \mathcal{X}^{comb} \cap \mathcal{X}^{num}$$
:

 \mathcal{X}^{comb} Combinatorial nature, **known**.

 \mathcal{X}^{num} Numerical uncertainty: $u_j^T x \leq b_j, j = 1, \dots, m$, uncertain.

Robust counterpart

$$\min \left\{ \quad : \quad (1$$

$$\mathcal{U}$$
-CO $u_j^T \times \leq b_j, \quad j = 1, \dots, m, \ u_j \in \mathcal{U}_j,$ (2)

(3)

$$\mathcal{X} = \mathcal{X}^{comb} \cap \mathcal{X}^{num}$$
:

 \mathcal{X}^{comb} Combinatorial nature, **known**.

 \mathcal{X}^{num} Numerical uncertainty: $u_j^T x \leq b_j$, $j = 1, \ldots, m$, uncertain.

Robust counterpart

$$\min \left\{ \begin{array}{cc} \max_{u_0 \in \mathcal{U}_0} u_0^T x : & (1) \\ \mathcal{U}\text{-}CO & u_j^T x \leq b_j, \quad j = 1, \dots, m, \ u_j \in \mathcal{U}_j, \\ x \in \mathcal{X}^{comb} \end{array} \right\}.$$

$$\mathcal{X} = \mathcal{X}^{comb} \cap \mathcal{X}^{num}$$
:

 \mathcal{X}^{comb} Combinatorial nature, **known**.

 \mathcal{X}^{num} Numerical uncertainty: $u_i^T x \leq b_j$, $j = 1, \ldots, m$, uncertain.

Robust counterpart

$$\min \left\{ \quad \max_{u_0 \in \mathcal{U}_0} u_0^T x : \right. \tag{1}$$

$$\mathcal{U}$$
-CO $u_j^T x \leq b_j, \quad j = 1, \dots, m, \ u_j \in \mathcal{U}_j,$ (2)

$$a_k^T x \le d_k, \quad k = 1, \dots, \ell$$
 (3)

$$x \in \{0,1\}^n \quad \bigg\} \tag{4}$$

$$\mathcal{X} = \mathcal{X}^{comb} \cap \mathcal{X}^{num}$$
:

 \mathcal{X}^{comb} Combinatorial nature, **known**.

 \mathcal{X}^{num} Numerical uncertainty: $u_j^T x \leq b_j, \ j=1,\ldots,m,$ uncertain.

Robust counterpart

$$\min \left\{ \quad z : \tag{1} \right.$$

$$\mathcal{U}$$
-CO $u_j^\mathsf{T} x \leq b_j, \quad j = 1, \dots, m, \ u_j \in \mathcal{U}_j,$ (2)

$$u_0^T x \le z, \quad u_0 \in \mathcal{U}_0 \tag{3}$$

$$a_k^T x \le d_k, \quad k = 1, \dots, \ell$$
 (4)

$$x \in \{0,1\}^n \quad \bigg\} \tag{5}$$

$$\mathcal{X} = \mathcal{X}^{comb} \cap \mathcal{X}^{num}$$
:

 \mathcal{X}^{comb} Combinatorial nature, known.

 \mathcal{X}^{num} Numerical uncertainty: $u_j^T x \leq b_j$, $j = 1, \ldots, m$, uncertain.

Robust counterpart

$$\min \left\{ \quad : \qquad \qquad (1) \right.$$

$$\mathcal{U}$$
-CO $u_j^T x \leq b_j, \quad j = 1, \dots, m, \ u_j \in \mathcal{U}_j,$ (2)

$$u_0^T x \le z, \quad u_0 \in \mathcal{U}_0 \tag{3}$$

$$a_k^T x \le d_k, \quad k = 1, \dots, \ell$$
 (4)

$$x \in \{0,1\}^n \quad \bigg\} \tag{5}$$

Theorem

The robust shortest path, assignment, spanning tree, ... are \mathcal{NP} -hard even when $|\mathcal{U}|=2$.

- SELECTION PROBLEM: $\min_{S \subseteq N, |S| = p} \sum_{i \in S} u_i$
- **2** ROBUST SEL. PROB.: $\min_{S \subseteq N, |S| = p} \max_{u \in \mathcal{U}} \sum_{i \in S} u_i$
- ③ PARTITION PROBLEM: $\min_{S \subseteq N, |S| = |N|/2} \max \left(\sum_{i \in S} a_i, \sum_{i \in N \setminus S} a_i \right)$
- ① Reduction: $p = \frac{|N|}{2}$, and $\mathcal{U} = \{u^1, u^2\}$ such that

$$u_i^1 = a_i$$
 and $u_i^2 = \frac{2}{|N|} \sum_k a_k - a_i$
 $u_i = \max \left(\sum a_i, \sum a_i \right)$

Theorem

The robust shortest path, assignment, spanning tree, ... are \mathcal{NP} -hard even when $|\mathcal{U}|=2$.

- **1** SELECTION PROBLEM: $\min_{S \subseteq N, |S| = p} \sum_{i \in S} u_i$
- 2 ROBUST SEL. PROB.: $\min_{S \subseteq N, |S| = p} \max_{u \in \mathcal{U}} \sum_{i \in S} u_i$
- 3 PARTITION PROBLEM: $\min_{S \subseteq N, |S| = |N|/2} \max \left(\sum_{i \in S} a_i, \sum_{i \in N \setminus S} a_i \right)$
- ① Reduction: $p = \frac{|N|}{2}$, and $\mathcal{U} = \{u^1, u^2\}$ such that

$$u_i^1 = a_i$$
 and $u_i^2 = \frac{2}{|N|} \sum_k a_k - a_i$
 $u_i = \max \left(\sum a_i, \sum a_i \right)$

Theorem

The robust shortest path, assignment, spanning tree, ... are \mathcal{NP} -hard even when $|\mathcal{U}|=2$.

- SELECTION PROBLEM: $\min_{S \subseteq N, |S| = p} \sum_{i \in S} u_i$
- **2** ROBUST SEL. PROB.: $\min_{S \subseteq N, |S| = p} \max_{u \in \mathcal{U}} \sum_{i \in S} u_i$
- **3** PARTITION PROBLEM: $\min_{S \subseteq N, |S| = |N|/2} \max \left(\sum_{i \in S} a_i, \sum_{i \in N \setminus S} a_i \right)$
- ① Reduction: $p = \frac{|N|}{2}$, and $\mathcal{U} = \{u^1, u^2\}$ such that

$$u_i^1 = a_i$$
 and $u_i^2 = \frac{2}{|N|} \sum_k a_k - a_i$
 $u_i = \max(\sum a_i, \sum a_i)$

Theorem

The robust shortest path, assignment, spanning tree, ... are \mathcal{NP} -hard even when $|\mathcal{U}|=2$.

- **1** SELECTION PROBLEM: $\min_{S \subseteq N, |S|=p} \sum_{i \in S} u_i$
- **2** ROBUST SEL. PROB.: $\min_{S \subseteq N, |S| = p} \max_{u \in \mathcal{U}} \sum_{i \in S} u_i$
- **3** PARTITION PROBLEM: $\min_{S \subseteq N, |S| = |N|/2} \max \left(\sum_{i \in S} a_i, \sum_{i \in N \setminus S} a_i \right)$
- ① Reduction: $p = \frac{|N|}{2}$, and $\mathcal{U} = \{u^1, u^2\}$ such that

$$u_i^1 = a_i$$
 and $u_i^2 = \frac{2}{|N|} \sum_k a_k - a_i$
 $u_i = \max \left(\sum a_i, \sum a_i \right)$

Theorem

The robust shortest path, assignment, spanning tree, ... are \mathcal{NP} -hard even when $|\mathcal{U}|=2$.

- **1** SELECTION PROBLEM: $\min_{S \subseteq N, |S| = p} \sum_{i \in S} u_i$
- **2** ROBUST SEL. PROB.: $\min_{S \subseteq N, |S| = p} \max_{u \in \mathcal{U}} \sum_{i \in S} u_i$
- **3** PARTITION PROBLEM: $\min_{S \subseteq N, |S| = |N|/2} \max \left(\sum_{i \in S} a_i, \sum_{i \in N \setminus S} a_i \right)$
- Reduction: $p = \frac{|N|}{2}$, and $\mathcal{U} = \{u^1, u^2\}$ such that

$$u_i^1 = a_i \quad \text{and} \quad u_i^2 = \frac{2}{|N|} \sum_k a_k - a_i$$

$$\Rightarrow \quad \max_{u \in \mathcal{U}} \sum_{i \in S} u_i = \max\left(\sum_{i \in S} a_i, \sum_{i \in N \setminus S} a_i\right)$$

Theorem

The robust shortest path, assignment, spanning tree, ... are \mathcal{NP} -hard even when $\mathcal U$ has a compact description.

Proof.

- ① $\mathcal{U} = \text{conv}(u^1, u^2) \Rightarrow n$ equalities and 2 inequalities

Theorem (Ben-Tal and Nemirovski [1998])

Theorem

The robust shortest path, assignment, spanning tree, ... are \mathcal{NP} -hard even when \mathcal{U} has a compact description.

Proof.

- $\mathcal{U} = \text{conv}(u^1, u^2) \Rightarrow n$ equalities and 2 inequalities
- $u^T x \leq b, \quad u \in \mathcal{U} \quad \Leftrightarrow \quad u^T x \leq b, \quad u \in \text{ext}(\mathcal{U})$

Theorem (Ben-Tal and Nemirovski [1998])

Theorem

The robust shortest path, assignment, spanning tree, ... are \mathcal{NP} -hard even when \mathcal{U} has a compact description.

Proof.

- $\mathcal{U} = \text{conv}(u^1, u^2) \Rightarrow n$ equalities and 2 inequalities
- $u^T x \leq b$, $u \in \mathcal{U} \Leftrightarrow u^T x \leq b$, $u \in \text{ext}(\mathcal{U})$

Theorem (Ben-Tal and Nemirovski [1998])

Theorem

The robust shortest path, assignment, spanning tree, ... are \mathcal{NP} -hard even when $\mathcal U$ has a compact description.

Proof.

- $\mathcal{U} = \text{conv}(u^1, u^2) \Rightarrow n$ equalities and 2 inequalities
- $u^T x \leq b$, $u \in \mathcal{U} \Leftrightarrow u^T x \leq b$, $u \in \text{ext}(\mathcal{U})$

Theorem (Ben-Tal and Nemirovski [1998])

Dualization - cost uncertainty

Theorem (Ben-Tal and Nemirovski [1998])

Consider $\alpha \in \mathbb{R}^{I \times n}$ and $\beta \in \mathbb{R}^I$ that define polytope

$$\mathcal{U} := \{ u \in \mathbb{R}_+^n : \alpha_k^T u \le \beta_k, \ k = 1, \dots, I \}.$$

Problem $\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} u^T x$ is equivalent to a compact MILP.

Proof.

Dualizing the inner maximization: $\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} u^T x =$

$$\min_{x \in \mathcal{X}} \min \left\{ \sum_{k=1}^{l} \beta_k z_k : \sum_{k=1}^{l} \alpha_{ki} z_k \ge x_i, i = 1, \dots, n, z \ge 0 \right\},$$

Robust constraint (e.g. the knapsack)

Dualization - cost uncertainty

Theorem (Ben-Tal and Nemirovski [1998])

Consider $\alpha \in \mathbb{R}^{I \times n}$ and $\beta \in \mathbb{R}^I$ that define polytope

$$\mathcal{U} := \{ u \in \mathbb{R}_+^n : \alpha_k^T u \le \beta_k, \ k = 1, \dots, I \}.$$

Problem $\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} u^T x$ is equivalent to a compact MILP.

Proof.

Dualizing the inner maximization: $\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} u^T x =$

$$\min_{x \in \mathcal{X}} \min \left\{ \sum_{k=1}^{l} \beta_k z_k : \sum_{k=1}^{l} \alpha_{ki} z_k \ge x_i, i = 1, \dots, n, z \ge 0 \right\},$$

Robust constraint (e.g. the knapsack)

Dualization - cost uncertainty

Theorem (Ben-Tal and Nemirovski [1998])

Consider $\alpha \in \mathbb{R}^{I \times n}$ and $\beta \in \mathbb{R}^I$ that define polytope

$$\mathcal{U} := \{ u \in \mathbb{R}_+^n : \alpha_k^T u \le \beta_k, \ k = 1, \dots, I \}.$$

Problem $\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} u^T x$ is equivalent to a compact MILP.

Proof.

Dualizing the inner maximization: $\min_{x \in \mathcal{X}} \max_{u \in \mathcal{U}} u^T x =$

$$\min_{x \in \mathcal{X}} \min \left\{ \sum_{k=1}^{l} \beta_k z_k : \sum_{k=1}^{l} \alpha_{ki} z_k \ge x_i, i = 1, \dots, n, z \ge 0 \right\},$$

Robust constraint (e.g. the knapsack)

$$\mathcal{U}_0^* \subset \mathcal{U}_0,\, \mathcal{U}_j^* \subset \mathcal{U}_j$$

$$\begin{aligned} \min \left\{ & z : \\ MP & u_j^T x \leq b_j, \quad j = 1, \dots, m, \ u_j \in \mathcal{U}_j^*, \\ & u_0^T x \leq z, \quad u_0 \in \mathcal{U}_0^*, \\ & a_k^T x \leq d_k, \quad k = 1, \dots, \ell \\ & x \in \{0, 1\}^n \quad \right\} \end{aligned}$$

- **Solve** $MP \rightarrow \text{get } \tilde{x}, \tilde{z}$
- **Solve** $\max_{i \in \mathcal{I}'} u_0^i \tilde{x}$ and $\max_{i \in \mathcal{I}'} u_i^i \tilde{x} \to \text{get } \tilde{u}_0, \dots, \tilde{u}_m$
- If $\tilde{u}_0^T \tilde{x} > \tilde{z}$ or $\tilde{u}_i^T \tilde{x} > b_i$ then

$$\mathcal{U}_0^* \subset \mathcal{U}_0$$
, $\mathcal{U}_j^* \subset \mathcal{U}_j$

$$\begin{aligned} \min \left\{ & z : \\ MP & u_j^T x \leq b_j, \quad j = 1, \dots, m, \ u_j \in \mathcal{U}_j^*, \\ & u_0^T x \leq z, \quad u_0 \in \mathcal{U}_0^*, \\ & a_k^T x \leq d_k, \quad k = 1, \dots, \ell \\ & x \in \{0, 1\}^n \quad \right\} \end{aligned}$$

- **① Solve** $MP \rightarrow \text{get } \tilde{x}, \tilde{z}$
- **2** Solve $\max_{u_0 \in \mathcal{U}_0} u_0^T \tilde{x}$ and $\max_{u_j \in \mathcal{U}_j} u_j^T \tilde{x} \to \text{get } \tilde{u}_0, \dots, \tilde{u}_m$
- ① If $\tilde{u}_0^T \tilde{x} > \tilde{z}$ or $\tilde{u}_j^T \tilde{x} > b_j$ then

 $\mathcal{U}_0^* \leftarrow \mathcal{U}_0^* \cup \{\tilde{u}_0\}$ and $\mathcal{U}_0^* \leftarrow \mathcal{U}_j^* \cup \{\tilde{u}_j\}$ go back to ①

$$\mathcal{U}_0^* \subset \mathcal{U}_0$$
, $\mathcal{U}_j^* \subset \mathcal{U}_j$

$$\begin{aligned} \min \left\{ & z : \\ MP & u_j^T x \leq b_j, \quad j = 1, \dots, m, \ u_j \in \mathcal{U}_j^*, \\ & u_0^T x \leq z, \quad u_0 \in \mathcal{U}_0^*, \\ & a_k^T x \leq d_k, \quad k = 1, \dots, \ell \\ & x \in \{0, 1\}^n \quad \right\} \end{aligned}$$

- **① Solve** $MP \rightarrow \text{get } \tilde{x}, \tilde{z}$
- **2 Solve** $\max_{u_0 \in \mathcal{U}_0} u_0^T \tilde{x}$ and $\max_{u_j \in \mathcal{U}_j} u_j^T \tilde{x} \to \text{get } \tilde{u}_0, \dots, \tilde{u}_m$

$$\mathcal{U}_0^* \subset \mathcal{U}_0$$
, $\mathcal{U}_j^* \subset \mathcal{U}_j$

$$\begin{aligned} \min \left\{ & z : \\ MP & u_j^\mathsf{T} x \leq b_j, & j = 1, \dots, m, \ u_j \in \mathcal{U}_j^*, \\ & u_0^\mathsf{T} x \leq z, & u_0 \in \mathcal{U}_0^*, \\ & a_k^\mathsf{T} x \leq d_k, & k = 1, \dots, \ell \\ & x \in \{0, 1\}^n \end{aligned} \right\}$$

- **① Solve** $MP \rightarrow \text{get } \tilde{x}, \tilde{z}$
- **② Solve** $\max_{u_0 \in \mathcal{U}_0} u_0^T \tilde{x}$ and $\max_{u_i \in \mathcal{U}_i} u_j^T \tilde{x} \to \text{get } \tilde{u}_0, \dots, \tilde{u}_m$
- **3** If $\tilde{u}_0^T \tilde{x} > \tilde{z}$ or $\tilde{u}_i^T \tilde{x} > b_j$ then
 - $\mathcal{U}_0^* \leftarrow \mathcal{U}_0^* \cup \{\tilde{u}_0\}$ and $\mathcal{U}_0^* \leftarrow \mathcal{U}_j^* \cup \{\tilde{u}_j\}$
 - go back to ①

$$\mathcal{U}_0^* \subset \mathcal{U}_0$$
, $\mathcal{U}_j^* \subset \mathcal{U}_j$

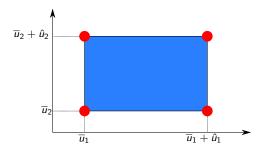
$$\begin{aligned} \min \left\{ & z : \\ MP & u_j^T x \leq b_j, \quad j = 1, \dots, m, \ u_j \in \mathcal{U}_j^*, \\ & u_0^T x \leq z, \quad u_0 \in \mathcal{U}_0^*, \\ & a_k^T x \leq d_k, \quad k = 1, \dots, \ell \\ & x \in \{0, 1\}^n \quad \right\} \end{aligned}$$

- **① Solve** $MP \rightarrow \text{get } \tilde{x}, \tilde{z}$
- **② Solve** $\max_{u_0 \in \mathcal{U}_0} u_0^T \tilde{x}$ and $\max_{u_j \in \mathcal{U}_j} u_j^T \tilde{x} \to \text{get } \tilde{u}_0, \dots, \tilde{u}_m$
- **3** If $\tilde{u}_0^T \tilde{x} > \tilde{z}$ or $\tilde{u}_i^T \tilde{x} > b_i$ then
 - $\mathcal{U}_0^* \leftarrow \mathcal{U}_0^* \cup \{\tilde{u}_0\}$ and $\mathcal{U}_0^* \leftarrow \mathcal{U}_i^* \cup \{\tilde{u}_i\}$
 - go back to ①

Simpler structure: \mathcal{U}^{Γ} -robust combinatorial optimization

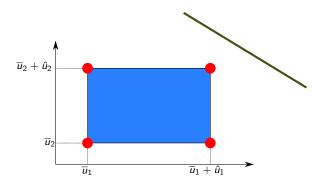
$$\mathcal{U}^{\mathsf{\Gamma}} = \left\{ \overline{u}_i \leq u_i \leq \overline{u}_i + \hat{u}_i, i = 1, \ldots, n, \sum_{i=1}^n \frac{u_i - \overline{u}_i}{\hat{u}_i} \leq
ight\}$$

Simpler structure: $\mathcal{U}^{\mathsf{\Gamma}}$ -robust combinatorial optimization



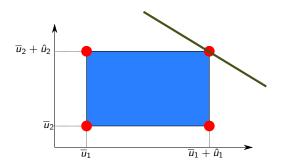
$$\mathcal{U}^{\Gamma} = \left\{ \overline{u}_i \leq u_i \leq \overline{u}_i + \hat{u}_i, i = 1, \dots, n, \sum_{i=1}^n \frac{u_i - \overline{u}_i}{\hat{u}_i} \leq \right\}$$

Simpler structure: $\mathcal{U}^{\mathsf{\Gamma}}$ -robust combinatorial optimization



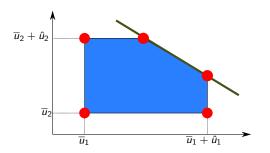
$$\mathcal{U}^{\Gamma} = \left\{ \overline{u}_i \leq u_i \leq \overline{u}_i + \hat{u}_i, i = 1, \dots, n, \sum_{i=1}^n \frac{u_i - \overline{u}_i}{\hat{u}_i} \leq \Gamma \right\}$$

Simpler structure: \mathcal{U}^{Γ} -robust combinatorial optimization



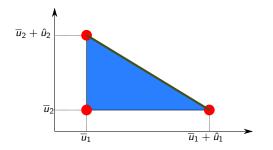
$$\mathcal{U}^{\Gamma} = \left\{ \overline{u}_i \leq u_i \leq \overline{u}_i + \hat{u}_i, i = 1, \dots, n, \sum_{i=1}^n \frac{u_i - \overline{u}_i}{\hat{u}_i} \leq 2 \right\}$$

Simpler structure: $\mathcal{U}^{\mathsf{\Gamma}}$ -robust combinatorial optimization



$$\mathcal{U}^{\Gamma} = \left\{ \overline{u}_i \leq u_i \leq \overline{u}_i + \hat{u}_i, i = 1, \dots, n, \sum_{i=1}^n \frac{u_i - \overline{u}_i}{\hat{u}_i} \leq 1.5 \right\}$$

Simpler structure: \mathcal{U}^{Γ} -robust combinatorial optimization



$$\mathcal{U}^{\Gamma} = \left\{ \overline{u}_i \leq u_i \leq \overline{u}_i + \hat{u}_i, i = 1, \dots, n, \sum_{i=1}^n \frac{u_i - \overline{u}_i}{\hat{u}_i} \leq 1 \right\}$$

Iterative algorithms for \mathcal{U}^{Γ}

$$\mathcal{P} = \left\{ \overline{u}_i \leq u_i \leq \overline{u}_i + \hat{u}_i, i = 1, \dots, n, \sum_{i=1}^n \frac{u_i - \overline{u}_i}{\hat{u}_i} \leq \Gamma \right\}$$

Theorem (Bertsimas and Sim [2003], Goetzmann et al. [2011], Álvarez-Miranda et al. [2013], Lee and Kwon [2014])

Cost uncertainty \mathcal{U}^{Γ} - $CO \Rightarrow solving \sim n/2$ problems CO. Numerical uncertainty \mathcal{U}^{Γ} - $CO \Rightarrow solving \sim (n/2)^m$ problems C

Iterative algorithms for \mathcal{U}^{Γ}

$$\mathcal{U}^{\Gamma} = \textit{vertices}\left(\left\{\overline{u}_i \leq u_i \leq \overline{u}_i + \hat{u}_i, i = 1, \dots, n, \sum_{i=1}^n \frac{u_i - \overline{u}_i}{\hat{u}_i} \leq \Gamma\right\}\right)$$

Iterative algorithms for \mathcal{U}^{Γ}

$$\mathcal{U}^{\Gamma} = \text{vertices}\left(\left\{\overline{u}_i \leq u_i \leq \overline{u}_i + \hat{u}_i, i = 1, \dots, n, \sum_{i=1}^n \frac{u_i - \overline{u}_i}{\hat{u}_i} \leq \Gamma\right\}\right)$$

Theorem (Bertsimas and Sim [2003], Goetzmann et al. [2011], Álvarez-Miranda et al. [2013], Lee and Kwon [2014])

Cost uncertainty \mathcal{U}^{Γ} - $CO \Rightarrow solving \sim n/2$ problems CO.

Numerical uncertainty \mathcal{U}^{Γ} - $CO \Rightarrow solving \sim (n/2)^m$ problems CO.

Other convex \mathcal{U} (recall that $\mathcal{U} \Leftrightarrow \text{conv}(\mathcal{U})$)

Total deviation

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum\limits_{i=1}^n (u_i - \overline{u}_i) \leq \Omega\right\} \Rightarrow \mathsf{solving} \ 2 \ \mathsf{problems} \ \mathit{CO}$$

[Poss, 2017])

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum_{i=1}^{n} a_i u_i \leq b\right\} \Rightarrow \text{solving } n \text{ problems } CC$$

Decision-dependent [Poss, 2013, 2014, Nohadani and Sharma, 2016]

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum_{i=1}^{n} a_i u_i \leq b(x)\right\} \Rightarrow \text{solving } n \text{ problems } CO$$

[Mokarami and Hashemi, 2015]

$$\left\{\sum_{i=1}^{n} \left(\frac{u_i - \overline{u}_i}{\hat{u}_i}\right)^2 \leq \Omega\right\} \Rightarrow \text{solving } n \max_i \hat{u}_i \text{ problems } CC$$

Other convex \mathcal{U} (recall that $\mathcal{U} \Leftrightarrow \mathsf{conv}(\mathcal{U})$)

Total deviation

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum_{i=1}^{n} (u_i - \overline{u}_i) \leq \Omega\right\} \Rightarrow \text{solving 2 problems } CO$$

Knapsack uncertainty [Poss, 2017])

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum\limits_{i=1}^n a_i u_i \leq b \right\} \Rightarrow \mathsf{solving} \ n \ \mathsf{problems} \ \mathit{CO}$$

Decision-dependent [Poss, 2013, 2014, Nohadani and Sharma, 2016]

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum_{i=1}^{n} a_i u_i \leq b(x)\right\} \Rightarrow \text{solving } n \text{ problems } CO$$

[Mokarami and Hashemi, 2015]

$$\left\{\sum_{i=1}^n \left(\frac{u_i - \overline{u}_i}{\hat{u}_i}\right)^2 \leq \Omega\right\} \Rightarrow \text{solving } n \max_i \hat{u}_i \text{ problems } CO$$

Other convex \mathcal{U} (recall that $\mathcal{U} \Leftrightarrow \text{conv}(\mathcal{U})$)

Total deviation

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum_{i=1}^{n} (u_i - \overline{u}_i) \leq \Omega\right\} \Rightarrow \text{solving 2 problems } CO$$

Knapsack uncertainty [Poss, 2017])

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum_{i=1}^{n} a_i u_i \leq b\right\} \Rightarrow \text{solving } n \text{ problems } CO$$

Decision-dependent [Poss, 2013, 2014, Nohadani and Sharma, 2016]

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum_{i=1}^{n} a_i u_i \leq b(x)\right\} \Rightarrow \text{solving } n \text{ problems } CO$$

[Mokarami and Hashemi, 2015]

$$\left\{\sum_{i=1}^{n}\left(\frac{u_{i}-\overline{u}_{i}}{\hat{u}_{i}}\right)^{2}\leq\Omega\right\}\Rightarrow$$
 solving $n\max_{i}\hat{u}_{i}$ problems CO

Other convex \mathcal{U} (recall that $\mathcal{U} \Leftrightarrow \text{conv}(\mathcal{U})$)

Total deviation

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum_{i=1}^{n} (u_i - \overline{u}_i) \leq \Omega\right\} \Rightarrow \text{solving 2 problems } CO$$

Knapsack uncertainty [Poss, 2017])

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum_{i=1}^n a_i u_i \leq b\right\} \Rightarrow \text{solving } n \text{ problems } CO$$

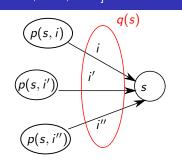
Decision-dependent [Poss, 2013, 2014, Nohadani and Sharma, 2016]

$$\left\{\overline{u} \leq u \leq \overline{u} + \hat{u}, \sum_{i=1}^{n} a_i u_i \leq b(x)\right\} \Rightarrow \text{solving } n \text{ problems } CO$$

Axis-parallel Ellipsoids [Mokarami and Hashemi, 2015]

$$\left\{\sum_{i=1}^n \left(\frac{u_i - \overline{u}_i}{\hat{u}_i}\right)^2 \leq \Omega\right\} \Rightarrow \text{solving } n \max_i \hat{u}_i \text{ problems } CO$$

Dynamic Programming [Klopfenstein and Nace, 2008, Monaci et al., 2013, Poss, 2014]



Classical recurrence

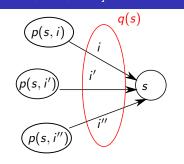
$$F(s)$$
 = cheapest cost up to state s ; $F(O) = 0$

$$F(s) = \min_{i \in q(s)} \{ F(p(s,i)) + u_i \}, \quad s \in S \setminus O$$

$$F(s,\alpha)=$$
 cheapest cost up to state s with α remaining deviations; $F(O,\alpha)=0$

$$\begin{cases}
F(s,\alpha) &= \min_{i \in q(s)} \{ \max(F(p(s,i),\alpha) + \overline{u}_i, F(p(s,i),\alpha-1) + \overline{u}_i + \hat{u}_i) \}, \\
S &= S \setminus O, 1 \leq \alpha \leq \Gamma, \\
F(s,0) &= \min_{i \in q(s)} \{ F(p(s,i),0) + \overline{u}_i \}, \\
S &= S \setminus O.
\end{cases}$$

Dynamic Programming [Klopfenstein and Nace, 2008, Monaci et al., 2013, Poss, 2014]



Classical recurrence

$$F(s) =$$
cheapest cost up to state s ; $F(O) = 0$

$$F(s) = \min_{i \in q(s)} \{ F(p(s,i)) + u_i \}, \quad s \in S \setminus O$$

Robust recurrence

$$F(s, \alpha) = \text{cheapest cost up to state } s \text{ with } \alpha \text{ remaining deviations; } F(O, \alpha) = 0$$

$$\begin{cases}
F(s,\alpha) &= \min_{i \in q(s)} \{ \max(F(p(s,i),\alpha) + \overline{u}_i, F(p(s,i),\alpha-1) + \overline{u}_i + \hat{u}_i) \}, \\
F(s,0) &= \min_{i \in q(s)} \{ F(p(s,i),0) + \overline{u}_i \}, \\
S &\in S \setminus O, 1 \leq \alpha \leq \Gamma, \\
S &\in S \setminus O.
\end{cases}$$

Hard problems must have one of

- non-constant number of robust "linear" constraints
- "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])

 \mathcal{U}^Γ -robust shortest path with time windows is \mathcal{NP} -hard in the strong sense.

Theorem (Bougeret et al. [2016])

Hard problems must have one of

- non-constant number of robust "linear" constraints
- "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])

 \mathcal{U}^{Γ} -robust shortest path with time windows is \mathcal{NP} -hard in the strong sense.

Theorem (Bougeret et al. [2016])

Hard problems must have one of

- non-constant number of robust "linear" constraints
- "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])

 \mathcal{U}^{Γ} -robust shortest path with time windows is \mathcal{NP} -hard in the strong sense.

Theorem (Bougeret et al. [2016])

Hard problems must have one of

- non-constant number of robust "linear" constraints
- "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])

 \mathcal{U}^{Γ} -robust shortest path with time windows is \mathcal{NP} -hard in the strong sense.

Theorem (Bougeret et al. [2016])

\mathcal{U}^{Γ} -TWSP is \mathcal{NP} -hard in the strong sense

ROBUST PATH WITH DEADLINES $(\mathcal{U}^{\Gamma}-PD)$

Input: Graph D = (N, A), \hat{u}_a , Γ , $\overline{u} = 0$.

Question: There exists a path $p = o \rightsquigarrow i_2 \rightsquigarrow i_3 \rightsquigarrow \cdots \rightsquigarrow d$

$$\sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}, ext{ for each } h=1,\ldots,I, \ u \in \mathcal{U}^{ extsf{T}}$$
?

INDEPENDENT SET (IS)

Input: An undirected graph G = (V, E) and a positive integer K.

Question: There exists $W \subseteq V$ such that $|W| \ge K$ and $\{i, j\} \nsubseteq W$ for each $\{i, j\} \subseteq F$?

each $\{i,j\} \in E$?

\mathcal{U}^{Γ} -TWSP is \mathcal{NP} -hard in the strong sense

ROBUST PATH WITH DEADLINES $(\mathcal{U}^{\Gamma}-PD)$

Input: Graph D = (N, A), \hat{u}_a , Γ , $\overline{u} = 0$.

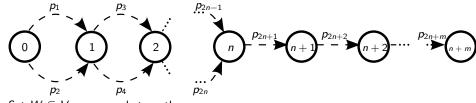
Question: There exists a path $p = o \rightsquigarrow i_2 \rightsquigarrow i_3 \rightsquigarrow \cdots \rightsquigarrow d$

$$\sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}, \text{ for each } h=1,\ldots,l, \ u \in \mathcal{U}^{\mathsf{\Gamma}}?$$

INDEPENDENT SET (IS)

Input: An undirected graph G = (V, E) and a positive integer K.

Question: There exists $W \subseteq V$ such that $|W| \ge K$ and $\{i, j\} \nsubseteq W$ for each $\{i, j\} \in E$?



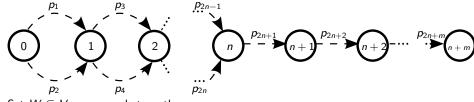
Set $W \subseteq V$ corresponds to path p_W :

- p_W contains p_{2i} iff $i \in W$
- p_W contains p_{2i-1} iff $i \notin W$

Observation

$$\sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}, \ \forall u \in \mathcal{U}^{\Gamma} \quad \Leftrightarrow \max_{u \in \mathcal{U}^{\Gamma}} \sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_k}$$

Parameters \hat{u} and \overline{h} are chosen such that



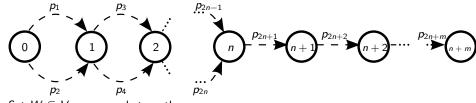
Set $W \subseteq V$ corresponds to path p_W :

- p_W contains p_{2i} iff $i \in W$
- p_W contains p_{2i-1} iff $i \notin W$

Observation

$$\sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}, \ \forall u \in \mathcal{U}^{\Gamma} \quad \Leftrightarrow \max_{u \in \mathcal{U}^{\Gamma}} \sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}$$

Parameters $\hat{\mu}$ and \overline{h} are chosen such that



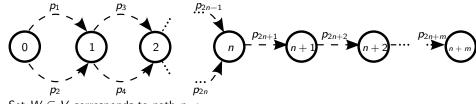
Set $W \subseteq V$ corresponds to path p_W :

- p_W contains p_{2i} iff $i \in W$
- p_W contains p_{2i-1} iff $i \notin W$

Observation

$$\sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}, \ \forall u \in \mathcal{U}^{\Gamma} \quad \Leftrightarrow \max_{u \in \mathcal{U}^{\Gamma}} \sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}$$

Parameters \hat{u} and \overline{b} are chosen such that



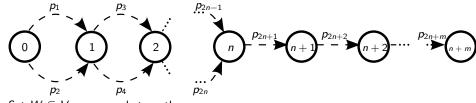
Set $W \subseteq V$ corresponds to path p_W :

- p_W contains p_{2i} iff $i \in W$
- p_W contains p_{2i-1} iff $i \notin W$

Observation

$$\sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}, \ \forall u \in \mathcal{U}^{\Gamma} \quad \Leftrightarrow \max_{u \in \mathcal{U}^{\Gamma}} \sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}$$

Parameters \hat{u} and \overline{b} are chosen such that



Set $W \subseteq V$ corresponds to path p_W :

- p_W contains p_{2i} iff $i \in W$
- p_W contains p_{2i-1} iff $i \notin W$

Observation

$$\sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}, \ \forall u \in \mathcal{U}^{\Gamma} \quad \Leftrightarrow \max_{u \in \mathcal{U}^{\Gamma}} \sum_{k=1}^{h-1} u_{i_k i_{k+1}} \leq \overline{b}_{i_h}$$

Parameters \hat{u} and \overline{b} are chosen such that

Master problem

$$\begin{aligned} \min \left\{ & c^T x : \\ MP & & f(x, u) \leq 0, \quad u \in \mathcal{U}^*, \\ & a_k^T x \leq d_k, \quad k = 1, \dots, \ell \\ & x \in \{0, 1\}^n & \right\} \end{aligned}$$

- **o** solve $MP \to \text{get } \tilde{x}$; solve $\max_{u \in \mathcal{U}} f(\tilde{x}, u) \to \text{get } \tilde{u}$
- \bigcirc If $f(\tilde{x}, \tilde{u}) > 0$ then $\mathcal{U}^* \leftarrow \mathcal{U}^* \cup \{\tilde{u}\};$ go back to \bigcirc

Examples [Agra et al., 2016]

Minimizing tardiness $f(x, u) = \sum_{i=1}^{n} w_i \max\{C_i(x, u) - d_i, 0\}$

Master problem

$$\min \left\{ \begin{array}{ll} c^T x : \\ MP & f(x, u) \leq 0, \quad u \in \mathcal{U}^*, \\ a_k^T x \leq d_k, \quad k = 1, \dots, \ell \\ x \in \{0, 1\}^n \end{array} \right\}$$

- **3** solve $MP \to \text{get } \tilde{x};$ solve $\max_{u \in \mathcal{U}} f(\tilde{x}, u) \to \text{get } \tilde{u}$
- ② If $f(\tilde{x}, \tilde{u}) > 0$ then $\mathcal{U}^* \leftarrow \mathcal{U}^* \cup \{\tilde{u}\};$ go back to ①

Examples [Agra et al., 2016]

Minimizing tardiness $f(x,u) = \sum_i w_i \max\{C_i(x,u) - d_i, 0\}$

Lot-sizing
$$f(x, u) = \sum_{i=1}^{n} \max \left\{ h_i (\sum_{j=1}^{i} x_i - \sum_{j=1}^{i} u_j), p_i (\sum_{j=1}^{i} u_i - \sum_{j=1}^{i} x_i) \right\}$$

Master problem

$$\min \left\{ \begin{array}{ll} c^T x : \\ MP & f(x, u) \leq 0, \quad u \in \mathcal{U}^*, \\ a_k^T x \leq d_k, \quad k = 1, \dots, \ell \\ x \in \{0, 1\}^n \end{array} \right\}$$

- **1 solve** $MP \to \text{get } \tilde{x};$ **solve** $\max_{u \in \mathcal{U}} f(\tilde{x}, u) \to \text{get } \tilde{u}$
- ② If $f(\tilde{x}, \tilde{u}) > 0$ then $\mathcal{U}^* \leftarrow \mathcal{U}^* \cup \{\tilde{u}\};$ go back to ④

Examples [Agra et al., 2016]

Minimizing tardiness $f(x, u) = \sum w_i \max\{C_i(x, u) - d_i, 0\}$

Lot-sizing $f(x, u) = \sum_{i=1}^{n} \max \left\{ h_i (\sum_{j=1}^{i} x_i - \sum_{j=1}^{i} u_i), \rho_i (\sum_{j=1}^{i} u_i - \sum_{j=1}^{i} x_i) \right\}$

Master problem

$$\min \left\{ \begin{array}{ll} c^T x : \\ MP & f(x, u) \leq 0, \quad u \in \mathcal{U}^*, \\ a_k^T x \leq d_k, \quad k = 1, \dots, \ell \\ x \in \{0, 1\}^n \end{array} \right\}$$

- **3** solve $MP \to \text{get } \tilde{x};$ solve $\max_{u \in \mathcal{U}} f(\tilde{x}, u) \to \text{get } \tilde{u}$
- ② If $f(\tilde{x}, \tilde{u}) > 0$ then $\mathcal{U}^* \leftarrow \mathcal{U}^* \cup \{\tilde{u}\};$ go back to ①

Examples [Agra et al., 2016]

Minimizing tardiness
$$f(x, u) = \sum_{i=1}^{n} w_i \max\{C_i(x, u) - d_i, 0\}$$

Lot-sizing
$$f(x, u) = \sum_{i=1}^{n} \max \left\{ h_i (\sum_{j=1}^{i} x_i - \sum_{j=1}^{i} u_i), p_i (\sum_{j=1}^{i} u_i - \sum_{j=1}^{i} x_i) \right\}$$

Master problem

min
$$\left\{ \begin{array}{ll} c^T x : \\ MP & f(x,u) \leq 0, \quad u \in \mathcal{U}^*, \\ a_k^T x \leq d_k, \quad k = 1, \dots, \ell \\ x \in \{0,1\}^n \end{array} \right\}$$

- **1 solve** $MP \to \text{get } \tilde{x};$ **solve** $\max_{u \in \mathcal{U}} f(\tilde{x}, u) \to \text{get } \tilde{u}$
- ② If $f(\tilde{x}, \tilde{u}) > 0$ then $\mathcal{U}^* \leftarrow \mathcal{U}^* \cup \{\tilde{u}\};$ go back to ①

Examples [Agra et al., 2016]

Minimizing tardiness
$$f(x, u) = \sum_{i=1}^{n} w_i \max\{C_i(x, u) - d_i, 0\}$$

Lot-sizing
$$f(x, u) = \sum_{i=1}^{n} \max \left\{ h_i \left(\sum_{j=1}^{i} x_i - \sum_{j=1}^{i} u_i \right), p_i \left(\sum_{j=1}^{i} u_i - \sum_{j=1}^{i} x_i \right) \right\}$$

Cookbook for static problems

Dualization

good easy to apply

bad breaks combinatorial structure (e.g. shortest path)

Cutting plane algorithms (branch-and-cut)

good handle non-linear functions

bad implementation effort

Iterative algorithms, dynamic programming

good good theoretical bounds

bad solving n^s problems can be too much

Cookbook for static problems

Dualization

good easy to apply

bad breaks combinatorial structure (e.g. shortest path)

Cutting plane algorithms (branch-and-cut)

good handle non-linear functions

bad implementation effort

Iterative algorithms, dynamic programming

good good theoretical bounds

bad solving n^s problems can be too much

Cookbook for static problems

Dualization

good easy to apply

bad breaks combinatorial structure (e.g. shortest path)

Cutting plane algorithms (branch-and-cut)

good handle non-linear functions

bad implementation effort

Iterative algorithms, dynamic programming

good good theoretical bounds

bad solving n^s problems can be too much

Open questions

Knapsack/budget uncertainty

- ullet Easy problems that turn $\mathcal{NP} ext{-hard}$
- Approximation algorithms

Scheduling seems to be a good niche.

Ellipsoidal uncertainty

Axis-parallel \mathcal{NP} -hard in general? (known FPTAS) General Approximation algorithms

Open questions

Knapsack/budget uncertainty

- ullet Easy problems that turn $\mathcal{NP} ext{-hard}$
- Approximation algorithms

Scheduling seems to be a good niche.

Ellipsoidal uncertainty

Axis-parallel \mathcal{NP} -hard in general? (known FPTAS)

General Approximation algorithms

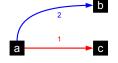
Outline

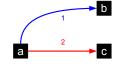
- General overview
- Static problems
- 3 Adjustable RO
- 4 Two-stages problems with real recourse
- Multi-stage problems with real recourse
- 6 Multi-stage with integer recourse

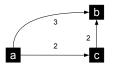
2-stages example: network design

Demands vectors $\{u_1, \ldots, u_n\}$ that must be routed **non-simultaneously** on a network to be designed.

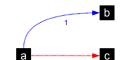
- \Rightarrow two-stages program:
 - capacities
 - outing.



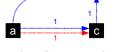




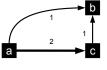
Demands for scenario 1



Capacity cost per uni



Routing for scenario 2

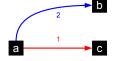


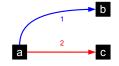
Routing for scenario

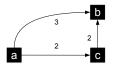
2-stages example: network design

Demands vectors $\{u_1, \ldots, u_n\}$ that must be routed **non-simultaneously** on a network to be designed.

- ⇒ two-stages program:
 - capacities
 - outing.

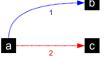






Demands for scenario 1

Capacity cost per unit

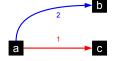


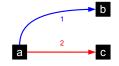
Demands for scenario 2

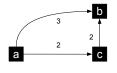
2-stages example: network design

Demands vectors $\{u_1, \ldots, u_n\}$ that must be routed **non-simultaneously** on a network to be designed.

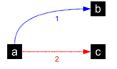
- ⇒ two-stages program:
 - capacities
 - 2 routing.



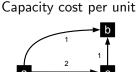




Demands for scenario 1



Demands for scenario 2



Routing for scenario 1

Routing for scenario 2

Capacity installation

multistage example: lot sizing

Given

- Production costs c
- Uncertain demands vectors

$$u_1 = (u_{11}, u_{12}, \dots, u_{1t}), \dots, u_n = (u_{n1}, u_{n2}, \dots, u_{nt})$$

Storage costs h

Compute

A production plan that minimizes the costs

Variables

- $y_i(u)$ production at period i for demand scenario u
- $x_i(u)$ stock at the end of period i for demand scenario u

min
$$\gamma$$

s.t. $\gamma \geq \sum_{i=1}^{t} (c_i y_i(u) + h_i x_i(u))$ $u \in \mathcal{U}$
 $x_{i+1}(u) = x_i(u) + y_i(u) - u_i$ $i = 1, \dots, t, u \in \mathcal{U}$
 $x, y \geq 0$

Something is wrong

Variables

- $y_i(u)$ production at period i for demand scenario u
- $x_i(u)$ stock at the end of period i for demand scenario u

min
$$\gamma$$

s.t. $\gamma \geq \sum_{i=1}^{t} (c_i y_i(u) + h_i x_i(u))$ $u \in \mathcal{U}$
 $x_{i+1}(u) = x_i(u) + y_i(u) - u_i$ $i = 1, \dots, t, u \in \mathcal{U}$
 $x, y \geq 0$

Something is wrong!

Consider a lot-sizing problem with

- two different products A and B
- at most 1 unit of product (A and B together) can be produced at each period
- two time periods
- we know the demand of the current period at the beginning of the period
- two scenarios u and u' defined as follows:

$$u = \begin{bmatrix} t = 1 & t = 2 \\ \hline A: & 0 & 2 \\ B: & 0 & 0 \end{bmatrix}, \qquad u' = \begin{bmatrix} t = 1 & t = 2 \\ \hline A: & 0 & 0 \\ B: & 0 & 2 \end{bmatrix},$$

Question Propose a feasible production plan

Answer The problem is infeasible!

Consider a lot-sizing problem with

- two different products A and B
- at most 1 unit of product (A and B together) can be produced at each period
- two time periods
- we know the demand of the current period at the beginning of the period
- two scenarios u and u' defined as follows:

$$u = \begin{bmatrix} t = 1 & t = 2 \\ A : & 0 & 2 \\ B : & 0 & 0 \end{bmatrix}, \qquad u' = \begin{bmatrix} t = 1 & t = 2 \\ A : & 0 & 0 \\ B : & 0 & 2 \end{bmatrix},$$

Question Propose a feasible production plan

Answer The problem is infeasible!

Consider a lot-sizing problem with

- two different products A and B
- at most 1 unit of product (A and B together) can be produced at each period
- two time periods
- we know the demand of the current period at the beginning of the period
- two scenarios u and u' defined as follows:

$$u = \begin{bmatrix} t = 1 & t = 2 \\ A : & 0 & 2 \\ B : & 0 & 0 \end{bmatrix}, \qquad u' = \begin{bmatrix} t = 1 & t = 2 \\ A : & 0 & 0 \\ B : & 0 & 2 \end{bmatrix},$$

Question Propose a feasible production plan

Answer The problem is infeasible!

$$u^1 = u'^1$$

Consider a lot-sizing problem with

- two different products A and B
- at most 1 unit of product (A and B together) can be produced at each period
- two time periods
- we know the demand of the current period at the beginning of the period
- two scenarios u and u' defined as follows:

$$u = \begin{bmatrix} t = 1 & t = 2 \\ \hline A: & 1 & 2 \\ B: & 0 & 0 \end{bmatrix}, \qquad u' = \begin{bmatrix} t = 1 & t = 2 \\ \hline A: & 0 & 0 \\ B: & 1 & 2 \end{bmatrix},$$

Question Propose a feasible production plan

Answer The problem is infeasible!

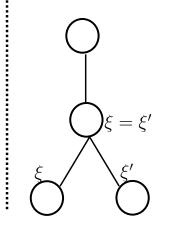
$$u^1 = u'^1$$

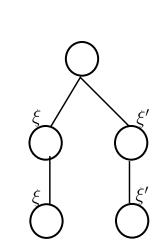
Graphical representation - scenario tree

period 0

period 1

period 2





- $y_i(u)$ production at period i for demand scenario u
- $x_i(u)$ stock at the end of period i for demand scenario u

min
$$\gamma$$

s.t. $\gamma \geq \sum_{i=1}^{t} (c_i y_i(u) + h_i x_i(u))$ $u \in \mathcal{U}$
 $x_{i+1}(u) = x_i(u) + y_i(u) - u_i$ $i = 1, \dots, t, u \in \mathcal{U}$
 $x, y \geq 0$

- $y_i(u)$ production at period i for demand scenario u
- $x_i(u)$ stock at the end of period i for demand scenario u

s.t.
$$\gamma \ge \sum_{i=1}^{t} (c_i y_i(u) + h_i x_i(u))$$
 $u \in \mathcal{U}$ $x_{i+1}(u) = x_i(u) + y_i(u) - u_i$ $i = 1, ..., t, u \in \mathcal{U}$ $y_i(u) = y_i(u')$ $i = 1, ..., t, u, u' \in \mathcal{U}, u^i = u'^i$ $x, y \ge 0$

- $y_i(u)$ production at period i for demand scenario u
- $x_i(u)$ stock at the end of period i for demand scenario u

min
$$\gamma$$

s.t. $\gamma \ge \sum_{i=1}^{t} (c_i y_i(\mathbf{u}^i) + h_i x_i(u))$ $u \in \mathcal{U}$
 $x_{i+1}(u) = x_i(u) + y_i(\mathbf{u}^i) - u_i$ $i = 1, \dots, t, u \in \mathcal{U}$
 $x, y \ge 0$

2-stages integer example: knapsack

Given a capacity C, and a set of items I with profits c and weights w(u), **find** the subset of items $N \subseteq I$ that maximizes its profit

such that

for each $u \in \mathcal{U}$, we can remove items in K(u) from N and the total weight satisfies

$$\sum_{n\in N\setminus K(u)}w_n(u)\leq C$$

.

multistage integer example: lot sizing

- $y_i(u)$ production at period i for demand scenario u
- $x_i(u)$ stock at the end of period i for demand scenario u
- $z_i(u)$ allowing production for period i for demand scenario u

$$\begin{aligned} & \text{min} \quad \gamma \\ & \text{s.t.} \quad \gamma \geq \sum_{i=1}^t (c_i y_i(u^i) + h_i x_i(u)) \quad u \in \mathcal{U} \\ & \quad x_{i+1}(u) = x_i(u) + y_i(u^i) - u_i \quad i = 1, \dots, t, \ u \in \mathcal{U} \\ & \quad y_i(u^i) \leq M z_i(u^i) \quad i = 1, \dots, t, \ u \in \mathcal{U} \\ & \quad x, y \geq 0 \\ & \quad z \in \{0, 1\}^{t|\mathcal{U}|} \end{aligned}$$

Outline

- General overview
- Static problems
- 3 Adjustable RC
- 4 Two-stages problems with real recourse
- Multi-stage problems with real recourse
- 6 Multi-stage with integer recourse

Exact solution procedure

min
$$c^T x$$

s.t. $x \in \mathcal{X}$
(P) $A(u)x + Ey(u) \le b \quad u \in \mathcal{U}$ (6)

where $A(u) = A^0 + \sum A_k u_k$.

Lemma

We can replace (6) by

$$A(u)x + Ey(u) \le b$$
 $u \in ext(\mathcal{U})$.

ldea of the proof

$$A(u^*)x^* + Ey(u^*) \le b \Leftrightarrow \sum_{s=1}^{\text{ext}(\mathcal{U})} \lambda_s \left(A(u_s)x^* + Ey(u_s) \right) \le \sum_{s=1}^{\text{ext}(\mathcal{U})} \lambda_s b.$$

Exact solution procedure

min
$$c^T x$$

s.t. $x \in \mathcal{X}$
 (P) $A(u)x + Ey(u) \le b$ $u \in \mathcal{U}$ (6)

where $A(u) = A^0 + \sum A_k u_k$.

Lemma

We can replace (6) by

$$A(u)x + Ey(u) \le b$$
 $u \in ext(\mathcal{U})$.

Idea of the proof:

$$A(u^*)x^* + Ey(u^*) \le b \Leftrightarrow \sum_{s=1}^{\text{ext}(\mathcal{U})} \lambda_s \left(A(u_s)x^* + Ey(u_s) \right) \le \sum_{s=1}^{\text{ext}(\mathcal{U})} \lambda_s b.$$

Master problem

$$\begin{array}{ll} & \text{min} & c^T x \\ \mathcal{U}^*\text{-}\mathit{LSP}' & \text{s.t.} & x \in \mathcal{X}. \\ & & \text{Constraints corresponding to } u \in \mathcal{U}^* \end{array}$$

Separation

$$\max \quad (b - A^0 x^*)^T \pi - \sum_{k \in K} (A^{1k} x^*)^T v^k$$

$$(SPL) \quad \text{s.t.} \quad u \in \mathcal{U}$$

$$E^T \pi = 0$$

$$\mathbf{1}^T \pi = 1$$

$$v_m^k \ge \pi_m - (1 - u^k) \qquad k \in K, m \in M$$

$$v_m^k \le u^k \qquad k \in K, m \in M$$

$$\pi, v_m^k \ge 0,$$

$$u \in \{0, 1\}^K.$$

Two different approaches

Benders

$$(b - A(u^*)x)^T \pi^* \le 0.$$
 (7)

Row and column generation

$$A(u^*)x + Ey(u^*) \le b.$$
 (8)

Algorithm 1: RG and RCG

```
repeat
```

```
solve \mathcal{U}^*-LSP';

let x^* be an optimal solution;

solve (SPL);

let (u^*, \pi^*) be an optimal solution and z^* be the optimal solution cost;

if z^* > 0 then

RG: add constraint (7) to \mathcal{U}^*-LSP';

RCG: add constraint (8) to \mathcal{U}^*-LSP';
```

Two different approaches

$$(b - A(u^*)x)^T \pi^* \le 0.$$
 (7)

Row and column generation

$$A(u^*)x + Ey(u^*) \le b.$$
 (8)

Algorithm 2: RG and RCG

```
repeat
```

```
solve \mathcal{U}^*\text{-}LSP';
let x^* be an optimal solution;
solve (SPL);
let (u^*, \pi^*) be an optimal solution and z^* be the optimal solution cost;
if z^* > 0 then
RG: add constraint (7) to \mathcal{U}^*\text{-}LSP';
RCG: add constraint (8) to \mathcal{U}^*\text{-}LSP';
```

until $z^* > 0$:

Numerical results

K	Γ	t _{RCG}	t _{SPL} (%)	iter	t_{RG}	$t_{P'}$
30	2	150	64	18	4967	13
30	3	301	78	19	Т	213
30	4	1500	90	27	Т	М
30	5	1344	91	25	Т	М
40	2	365	69	21	6523	49
40	3	1037	88	22	Т	М
40	4	6879	96	30	Т	М
40	5	5866	95	31	Т	М
40	6	T	_	-	Т	М
50	2	694	73	23	Т	98
50	3	4446	94	27	Т	М
50	4	22645	98	35	Т	М
50	5	T	-	-	Т	М
50	6	T	_	_	Т	М

Table: Results from Ayoub and Poss (2013) on a network design problem (Janos - 26/84).

Outline

- General overview
- Static problems
- Adjustable RO
- 4 Two-stages problems with real recourse
- 5 Multi-stage problems with real recourse
- 6 Multi-stage with integer recourse

min
$$c^T x$$

s.t. $x \in \mathcal{X}$

$$A_t(u)x + \sum_{s=1}^t E_{ts} y_s(u^s) \le b_t \quad t = 1, \dots, T, \ u \in \mathcal{U}$$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g

$$y(u) = y_0 + \sum_{k \in K} y_k u_k.$$

- The problem gets the structure of a static robust problem
- Can be dualized
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal.

min
$$c^T x$$

s.t. $x \in \mathcal{X}$

$$A_t(u)x + \sum_{s=1}^t E_{ts} y_s(u^s) \le b_t \quad t = 1, \dots, T, \ u \in \mathcal{U}$$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g.

$$y(u) = y_0 + \sum_{k \in K} y_k u_k.$$

- The problem gets the structure of a static robust problem.
- Can be dualized.
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal.

min
$$c^T x$$

s.t. $x \in \mathcal{X}$

$$A_t(u)x + \sum_{s=1}^t E_{ts} y_s(u^s) \le b_t \quad t = 1, \dots, T, \ u \in \mathcal{U}$$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g.

$$y(u) = y_0 + \sum_{k \in K} y_k u_k.$$

- The problem gets the structure of a static robust problem.
- Can be dualized.
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal.

min
$$c^T x$$

s.t. $x \in \mathcal{X}$
 $A_t(u)x + \sum_{s=1}^t E_{ts} y_s(u^s) \le b_t$ $t = 1, \ldots, T, \ u \in \mathcal{U}$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g.

$$y(u) = y_0 + \sum_{k \in K} y_k u_k.$$

- The problem gets the structure of a static robust problem.
- Can be dualized.
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal.

min
$$c^T x$$

s.t. $x \in \mathcal{X}$

$$A_t(u)x + \sum_{s=1}^t E_{ts} y_s(u^s) \le b_t \quad t = 1, \dots, T, \ u \in \mathcal{U}$$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g.

$$y(u) = y_0 + \sum_{k \in K} y_k u_k.$$

- The problem gets the structure of a static robust problem.
- Can be dualized.
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal.

min
$$c^T x$$

s.t. $x \in \mathcal{X}$
 $A_t(u)x + \sum_{s=1}^t E_{ts} y_s(u^s) \le b_t$ $t = 1, \dots, T, u \in \mathcal{U}$

- We cannot use the previous decomposition anymore
- We can use decision rules, e.g.

$$y(u) = y_0 + \sum_{k \in K} y_k u_k.$$

- The problem gets the structure of a static robust problem.
- Can be dualized.
- More complex decision rules exist. Some can lead to exact reformulations; others can be approximated efficiently.
- Decision rules are "heuristic": they provide feasible solutions, possibly suboptimal.

Decision rules: Example for network design problem

Static
$$y_{ka}(u) = y_{ka}u_k$$

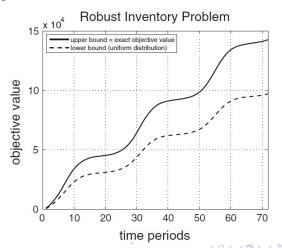
Affine $y_{ka}(u) = y_{ka0} + \sum_{h \in K} y_{kah}u_h$
Dynamic $y_{ka}(u)$ is an arbitrary function

	0.25	2.612E+02	12.4	≥ 0.0
polska	0.1	2.874E+02	12.8	≥ 0.0
	0.05	2.935E+02	10.9	≥ 0.0
	0.25	2.949E+05	10.5	≥ 0.0
nobel-us	0.1	3.156E + 05	9.2	≥ 0.0
	0.05	3.198E + 05	7.9	≥ 0.0
	0.25	2.001E+05	4.7	5.4
atlanta	0.1	2.096E+05	3.4	3.6
	0.05	2.117E+05	2.7	2.7
	0.25	9.852E+02	0.0	0.0
newyork	0.1	9.852E+02	0.0	0.0
	0.05	9.852E+02	0.0	0.0
	0.25	1.040E+01	7.7	≥ 0.0
france	0.1	1.100E+01	6.4	≥ 0.0
	0.05	1.120E+01	≥ 5.4	≥ 0.0
		I .		

Dual bound

Question: Can we obtain some guarantee on the quality of the affine solution?

Answer: Using a dual model ...



Outline

- General overview
- Static problems
- 3 Adjustable RC
- 4 Two-stages problems with real recourse
- Multi-stage problems with real recourse
- 6 Multi-stage with integer recourse

What about integer adjustable variables?

Notation
$$u^s = (u_1, \ldots, u_s)$$

min
$$c^T x$$

s.t. $x \in \mathcal{X}$

$$A_t(u)x + \sum_{s=1}^t E_{ts} y_s(u^s) \le b_t(u) \quad t = 1, \dots, T, \ u \in \mathcal{U} \qquad (9)$$

$$y(u) \in \mathbb{R}^{L_1} \times \mathbb{Z}^{L_2} \qquad u \in \mathcal{U}$$

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_s(u^s) \le b_t(u)$$
 $t = 1, \dots, T, \ u \in ext(\mathcal{U})$

May 30, 2017

What about integer adjustable variables?

Notation
$$u^s = (u_1, \ldots, u_s)$$

$$min c^T x$$

s.t.
$$x \in \mathcal{X}$$

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_s(u^s) \le b_t(u) \quad t = 1, \dots, T, \ u \in \mathcal{U}$$

$$y(u) \in \mathbb{R}^{L_1} \times \mathbb{Z}^{L_2} \qquad u \in \mathcal{U}$$
(9)

Observation

Constraints (9) are not equivalent to

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_s(u^s) \le b_t(u)$$
 $t = 1, \dots, T, \ u \in ext(\mathcal{U})$

What about integer adjustable variables?

Notation
$$u^s = (u_1, \ldots, u_s)$$

min
$$c^T x$$

s.t.
$$x \in \mathcal{X}$$

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_s(u^s) \le b_t(u) \quad t = 1, \dots, T, \ u \in \mathcal{U}$$

$$y(u) \in \mathbb{R}^{L_1} \times \mathbb{Z}^{L_2} \qquad u \in \mathcal{U}$$
(9)

Observation

Constraints (9) are not equivalent to

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_s(u^s) \leq b_t(u)$$
 $t = 1, \dots, T, u \in ext(\mathcal{U})$

Given

Set N

Capacity C

Weights u

Profit c

Removal limit /

Solve

$$\max \left\{ \begin{array}{c} \displaystyle \sum_{i \in \mathcal{N}} c_i x_i \\ \\ \text{s.t.} \displaystyle \sum_{i \in \mathcal{N}} u_i (x_i - y_i(u)) \leq C \quad u \in \mathcal{U} \\ \\ \displaystyle \sum_{i \in \mathcal{N}} y_i(u) \leq K \quad u \in \mathcal{U} \\ \\ x, y(u) \in \{0, 1\} \end{array} \right.$$

Example $(\mathcal{U} \neq \text{ext}(\mathcal{U}))$

Parameters $N = \{1, 2\}$, $\overline{u}_i = 0$, $\hat{u}_i = 1$, $c_i = 1$, C = 0, $\Gamma = K = 1$

 \mathcal{U}' opt: $x_1 = 1, x_2 = 0$ with cost 1, worst $x_1 = 1, x_2 = 0$

 $\operatorname{ext}(\mathcal{U}^1)$ opt: $x_1 = x_2 = 1$ with cost 2, worst u: (1,0)

Given

Set N

Capacity C

Weights u

Profit c

Removal limit K

Solve

$$\max \left\{ \sum_{i \in N} c_i x_i \\ \text{s.t.} \sum_{i \in N} u_i (x_i - y_i(u)) \le C \quad u \in \mathcal{U} \\ \sum_{i \in N} y_i(u) \le K \quad u \in \mathcal{U} \\ x, y(u) \in \{0, 1\} \right\}$$

Example $(\mathcal{U} \neq \text{ext}(\mathcal{U}))$

Parameters $N = \{1, 2\}$, $\overline{u}_i = 0$, $\hat{u}_i = 1$, $c_i = 1$, C = 0, $\Gamma = K = 1$

 \mathcal{U}' opt: $x_1 = 1, x_2 = 0$ with cost 1, y

 $\operatorname{ext}(\mathcal{U}^1)$ opt: $x_1=x_2=1$ with cost 2, worst w (

Given

Set N

Capacity C

Weights u

Profit c

Removal limit K

Solve

$$\max \left\{ \sum_{i \in N} c_i x_i \\ \text{s.t.} \sum_{i \in N} u_i (x_i - y_i(u)) \le C \quad u \in \mathcal{U} \\ \sum_{i \in N} y_i(u) \le K \quad u \in \mathcal{U} \\ x, y(u) \in \{0, 1\} \right\}$$

Example $(\mathcal{U} \neq \text{ext}(\mathcal{U}))$

Parameters $\textit{N} = \{1,2\}, \quad \overline{\textit{u}}_\textit{i} = 0, \hat{\textit{u}}_\textit{i} = 1, \textit{c}_\textit{i} = 1, \quad \textit{C} = 0, \quad \Gamma = \textit{K} = 1$

 \mathcal{U}^{Γ} opt: $x_1 = 1, x_2 = 0$ with cost 1, worst u: (0.5, 0.5)

Given

Set N

Capacity C

Weights u

Profit c

Removal limit K

Solve

$$\max \left\{ \sum_{i \in N} c_i x_i \\ \text{s.t.} \sum_{i \in N} u_i (x_i - y_i(u)) \le C \quad u \in \mathcal{U} \\ \sum_{i \in N} y_i(u) \le K \quad u \in \mathcal{U} \\ x, y(u) \in \{0, 1\} \right\}$$

Example ($\mathcal{U} \neq \text{ext}(\mathcal{U})$)

Parameters $N = \{1, 2\}, \quad \overline{u}_i = 0, \hat{u}_i = 1, c_i = 1, \quad C = 0, \quad \Gamma = K = 1$ \mathcal{U}^{Γ} opt: $x_1 = 1, x_2 = 0$ with cost 1, worst u: (0.5, 0.5)

 $\operatorname{ext}(\mathcal{U}^{\Gamma})$ opt: $x_1 = x_2 = 1$ with cost 2, worst u: (1,0)

Given

Set N

Capacity C

Weights u

Profit c

Removal limit K

Solve

$$\max \left\{ \sum_{i \in N} c_i x_i \\ \text{s.t.} \sum_{i \in N} u_i (x_i - y_i(u)) \le C \quad u \in \mathcal{U} \\ \sum_{i \in N} y_i(u) \le K \quad u \in \mathcal{U} \\ x, y(u) \in \{0, 1\} \right\}$$

Example $(\mathcal{U} \neq \text{ext}(\mathcal{U}))$

Parameters $N = \{1, 2\}$, $\overline{u}_i = 0$, $\hat{u}_i = 1$, $c_i = 1$, C = 0, $\Gamma = K = 1$ \mathcal{U}^{Γ} opt: $x_1 = 1$, $x_2 = 0$ with cost 1, worst u: (0.5, 0.5)

 $ext(\mathcal{U}^{\Gamma})$ opt: $x_1 = x_2 = 1$ with cost 2, worst u: (1,0)

Given

Set N

Capacity C

Weights u

Profit c

Removal limit K

Solve

$$\max \left\{ \sum_{i \in N} c_i x_i \\ \text{s.t.} \sum_{i \in N} u_i (x_i - y_i(u)) \le C \quad u \in \mathcal{U} \\ \sum_{i \in N} y_i(u) \le K \quad u \in \mathcal{U} \\ x, y(u) \in \{0, 1\} \right\}$$

Example $(\mathcal{U} \neq \text{ext}(\mathcal{U}))$

Parameters
$$N = \{1, 2\}, \quad \overline{u}_i = 0, \hat{u}_i = 1, c_i = 1, \quad C = 0, \quad \Gamma = K = 1$$
 \mathcal{U}^{Γ} opt: $x_1 = 1, x_2 = 0$ with cost 1, worst u : $(0.5, 0.5)$

 $\operatorname{ext}(\mathcal{U}^{\Gamma})$ opt: $x_1 = x_2 = 1$ with cost 2, worst u: (1,0)

Given

Set N

Capacity C

Weights u

Profit c

Removal limit K

Solve

$$\max \left\{ \sum_{i \in N} c_i x_i \\ \text{s.t.} \sum_{i \in N} u_i (x_i - y_i(u)) \le C \quad u \in \mathcal{U} \\ \sum_{i \in N} y_i(u) \le K \quad u \in \mathcal{U} \\ x, y(u) \in \{0, 1\} \right\}$$

Example $(\mathcal{U} \neq \text{ext}(\mathcal{U}))$

Parameters
$$N = \{1, 2\}, \quad \overline{u}_i = 0, \hat{u}_i = 1, c_i = 1, \quad C = 0, \quad \Gamma = K = 1$$

 \mathcal{U}^{Γ} opt: $x_1 = 1, x_2 = 0$ with cost 1, worst u : (0.5, 0.5)

 $ext(\mathcal{U}^{\Gamma})$ opt: $x_1 = x_2 = 1$ with cost 2, worst u: (1,0)

What to do?

Three lines of research have been proposed in the litterature:

- Partitioning the uncertainty set.
 - $\mathcal{U} = \mathcal{U}^1 \cup \ldots \cup \mathcal{U}^n$
 - Constraints

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_s(u^s) \le b_t(u)$$
 $t = 1, \dots, T, u \in \mathcal{U}$

become

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_{s1} \le b_t(u)$$
 $t = 1, ..., T, u \in \mathcal{U}^1$... $A_t(u)x + \sum_{s=1}^t E_{ts}y_{sn} \le b_t(u)$ $t = 1, ..., T, u \in \mathcal{U}^n$

- ② Row-and-column generation algorithms by Zhao and Zeng [2012] Assumptions
 - Algorithms Nested row-and-column generation algorithms.
- 3 Non-linear decision rules proposed by Bertsimas and Georghiou [2015]

What to do?

Three lines of research have been proposed in the litterature:

- Partitioning the uncertainty set.
 - $\mathcal{U} = \mathcal{U}^1 \cup \ldots \cup \mathcal{U}^n$
 - Constraints

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_s(u^s) \le b_t(u)$$
 $t = 1, \dots, T, u \in \mathcal{U}$

become

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_{s1} \le b_t(u)$$
 $t = 1, ..., T, u \in \mathcal{U}^1$
... $A_t(u)x + \sum_{s=1}^t E_{ts}y_{sn} \le b_t(u)$ $t = 1, ..., T, u \in \mathcal{U}^n$

- Row-and-column generation algorithms by Zhao and Zeng [2012]

 - Assumptions Problems with complete recourse
 - $\mathcal{K}(\mathcal{U}) = \mathcal{K}(\mathsf{ext}(\mathcal{U}))$

Algorithms Nested row-and-column generation algorithms.

Non-linear decision rules proposed by Bertsimas and Georghiou [2015]

What to do?

Three lines of research have been proposed in the litterature:

- Partitioning the uncertainty set.
 - $\mathcal{U} = \mathcal{U}^1 \cup \ldots \cup \mathcal{U}^n$
 - Constraints

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_s(u^s) \le b_t(u)$$
 $t = 1, \dots, T, u \in \mathcal{U}$

become

$$A_t(u)x + \sum_{s=1}^t E_{ts}y_{s1} \le b_t(u)$$
 $t = 1, ..., T, u \in \mathcal{U}^1$
... $A_t(u)x + \sum_{s=1}^t E_{ts}y_{sn} \le b_t(u)$ $t = 1, ..., T, u \in \mathcal{U}^n$

- Row-and-column generation algorithms by Zhao and Zeng [2012]

 - Assumptions Problems with complete recourse
 - $\mathcal{K}(\mathcal{U}) = \mathcal{K}(\mathsf{ext}(\mathcal{U}))$

Algorithms Nested row-and-column generation algorithms.

Non-linear decision rules proposed by Bertsimas and Georghiou [2015]

Dynamic partition [Bertsimas and Dunning, 2016, Postek and den Hertog, 2016]

Partition $\mathcal{P} = \mathcal{U}^1 \cup \cdots \cup \mathcal{U}^n$ Heuristic bound $\mathcal{U}\text{-}CO(\mathcal{P})$

Algorithm

- Solve \mathcal{U} - $CO(\mathcal{P})$
- 2 Refine \mathcal{P} , go back to 1

Partition step

- active vectors u lie in different subsets
- ⇒ Voronoi diagrams

Dynamic partition [Bertsimas and Dunning, 2016, Postek and den Hertog, 2016]

Partition $\mathcal{P} = \mathcal{U}^1 \cup \cdots \cup \mathcal{U}^n$ Heuristic bound $\mathcal{U}\text{-}CO(\mathcal{P})$

Algorithm

- Solve \mathcal{U} - $CO(\mathcal{P})$
- 2 Refine \mathcal{P} , go back to 1

Partition step

- active vectors u lie in different subsets
- ⇒ Voronoi diagrams

Dynamic partition [Bertsimas and Dunning, 2016, Postek and den Hertog, 2016]

Partition $\mathcal{P} = \mathcal{U}^1 \cup \cdots \cup \mathcal{U}^n$ Heuristic bound $\mathcal{U}\text{-}CO(\mathcal{P})$

Algorithm

- Solve \mathcal{U} - $CO(\mathcal{P})$
- 2 Refine \mathcal{P} , go back to 1

Partition step

- active vectors u lie in different subsets
- ⇒ Voronoi diagrams

Dynamic partition [Bertsimas and Dunning, 2016, Postek and den Hertog, 2016]

Partition $\mathcal{P} = \mathcal{U}^1 \cup \cdots \cup \mathcal{U}^n$ Heuristic bound \mathcal{U} - $CO(\mathcal{P})$

Algorithm

- Solve \mathcal{U} - $CO(\mathcal{P})$
- Refine \mathcal{P} , go back to $\mathbf{0}$

Partition step

- active vectors u lie in different subsets
- ⇒ Voronoi diagrams

Comparison of Bertsimas and Georghiou [2015], Bertsimas and Dunning [2016], Postek and den Hertog [2016] on lot-sizing.

 $w_i^n(u)$ order a fixed amount q_n at time i

Comparison of Bertsimas and Georghiou [2015], Bertsimas and Dunning [2016], Postek and den Hertog [2016] on lot-sizing.

 $w_i^n(u)$ order a fixed amount q_n at time i

		T			
Method		4	6	8	10
Our method (2 iter.)	Gap (%)	13.0	10.3	11.6	14.9
	Time (s)	0.0	0.5	7.7	108.6
Our method (3 iter.)	Gap (%)	11.4	9.3	11.3	14.9
	Time (s)	0.2	2.0	52.4	309.3
Postek and Den Hertog (2014)	Gap (%)	11.5	14.1	15.7	15.7
	Time (s)	0.4	1.6	10.8	77.8
Bertsimas and Georghiou (2015)	Gap (%)	17.2	34.5	37.6	-
	Time (s)	3381	9181	28743	-

Concluding remarks

Static problems

- Numerical solution by dualization or decomposition algorithms.
- $m{\cdot}$ $\mathcal U$ "nice" structure and non-linear objective \Rightarrow interesting open problems

Adjustable problems

- Hot topic
- Very hard to solve!
- Even good generic heuristic approaches would be interesting.

Concluding remarks

Static problems

- Numerical solution by dualization or decomposition algorithms.
- $m{\cdot}$ $\mathcal U$ "nice" structure and non-linear objective \Rightarrow interesting open problems

Adjustable problems

- Hot topic
- Very hard to solve!
- Even good generic heuristic approaches would be interesting.

SI EJCO: Robust Combinatorial Optimization

- valid inequalities for robust MILPs,
- decomposition algorithms for robust MILPs,
- constraint programming approaches to robust combinatorial optimization,
- heuristic and meta-heuristic algorithms for hard robust combinatorial problems,
- ad-hoc combinatorial algorithms,
- novel applications of robust combinatorial optimization,
- multi-stage integer robust optimization,
- recoverable robust optimization,

Deadline: July 15 2017

References I

- Agostinho Agra, Marcio C. Santos, Dritan Nace, and Michael Poss. A dynamic programming approach for a class of robust optimization problems. *SIAM Journal on Optimization*, (3):1799–1823, 2016.
- E. Álvarez-Miranda, I. Ljubić, and P. Toth. A note on the bertsimas & sim algorithm for robust combinatorial optimization problems. *4OR*, 11(4): 349–360, 2013.
- A. Ben-Tal and A. Nemirovski. Robust convex optimization. *Mathematics of Operations Research*, 23(4):769–805, 1998.
- D. Bertsimas and M. Sim. Robust discrete optimization and network flows. *Math. Program.*, 98(1-3):49–71, 2003.
- Dimitris Bertsimas and Iain Dunning. Multistage robust mixed-integer optimization with adaptive partitions, 2016. URL http://dx.doi.org/10.1287/opre.2016.1515.

References II

- Dimitris Bertsimas and Angelos Georghiou. Design of near optimal decision rules in multistage adaptive mixed-integer optimization. *Operations Research*, 63(3):610–627, 2015. doi: 10.1287/opre.2015.1365. URL http://dx.doi.org/10.1287/opre.2015.1365.
- Dimitris Bertsimas, Iain Dunning, and Miles Lubin. Reformulation versus cutting-planes for robust optimization. *Computational Management Science*, 13(2):195–217, 2016.
- M. Bougeret, Artur A. Pessoa, and M. Poss. Robust scheduling with budgeted uncertainty, 2016. Submitted.
- K.-S. Goetzmann, S. Stiller, and C. Telha. Optimization over integers with robustness in cost and few constraints. In *WAOA*, pages 89–101, 2011.
- O. Klopfenstein and D. Nace. A robust approach to the chance-constrained knapsack problem. *Oper. Res. Lett.*, 36(5):628–632, 2008.
- P. Kouvelis and G. Yu. *Robust discrete optimization and its applications*, volume 14. Springer Science & Business Media, 2013.

May 30, 2017

References III

- Taehan Lee and Changhyun Kwon. A short note on the robust combinatorial optimization problems with cardinality constrained uncertainty. *4OR*, pages 373–378, 2014.
- Shaghayegh Mokarami and S Mehdi Hashemi. Constrained shortest path with uncertain transit times. *Journal of Global Optimization*, 63(1): 149–163, 2015.
- M. Monaci, U. Pferschy, and P. Serafini. Exact solution of the robust knapsack problem. *Computers & OR*, 40(11):2625–2631, 2013.
- Omid Nohadani and Kartikey Sharma. Optimization under decision-dependent uncertainty. arXiv preprint arXiv:1611.07992, 2016.
- A. A. Pessoa, L. Di Puglia Pugliese, F. Guerriero, and M. Poss. Robust constrained shortest path problems under budgeted uncertainty. *Networks*, 66(2):98–111, 2015.
- M. Poss. Robust combinatorial optimization with variable budgeted uncertainty. *4OR*, 11(1):75–92, 2013.

References IV

- M. Poss. Robust combinatorial optimization with variable cost uncertainty. *European Journal of Operational Research*, 237(3):836–845, 2014.
- Michael Poss. Robust combinatorial optimization with knapsack uncertainty. 2017. Available at hal.archives-ouvertes.fr/tel-01421260.
- Krzysztof Postek and Dick den Hertog. Multistage adjustable robust mixed-integer optimization via iterative splitting of the uncertainty set. *INFORMS Journal on Computing*, 28(3):553–574, 2016. doi: 10.1287/ijoc.2016.0696. URL http://dx.doi.org/10.1287/ijoc.2016.0696.
- Long Zhao and Bo Zeng. An exact algorithm for two-stage robust optimization with mixed integer recourse problems. *submitted, available on Optimization-Online. org*, 2012.