Fast Exact Algorithm for $L(2,1)$-Labeling of Graphs

Mathieu Liedloff

Université d'Orléans - LIFO

joint work with:

Konstanty Junosza-Szaniawski ${ }^{1}$ Jan Kratochvíl ${ }^{2}$
Peter Rossmanith ${ }^{3} \quad$ Paweł Rzạżewski ${ }^{1}$
${ }^{1}$ Warsaw University of Technology, Faculty of Mathematics and Information Science, Warszawa, Poland
${ }^{2}$ Department of Applied Mathematics, and Institute for Theoretical Computer Science, Charles University, Praha, Czech Republic
${ }^{3}$ Department of Computer Science, RWTH Aachen University, Aachen, Germany

Journées Franciliennes de Recherche Opérationnelle

Outline

(1) Definitions and Known Results
(2) A (Simple) Dynamic Programming Based Algorithm
(3) A Combinatorial Result
(4) A Faster Exact Exponential-Time Algorithm
(5) Conclusion

Frequency assignment problem

broadcast network
assign frequencies to transmitters
avoid undesired interference

Frequency assignment problem

broadcast network
assign frequencies to transmitters
avoid undesired interference

Frequency assignment problem
> broadcast network
$>$ assign frequencies to transmitters

- avoid undesired interference

Definition of $L(2,1)$-labeling

$L(2,1)$-LABELING

Input: A graph $G=(V, E)$.
Question : Compute a function ℓ of minimum span k $\ell: V \rightarrow\{0, \ldots, k\}$ s.t.

- u and v adjacent $\Rightarrow|\ell(u)-\ell(v)| \geq 2$
- u and v at distance two $\Rightarrow|\ell(u)-\ell(v)| \geq 1$

\rightarrow Model introduced by Roberts, 1988 [Rob].

Known complexity results

Theorem
[GY92]
Determining the minimum span $\lambda(G)$ of a graph G is NP-hard.

Theorem
[FKK01]
Deciding whether $\lambda(G) \leq k$ remains NP-complete for every fixed $k \geq 4$.

Theorem

[CK96, FGK05]
When the span k is part of the input, $L(2,1)$-labeling problem is polynomial time solvable on trees. However, the problem is NP-complete for series-parallel graphs.

The problem "separates" graphs of treewidth 1 and 2 by P / NP-completeness dichotomy.

Known complexity results

Theorem
[GY92]
Determining the minimum span $\lambda(G)$ of a graph G is NP-hard.

Theorem
[FKK01]
Deciding whether $\lambda(G) \leq k$ remains NP-complete for every fixed $k \geq 4$.

Theorem

[CK96, FGK05]
When the span k is part of the input,
$L(2,1)$-labeling problem is polynomial time solvable on trees.
However, the problem is NP-complete for series-parallel graphs.
\rightarrow The problem "separates" graphs of treewidth 1 and 2
by P / NP-completeness dichotomy.

Known complexity results

The distance constrained labeling problem is more difficult than ordinary coloring :

Theorem
Deciding whether $\lambda(G) \leq k$ is NP-complete for series-parallel graphs (k is part of the input).

Theorem
[BKTvL04, JKM09]
Deciding whether $\lambda=k$ is NP-complete for planar graphs

- for $k=8$
[BKTvL04]
- for $k=4$

L(2, 1)-labeling and Locally Injective Homomorphisms

Fiala and Kratochvíl defined the notion of $H(2,1)$-labeling :
$>$ mapping from vertices of G to vertices of a graph H;

- adjacent vertices in G are mapped onto non-adjacent vertices in H;
vertices with a common neighbor in G are mapped onto distinct vertices of H.

They show that :

$\rightarrow H(2,1)$-labelings are exactly locally injective homomorphisms from G to H.

$$
\begin{aligned}
& \rightarrow L(2,1) \text {-labeling of span } k \text { is a locally injective homomorphism } \\
& \text { into the complement of the path of length } k \text {. }
\end{aligned}
$$

$L(2,1)$-labeling and Locally Injective Homomorphisms

Fiala and Kratochvíl defined the notion of $H(2,1)$-labeling :
$>$ mapping from vertices of G to vertices of a graph H;
$>$ adjacent vertices in G are mapped onto non-adjacent vertices in H;
$>$ vertices with a common neighbor in G are mapped onto distinct vertices of H.

They show that :
$\rightarrow H(2,1)$-labelings are exactly locally injective homomorphisms from G to \bar{H}.
$\rightarrow L(2,1)$-labeling of span k is a locally injective homomorphism into the complement of the path of length k.

$L(2,1)$-labeling and Locally Injective Homomorphisms

Fiala and Kratochvíl defined the notion of $H(2,1)$-labeling :
> mapping from vertices of G to vertices of a graph H;

- adjacent vertices in G are mapped onto non-adjacent vertices in H;
vertices with a common neighbor in G are mapped onto distinct vertices of H.

They show that :
> $\rightarrow H(2,1)$-labelings are exactly locally injective homomorphisms from G to H.

$\rightarrow L(2,1)$-labeling of span k is a locally injective homomorphism into the complement of the path of length k.
homomorphism : A mapping $f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $f(u) f(v) \in E(H)$ for every edge $u v \in E(G)$.

Theorem
Homomorphisms admit a complete dichotomy : Deciding existence of a homomorphism into a fixed graph H is

- polynomial when H is bipartite;
- NP-complete otherwise.

Remark : k-coloring of a graph G corresponds to homomorphism from G to the graph K_{k}.
homomorphism : A mapping $f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $f(u) f(v) \in E(H)$ for every edge $u v \in E(G)$.
locally injective homomorphism (LIH) : A homomorphism $f: G \rightarrow H$ is locally injective if for every vertex $u \in V(G)$ its neighborhood is mapped injectively into the neighborhood of $f(u)$ in H, i.e., every two vertices having a common neighbor in G are mapped onto disctinct vertices in H.

$L(2,1)$-labeling and Locally Injective Homomorphisms

homomorphism : A mapping $f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $f(u) f(v) \in E(H)$ for every edge $u v \in E(G)$.
locally injective homomorphism (LIH) : A homomorphism $f: G \rightarrow H$ is locally injective if for every vertex $u \in V(G)$ its neighborhood is mapped injectively into the neighborhood of $f(u)$ in H, i.e., every two vertices having a common neighbor in G are mapped onto disctinct vertices in H.

Theorem
H-locally-injective-homorphism can be solved in time

$$
O^{*}\left((\Delta(H)-1)^{n}\right)
$$

Theorem
H-locally-injective-homorphism can be solved in time

$$
O^{*}\left((\Delta(H)-1)^{n}\right)
$$

$\rightarrow L(2,1)$-labeling of span k is a locally injective homomorphism into the complement of the path of length k.

Theorem
Hence, $L(2,1)$-labeling problem of span k can be decided in time

$$
O^{*}\left((k-1)^{n}\right)
$$

$L(2,1)$-labeling problem - Exact algorithms

Theorem

$L(2,1)$-labeling of span 4 : $O\left(1.3006^{n}\right)$

Theorem

[GKC10]
$L(2,1)$-labeling of span 5 in cubic graphs: $O\left(1.8613^{n}\right) \rightarrow O\left(1.7990^{n}\right)$
Theorem
$L(2,1)$-labeling of min span: $O^{*}\left(4^{n}\right)$

Theorem

[HKKKL11]
$L(2,1)$-labeling of min span: $O^{*}\left(15^{n / 2}\right)=O\left(3.88^{n}\right)$
Theorem
[HKKKL08], [J-SKLR12]
$L(2,1)$-labeling of min span : $O\left((9+\epsilon)^{n}\right) \rightarrow O\left(7.50^{n}\right)$
(D. \& C.)

Theorem
$L(2,1)$-labeling of min span: $O^{*}\left(3^{n}\right)$

can the problem be solved

 faster?(1) Definitions and Known Results
(2) A (Simple) Dynamic Programming Based Algorithm
(4) A Faster Exact Exponential-Time Algorithm
(5) Conclusion

A DP based algorithm for $L(2,1)$-labeling of min span

How to compute an $L(2,1)$-labeling of span k by Dynamic Programming?

First, we show the following :

```
Theorem :
An \(L(2,1)\) )labeling of span \(k\) can be decided in time \(O^{*}\left(4^{n}\right)\).
```


A DP based algorithm for $L(2,1)$-labeling of min span

How to compute an $L(2,1)$-labeling of span k by Dynamic Programming?

First, we show the following :

Theorem :

An $L(2,1)$)labeling of span k can be decided in time $O^{*}\left(4^{n}\right)$.

Theorem :

An $L(2,1)$)labeling of span k can be decided in time $O^{*}\left(3.88^{n}\right)$.

2-packings $=$ Independent Sets in G^{2}
A subset $S \subseteq V$ s.t. $\forall u, v \in S, N[u] \cap N[v]=\emptyset$ is a 2-packing.
(2-packing \equiv set of vertices pairwise at distance greater than 2.)

A DP based algorithm for $L(2,1)$-labeling of min span

Reminder :
Let $G=(V, E)$ be a graph. An $L(2,1)$-labeling of span k asks to find a labeling f of G such that :
$>$ for all $\{u, v\} \in E \Rightarrow|f(u)-f(v)| \geq 2$;
$>$ for all $u, v \in V$ s.t. $\operatorname{dist}(u, v)=2 \quad \Rightarrow \quad f(u) \neq f(v)$.
$\forall i \in\{0,1, \ldots, k\}$ and $\forall X, Y \subseteq V$ such that $X \cap Y=\emptyset$, we define the boolean variable $\operatorname{Lab}(X, Y, i)$.

[^0]
A DP based algorithm for $L(2,1)$-labeling of \min span

Reminder: $\operatorname{Lab}(X, Y, i)$ is true iff

there is an $L(2,1)$-labeling of span i of the vertices of X such that
the vertices of $N(Y) \cap X$ have label at most $i-1$.
It is not difficult to check that
$>\operatorname{Lab}(\emptyset, Y, i) \leftarrow$ true $\quad \forall Y, \forall i ;$
$\nabla \operatorname{Lab}(X, Y, 0) \leftarrow \begin{cases}\text { true } & \forall X, Y \text { s.t. } X \text { is an indep. set } \\ & \text { of } G^{2} \text { and } X \cap N(Y)=\emptyset \\ \text { false } & \text { otherwise }\end{cases}$

Then, $\operatorname{Lab}(X, Y, i)$ is computed by considering the sets X and by increasing order of cardinality, and by increasing value of i :
$\operatorname{Lab}(X, Y, i)=$ true iff $\quad \exists U \subseteq(X \backslash N(Y)) \quad$ such that

- U is a 2-packing of G; and
- Lab $(X \backslash U, U, i-1)=$ true.

A DP based algorithm for $L(2,1)$-labeling of min span

Reminder: $\operatorname{Lab}(X, Y, i)$ is true iff

 there is an $L(2,1)$-labeling of span i of the vertices of X such that the vertices of $N(Y) \cap X$ have label at most $i-1$.Reminder : Lab $(X, Y, i)=$ true iff $\exists U \subseteq(X \backslash N(Y))$ such that
$>U$ is a 2-packing of G; and
$>\operatorname{Lab}(X \backslash U, U, i-1)=$ true.

x

A DP based algorithm for $L(2,1)$-labeling of min span

Reminder: $\operatorname{Lab}(X, Y, i)$ is true iff
there is an $L(2,1)$-labeling of span i of the vertices of X such that the vertices of $N(Y) \cap X$ have label at most $i-1$.

Reminder: $\operatorname{Lab}(X, Y, i)=$ true iff $\exists U \subseteq(X \backslash N(Y)) \quad$ such that

- U is a 2-packing of G; and
$\rightarrow \operatorname{Lab}(X \backslash U, U, i-1)=$ true.

If X has an $L(2,1)$)-labeling of span i then there is a (possibly empty) set $U \subseteq X \backslash N(Y)$ of vertices having label i. This set is a 2 -packing of G.

A DP based algorithm for $L(2,1)$-labeling of min span

Reminder: $\operatorname{Lab}(X, Y, i)$ is true iff
there is an $L(2,1)$-labeling of span i of the vertices of X such that the vertices of $N(Y) \cap X$ have label at most $i-1$.

Reminder: $\operatorname{Lab}(X, Y, i)=$ true iff $\exists U \subseteq(X \backslash N(Y)) \quad$ such that

- U is a 2-packing of G; and
- $\operatorname{Lab}(X \backslash U, U, i-1)=$ true .

\Rightarrow the neighbors of U must obtain label at most $i-2$ and $X \backslash U$ must have an $L(2,1)$-labeling of span at most $i-1$. If a such labeling exists then $\operatorname{Lab}(X \backslash U, U, i-1)=$ true.

A DP based algorithm for $L(2,1)$-labeling of min span

Reminder: $\operatorname{Lab}(X, Y, i)$ is true iff

 there is an $L(2,1)$-labeling of span i of the vertices of X such that the vertices of $N(Y) \cap X$ have label at most $i-1$.Reminder: $\operatorname{Lab}(X, Y, i)=$ true iff $\quad \exists U \subseteq(X \backslash N(Y)) \quad$ such that

- U is a 2-packing of G; and
$\rightarrow \operatorname{Lab}(X \backslash U, U, i-1)=$ true.

Remark : the vertices of $X \cap N(Y)$ in this labeling have label at most i - 1 .

A DP based algorithm for $L(2,1)$-labeling of min span

Running-time analysis :
$\operatorname{Lab}(X, Y, i)$ is computed for all $X, Y \subseteq V$ such that $X \cap Y=\emptyset$, and for all $i \in\{0,1, \ldots, k\}$.

For each,Y, we compute all sets $U \subseteq$ being 2-packings of G.

$$
k \cdot \sum_{x=0}^{n}\left(\binom{n}{x} \sum_{y=0}^{n-x}\binom{n-x}{y} \sum_{u=0}(u)\right)
$$

A DP based algorithm for $L(2,1)$-labeling of min span

Running-time analysis :
$\operatorname{Lab}(X, Y, i)$ is computed for all $X, Y \subseteq V$ such that $X \cap Y=\emptyset$, and for all $i \in\{0,1, \ldots, k\}$.

For each X, Y, we compute all sets $U \subseteq X$ being 2-packings of G.

$$
k \cdot \sum_{x=0}^{n}\left(\binom{n}{x} \sum_{y=0}^{n-x}\binom{n-x}{y} \sum_{u=0}^{x}\binom{x}{u}\right)
$$

A DP based algorithm for $L(2,1)$-labeling of min span

Running-time analysis :
$\operatorname{Lab}(X, Y, i)$ is computed for all $X, Y \subseteq V$ such that $X \cap Y=\emptyset$, and for all $i \in\{0,1, \ldots, k\}$.

For each X, Y, we compute all sets $U \subseteq X$ being 2-packings of G.

$$
\begin{aligned}
& k \cdot \sum_{x=0}^{n}\left(\binom{n}{x} \sum_{y=0}^{n-x}\binom{n-x}{y} \sum_{u=0}^{x}\binom{x}{u}\right) \\
= & k \cdot \sum_{=0}^{n}\left(\binom{n}{x} 2^{n-} 2\right) \\
= & k \cdot 2^{n} \cdot 2^{n}
\end{aligned}
$$

[^1]
A DP based algorithm for $L(2,1)$-labeling of min span

By using a bound on the number of 2-packing of a certain size,

Theorem

Let u_{k} be the number of 2-packings of size k in a connected graph. Then,

$$
\begin{gathered}
u_{k} \leq\binom{ n / 2}{k} \cdot 2^{k} \\
u_{k}=0 \text { for } k>n / 2
\end{gathered}
$$

we are able to prove that :

Theorem :

An $L(2,1)$ of span k can be obtain in time $O^{*}\left(4^{n}\right) \rightsquigarrow O^{*}\left(3.8730^{n}\right)$.
[improving upon Král's result]

(2) A (Simple) Dynamic Programming Based Algorithm

(3) A Combinatorial Result
(4) A Faster Exact Exponential-Time Algorithm
(5) Conclusion

2-Packings and Proper Pairs

Like independent sets are heavily related to colorings, it seems that 2-packings are related to $L(2,1)$-labelings.

Theorem :

An $L(2,1)$ of span k can be obtain in time $O^{*}\left(2.6488^{n}\right)$.

But in fact we need another combinatorial object :

Proper Pairs
... and we need a bound on its maximum number in a graph.

2-Packings and Proper Pairs

Like independent sets are heavily related to colorings, it seems that 2-packings are related to $L(2,1)$-labelings.

```
Theorem :
An \(L(2,1)\) of span \(k\) can be obtain in time \(O^{*}\left(2.6488^{n}\right)\).
```

But in fact we need another combinatorial object :

Proper Pairs

... and we need a bound on its maximum number in a graph.

Definition

A pair (S, X) of subsets of V is a proper pair if $S \cap X=\emptyset$ and S is a 2-packing.

Definition

The number of proper pairs in a graph G is given by

$$
p p(G)=\sum_{2-\text { packings } S} 2^{n-|S|}
$$

Let $p p(n)=\max p p(G)$ be the maximum number of proper pairs in a connected graph with n vertices.

... and Proper Pairs

Definition

A pair (S, X) of subsets of V is a proper pair if $S \cap X=\emptyset$ and S is a 2-packing.

Definition

The number of proper pairs in a graph G is given by

$$
p p(G)=\sum_{2-\text { packings } S} 2^{n-|S|}
$$

Let $p p(n)=\max p p(G)$ be the maximum number of proper pairs in a connected graph with n vertices.

Theorem

$$
2.6117^{n} \leq p p(n) \leq 2.6488^{n}
$$

Let $G=(V, E)$ be a connected graph.
Fact 1. If S is a 2-packing, then S is also a 2-packing of $G=$ $(V, E \backslash e)$, for any edge e.
\Rightarrow we can assume that G is a tree.
Fact 2. Suppose that there are two leaves which have a common neighbor. Every 2-packing in G is also a 2 -packing in H.

\Rightarrow we can assume that there are no two or more leaves with a common neighbor

... and Proper Pairs

Proof.

(A) If $\operatorname{deg}(c) \leq 2$ then

$$
p p(n) \leq 2 p p(n-1)+4 p p(n-3)
$$

(B) If $\operatorname{deg}(c)>2$ and

for $q \geq 2$

... and Proper Pairs

Proof.

(A) If $\operatorname{deg}(c) \leq 2$ then

$$
p p(n) \leq 2 p p(n-1)+4 p p(n-3)
$$

(B) If $\operatorname{deg}(c)>2$ and

(B0) no neighbor of c is a leaf ...

$$
p p(n) \leq 2^{2 q} p p(n-2 q)+\left(3^{q-1} 2^{q+1}(3+q)-2^{2 q+1}\right) p p(n-2 q-1)
$$

(B1) one neighbor of c is a leaf

$$
p p(n) \leq 2^{2 q+1} p p(n-2 q-1)+\left(3^{q-1} 2^{q+1}(9+2 q)-2^{2 q+2}\right) p p(n-2 q-2) \square
$$

... and Proper Pairs

Proof.

(A) If $\operatorname{deg}(c) \leq 2$ then

$$
p p(n) \leq 2 p p(n-1)+4 p p(n-3)
$$

(B) If $\operatorname{deg}(c)>2$ and

(B0) no neighbor of c is a leaf ...

$$
p p(n) \leq 2^{2 q} p p(n-2 q)+\left(3^{q-1} 2^{q+1}(3+q)-2^{2 q+1}\right) p p(n-2 q-1)
$$

(B1) one neighbor of c is a leaf ...

... and Proper Pairs

Proof.

(A) If $\operatorname{deg}(c) \leq 2$ then

$$
p p(n) \leq 2 p p(n-1)+4 p p(n-3)
$$

(B) If $\operatorname{deg}(c)>2$ and

(B0) no neighbor of c is a leaf ...

$$
p p(n) \leq 2^{2 q} p p(n-2 q)+\left(3^{q-1} 2^{q+1}(3+q)-2^{2 q+1}\right) p p(n-2 q-1)
$$

(B1) one neighbor of c is a leaf \ldots

$$
p p(n) \leq 2^{2 q+1} p p(n-2 q-1)+\left(3^{q-1} 2^{q+1}(9+2 q)-2^{2 q+2}\right) p p(n-2 q-2) \square
$$

To show the lower bound, we consider the following graphs :

$$
\left\{\begin{array}{l}
a_{k}=2 b_{k-1}+4 a_{k-1} \\
b_{k}=2 c_{k}+2 d_{k} \\
c_{k}=2 a_{k}+12 d_{k-1} \\
d_{k}=4 d_{k-1}+12 a_{k-1}
\end{array}\right.
$$

Theorem

$$
2.6117^{n} \leq p p(n) \leq 2.6488^{n}
$$

An Exact Exponential-Time Algorithm

(1) Definitions and Known Results

(2) A (Simple) Dynamic Programming Based Algorithm
(3) A Combinatorial Result
(4) A Faster Exact Exponential-Time Algorithm
(5) Conclusion

One key ingredient of our algorithm

Main idea : Use algebraic manipulations similar to

fast matrix multiplication

Assume that A and B are $2^{k} \times 2^{k}$ matrices.

$$
A=\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right) \quad B=\left(\begin{array}{ll}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right) \quad C=\left(\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right)
$$

where

$$
\begin{aligned}
& C_{1,1}=A_{1,1} \cdot B_{1,1}+A_{1,2} \cdot B_{2,1} \\
& C_{1,2}=A_{1,1} \cdot B_{1,2}+A_{1,2} \cdot B_{2,2} \\
& C_{2,1}=A_{2,1} \cdot B_{1,1}+A_{2,2} \cdot B_{2,1} \\
& C_{2,2}=A_{2,1} \cdot B_{1,2}+A_{2,2} \cdot B_{2,2}
\end{aligned}
$$

Thus, 8 matrix multiplications of $2^{k-1} \times 2^{k-1}$ matrices are necessary :

$$
T(n)=8 \cdot T(n / 2)=O\left(n^{3}\right)
$$

One key ingredient of our algorithm

$$
A=\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right) \quad B=\left(\begin{array}{ll}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right) \quad C=\left(\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right)
$$

By Strassen [Stra69] :

$$
\begin{aligned}
& M_{1}=\left(A_{1,1}+A_{2,2}\right) \cdot\left(B_{1,1}+B_{2,2}\right) \\
& M_{2}=\left(A_{2,1}+A_{2,2}\right) \cdot B_{1,1} \\
& M_{3}=A_{1,1} \cdot\left(B_{1,2}-B_{2,2}\right) \\
& M_{4}=A_{2,2} \cdot\left(B_{2,1}-B_{1,1}\right) \\
& M_{5}=\left(A_{1,1}+A_{1,2}\right) \cdot B_{2,2} \\
& M_{6}=\left(A_{2,1}-A_{1,1}\right) \cdot\left(B_{1,1}+B_{1,2}\right) \\
& M_{7}=\left(A_{1,2}-A_{2,2}\right) \cdot\left(B_{2,1}+B_{2,2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& C_{1,1}=M_{1}+M_{4}-M_{5}+M_{7} \\
& C_{1,2}=M_{3}+M_{5} \\
& C_{2,1}=M_{2}+M_{4} \\
& C_{2,2}=M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

Then,

$$
T(n)=7 \cdot T(n / 2)=O\left(n^{2.807}\right)
$$

Our approach

Our algorithm uses Dynamic Programming

We reduce the number of operations (like in Strassen's algo)

$$
+
$$

We use a representation for partial $L(2,1)$-labelings

Representation of partial $L(2,1)$-labelings

Span 1 Table T_{1}
introduction DP algorithm

Representation of partial $L(2,1)$-labelings

Span 1
Table T_{1}
introduction DP algorithm combinatorial result

Representation of partial $L(2,1)$-labelings

Span 1
Table T_{1}

introduction DP algorithm

Representation of partial $L(2,1)$-labelings

Span 2

Table T_{2}

$$
\begin{array}{ccccccccccccccc}
& . & . & . & . & . & . & . & . & . & 0 & 0 & 0 & 1 & 1
\end{array} 1
$$

$$
01 \text {. . . } 1 \text {. } 0
$$

Representation of partial $L(2,1)$-labelings

Span 2

Table T_{2}

Representation of partial $L(2,1)$-labelings

Span 3

 Table T_{3}

000000000111

0000011122222
22

00001112222
2
$0 \cdots 22$

$012 \cdot 2 \cdot \cdot 0 \cdot 12 \cdot \cdot 02 \cdot 01 \cdot 2$
0.... 12 .

02

Representation of partial $L(2,1)$-labelings

Span 3

Table T_{3}

Representation of partial $L(2,1)$-labelings

Jump to a compact representation

Table T_{ℓ} contains a vector $\vec{a} \in\{0, \overline{0}, 1, \overline{1}\}^{n}$ if and only if there is a partial labeling $\varphi: V \rightarrow\{0, \ldots, \ell\}$ such that :
$>a_{i}=0 \quad$ iff $\quad v_{i}$ is not labeled by φ and there is no neighbor u of v_{i} with $\varphi(u)=\ell$
$>a_{i}=\overline{0} \quad$ iff $\quad v_{i}$ is not labeled by φ and there is a neighbor u of v_{i} with $\varphi(u)=\ell$
$>a_{i}=1$ iff $\varphi\left(v_{i}\right)<\ell$
$>a_{i}=1$ iff $\varphi\left(v_{i}\right)=\ell$

Representation of partial $L(2,1)$-labelings

Span 3
Table T_{3}

$000000000000000 \overline{00000000111111111111 \overline{111111} 1}$
$0000000 \overline{0} \overline{0} \overline{0} 1111 \overline{0} \overline{0} \overline{0} 1 \overline{1} \overline{1} 1 \overline{1} 00000 \overline{0} \overline{0} \overline{0} \overline{1} \overline{1} \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} 11$
$000 \overline{0} 111001000 \overline{0} \overline{1} \overline{1} \overline{100} \overline{0} 1000 \overline{0} 000 \overline{1} \overline{10} \overline{0} \overline{0} \overline{0} 11 \overline{0} \overline{0}$
$001 \overline{1} 100 \overline{10} 1 \overline{0} 0 \overline{1} \overline{10} \overline{1} \overline{0} 0010001 \overline{1} \overline{1} 1 \overline{0} 0010010001$
$010 \overline{0} 101 \overline{0} \overline{1} \overline{1} 10 \overline{1} 0 \overline{0} 0100 \overline{0} 1 \overline{0} \overline{0} 010 \overline{0} 1 \overline{1} \overline{1} 01 \overline{0} \overline{0} 0100100$

Computing the tables

How to compute table $T_{\ell+1}$ from table T_{ℓ} ?

Computing the tables

Let $P \subseteq\{0,1\}^{n}$ be the encodings of all 2-packings of G.
Formally, $\vec{p} \in P \Leftrightarrow \exists$ a 2 -packing $S \subseteq V$ such that $\forall i, p_{i}=1$ iff $v_{i} \in S$.
We compute $T_{\ell+1}$ from $T_{\ell} \oplus P$.
We define the partial function $\oplus:\{0, \overline{0}, 1, \overline{1}\} \times\{0,1\} \rightarrow\{0,1, \overline{1}\}$:

\oplus	0	$\overline{0}$	1	$\overline{1}$
0	0	0	1	1
1	$\overline{1}$	\sim	-	-
Entry "-" signifies that \oplus is not defined.				

We generalize \oplus to vectors :
$a_{1} a_{2} \ldots a_{n} \oplus b_{1} b_{2} \ldots b_{n}= \begin{cases}\left(a_{1} \oplus b_{1}\right) \ldots\left(a_{n} \oplus b_{n}\right) & \text { if } \oplus \text { is defined } \\ \text { undefined } & \text { otherwise }\end{cases}$

Computing the tables

Then $T_{\ell} \oplus P$ is already almost the same as $T_{\ell+1}$:

$$
\vec{a} \in T_{\ell+1} \text { iff there is an } \overrightarrow{a^{\prime}} \in T_{\ell} \oplus P \text { such that }
$$

$>a_{i}=0$ iff $a_{i}^{\prime}=0$ and there is no $v_{j} \in N\left(v_{i}\right)$ with $a_{j}^{\prime}=\overline{1}$
$>a_{i}=\overline{0}$ iff $a_{i}^{\prime}=0$ and there is a $v_{j} \in N\left(v_{i}\right)$ with $a_{j}^{\prime}=\overline{1}$

$$
a_{i}=1 \text { iff } a_{i}^{\prime}=1
$$

$$
a_{i}=\overline{1} \text { iff } a_{i}^{\prime}=\overline{1}
$$

Computing efficiently the tables

What remains is to find a method to compute $T_{\ell} \oplus P$

Computing efficiently the tables

What remains is to find a method to compute $T_{\ell} \oplus P$

Computing efficiently the tables

Definition

$$
A_{w}=\{\vec{v} \mid w \cdot v \in A\}
$$

$$
\begin{aligned}
& \begin{array}{c|cccc}
\oplus & 0 & \overline{0} & 1 & \overline{1} \\
\hline 0 & 0 & 0 & 1 & 1 \\
1 & \overline{1} & \sim & - & -
\end{array} \\
& A \oplus B=0\left(\left(A_{0} \cup A_{0}\right) \oplus B_{0}\right) \\
& \cup \quad 1\left(\left(A_{1} \cup A_{1}\right) \oplus B_{0}\right) \\
& \cup \overline{1}\left(A_{0} \oplus B_{1}\right)
\end{aligned}
$$

Computing efficiently the tables

\oplus	0	$\overline{0}$	1	$\overline{1}$
0	0	0	1	1
1	$\overline{1}$	\sim	-	-

\oplus	00	$0 \overline{0}$	01	$0 \overline{1}$	$\overline{00}$	$\overline{00}$	$\overline{01}$	$\overline{01}$	10	$1 \overline{0}$	11	$1 \overline{1}$	$\overline{10}$	$\overline{10}$	$\overline{11}$	$\overline{11}$
00																
01																
10																
11																

Computing efficiently the tables

\oplus	0	$\overline{0}$	1	$\overline{1}$
0	0	0	1	1
1	$\overline{1}$	\sim	-	-

\oplus	00	$0 \overline{0}$	01	$0 \overline{1}$	$\overline{0} 0$	$\overline{00}$	$\overline{01}$	$\overline{01}$	10	$1 \overline{0}$	11	$1 \overline{1}$	$\overline{10}$	$\overline{10}$	$\overline{11}$	$\overline{11}$
00																
01																
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11	-															

Computing efficiently the tables

\oplus	0	$\overline{0}$	1	$\overline{1}$
0	0	0	1	1
1	$\overline{1}$	\sim	-	-

\oplus	00	$0 \overline{0}$	01	$0 \overline{1}$	$\overline{0} 0$	$\overline{00}$	$\overline{0} 1$	$\overline{01}$	10	$1 \overline{0}$	11	$1 \overline{1}$	$\overline{10}$	$\overline{10}$	$\overline{11}$	$\overline{11}$
00																
01			-	-			-	-			-	-			-	-
10									-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Computing efficiently the tables

\oplus	0	$\overline{0}$	1	$\overline{1}$
0	0	0	1	1
1	$\overline{1}$	\sim	-	-

\oplus	00	$0 \overline{0}$	01	$0 \overline{1}$	$\overline{0} 0$	$\overline{00}$	$\overline{01}$	$\overline{01}$	10	$1 \overline{0}$	11	$1 \overline{1}$	$\overline{10}$	$\overline{10}$	$\overline{11}$	$\overline{11}$
00																
01		\sim	-	-												
10					\sim	\sim	\sim	\sim	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Computing efficiently the tables

\oplus	0	$\overline{0}$	1	$\overline{1}$
0	0	0	1	1
1	$\overline{1}$	\sim	-	-

\oplus	00	$0 \overline{0}$	01	$0 \overline{1}$	$\overline{0} 0$	$\overline{00}$	$\overline{0} 1$	$\overline{01}$	10	$1 \overline{0}$	11	$1 \overline{1}$	$\overline{10}$	$\overline{10}$	$\overline{1} 1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$\overline{1}$	\sim	-	-	$0 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-
10	$\overline{10}$	$\overline{10}$	$\overline{11}$	$\overline{11}$	\sim	\sim	\sim	\sim	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Computing efficiently the tables

\oplus	0	$\overline{0}$	1	$\overline{1}$
0	0	0	1	1
1	$\overline{1}$	\sim	-	-

\oplus	00	$0 \overline{0}$	01	$0 \overline{1}$	$\overline{0} 0$	$\overline{00}$	$\overline{0} 1$	$\overline{01}$	10	$1 \overline{0}$	11	$1 \overline{1}$	$\overline{10}$	$\overline{10}$	$\overline{11}$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$\overline{1}$	\sim	-	-	$0 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-
10	$\overline{10}$	$\overline{10} 0$	$\overline{1} 1$	$\overline{1} 1$	\sim	\sim	\sim	\sim	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

\rightarrow Prefix $\overline{11}$ cannot appear.

Computing efficiently the tables

\oplus	00	$0 \overline{0}$	01	$0 \overline{1}$	$\overline{0} 0$	$\overline{00}$	$\overline{0} 1$	$\overline{01}$	10	$1 \overline{0}$	11	$1 \overline{1}$	$\overline{10}$	$\overline{10}$	$\overline{11}$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$0 \overline{1}$	\sim	-	-	$0 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-
10	$\overline{10}$	$\overline{10}$	$\overline{1} 1$	$\overline{1} 1$	\sim	\sim	\sim	\sim	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	$A \oplus B=$															

Computing efficiently the tables

\oplus	00	$0 \overline{0}$	01	Oİ	$\overline{0} 0$	$\overline{0}$	$\overline{0} 1$	$\overline{01}$	10	$1 \overline{0}$	11	$1 \overline{1}$	İ0	$\overline{10}$	İ	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	
01	01	\sim	-	-	$0 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-
10	10	İ0	İ	$\overline{11}$	\sim	\sim	\sim	\sim	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Computing efficiently the tables

Computing efficiently the tables

\oplus	00	$0 \overline{0}$	01	Oİ	$\overline{0} 0$	$\overline{00}$	$\overline{0} 1$	$\overline{01}$	10	$1 \overline{0}$	11	$1 \overline{1}$	I0	$\overline{10}$	I1	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	
01	$0 \overline{1}$	\sim	-	-	$0 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-
10	10	$\overline{10}$	İ1	11	\sim	\sim	\sim	\sim	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$A \oplus B=00\left(\left(A_{00} \cup A_{0 \overline{0}} \cup A_{00} \cup A_{00}\right) \oplus B_{00}\right.$																
$\cup \quad 01\left(\left(A_{01} \cup A_{\overline{01}} \cup A_{\overline{01}} \cup A_{\overline{01}}\right) \oplus B_{00}\right)$																
$\cup 10\left(\left(A_{10} \cup A_{10} \cup A_{\overline{10}} \cup A_{10}\right) \oplus B_{00}\right)$																

Computing efficiently the tables

Computing efficiently the tables

Computing efficiently the tables

Computing efficiently the tables

Computing efficiently the tables

\oplus	00	$0 \overline{0}$	01	$0 \overline{1}$	$\overline{0} 0$	$\overline{0}$	$\overline{0} 1$	$\overline{01}$	10	$1 \overline{0}$	11	11	İ0	$\overline{10}$	11	11
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	01	\sim	-	-	$0 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-	$1 \overline{1}$	\sim	-	-
10	İ0	$\overline{1} 0$	İ	İ	\sim	\sim	\sim	\sim	-	-	-	-	-	-	-	-
11			-	-	-	-	-	-	-	-	-	-	-	-		-
				B		0)(A	, U	$A_{0 \overline{0}}$	A	$\cup A$)	B_{0}				
				U		$1\left(\right.$ (${ }_{\text {c }}$	$1 \cup$	$\mathrm{A}_{0 \overline{1}}$	A_{0}	$\cup A^{\prime}$)	B0				
				U	1	0($\left(A_{1}\right.$	\bigcirc	A_{10}	A_{1}	$\cup A^{\prime}$)	B00				
				U	1	$1\left(\right.$ (${ }^{\text {I }}$	$1 \cup$	$A_{1 \overline{1}}$	A_{1}) \oplus						
				U	0	$\overline{1}\left(\left(A_{0}\right.\right.$	$\bigcirc \cup$	A_{00})	(1) ${ }^{\text {c }}$							
					1	1 $1\left(A_{1}\right.$	\bigcirc	A_{10})	(${ }^{\text {B }}$							
					1	O($\left(A_{0}\right.$	\bigcirc	$\mathrm{A}_{0 \overline{0}}$)	\oplus B							
						$1\left(\right.$ (${ }_{0}$	$1 \cup$	A_{01})	\oplus B							

Computing efficiently the tables

Running-time : $T(n)=8 \cdot T(n-2)=8^{n / 2}<2.8285^{n}$

Imagine that a graph can be decomposed into some connected subsets of constant size $k^{\prime} \ldots$

Decomposing the graph into connected subgraphs

Theorem (\star)
Let G be a connected graph of order n.
Let $k<n$ be a positive integer.
Then there exist connected subgraphs $G_{1}, G_{2}, \ldots, G_{q}$ of G s.t.
(i) every vertex of G belongs to at least one of them
(ii) the order of each of $G_{1}, G_{2}, \ldots, G_{q-1}$ is at least k and at most $2 k$ (while for G_{q} we only require $\left|V\left(G_{q}\right)\right| \leq 2 k$)
(iii) the sum of the numbers of vertices of $G_{i}^{\prime} s$ is at most $n\left(1+\frac{1}{k}\right)$

Decomposing the graph into connected subgraphs

Proof

- Consider a DFS-tree T of G rooted at r.
- For every v let $T(v)$ be the subtree rooted in v.
- If $|T(r)| \leq 2 k$ then add G to the set of desired subgraphs and stop.
- If there is a vertex v such that $k \leq|T(v)| \leq 2 k$ then add $G[V(T(v))]$ to the set of desired subgraphs and proceed recursively with $G \backslash V(T(v))$.

Decomposing the graph into connected subgraphs

Proof

- Otherwise there must be a vertex v such that $|T(v)|>2 k$ and for its every child $u,|T(u)|<k$.

In such a case find a subset $\left\{u_{1}, \ldots, u_{i}\right\}$ of children of v such that $k-1 \leq\left|T\left(u_{1}\right)\right|+\cdots+\left|T\left(u_{i}\right)\right| \leq 2 k-1$.

Add $G\left[\{v\} \cup V\left(T\left(u_{1}\right)\right) \cup \cdots \cup V\left(T\left(u_{i}\right)\right)\right]$ to the set of desired subgraphs and proceed recursively with $G \backslash\left(V\left(T\left(u_{1}\right)\right) \cup . . \cup V\left(T\left(u_{i}\right)\right)\right)$.

- This procedure terminates after at most $\frac{n}{k}$ steps and in each of them we have left at most one vertex of the identified connected subgraph in the further processed graph.

An exact algorithm

Let $A \subseteq\{0, \overline{0}, 1, \overline{1}\}^{n}$ and $B \subseteq\{0,1\}^{n}$ where $n>k^{\prime}$.
We compute $A \oplus B$ is the following way :

$$
\left.A \oplus B=\bigcup_{\substack{\vec{u} \in\{0, \overline{0}, 1, \overline{1}\}\}^{k^{\prime}} \\ \vec{v} \in\{0,1\}^{k^{\prime}}}}(\vec{u} \oplus \vec{v})\left(A_{\vec{u}} \oplus B_{\vec{v}}\right)\right)
$$

Remark :
Computation can be omitted whenever $\left(\bigcup_{\substack{\left.\vec{u} \in\{0, \overline{0}, 1, \overline{1}\}^{\prime} \\ \text { s.t. }\\\right\}^{\prime} \in \vec{v}=\vec{w}}} A_{\vec{u}}\right)$ is empty.

An exact algorithm - Running-time analysis

How many pairs \vec{v}, \vec{w} are there s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v}=\vec{w}$?

If \vec{v} is fixed, then $v_{i}=1 \Rightarrow w_{i}=\overline{1}$.
Thus, for a fixed \vec{v} there are at most $2^{k^{\prime}-\|\vec{v}\|}$ many \vec{w} 's, where $\|\vec{v}\|$ denotes the number of positions i such that $v_{i}=1$.
The total number of pairs \vec{v}, \vec{w} such that $\vec{w}=\vec{v} \oplus \vec{u}$ for some \vec{u} is therefore at most

$\vec{v} \in\{0,1\}^{k^{\prime}}$

An exact algorithm - Running-time analysis

How many pairs \vec{v}, \vec{w} are there s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v}=\vec{w}$?

If \vec{v} is fixed, then $v_{i}=1 \Rightarrow w_{i}=\overline{1}$.
Thus, for a fixed \vec{v} there are at most $2^{k^{\prime}-| | \vec{v} \|}$ many \vec{w} 's, where $\|\vec{v}\|$ denotes the number of positions i such that $v_{i}=1$.
The total number of pairs \vec{v}, \vec{w} such that $\vec{w}=\vec{v} \oplus \vec{u}$ for some \vec{u} is therefore at most

$$
\vec{v} \in\{0,1\}^{k^{\prime}}
$$

\Rightarrow We need to make $p p\left(k^{\prime}\right)$ recursive computations of \oplus on sets of vectors of length $n-k^{\prime}$.

An exact algorithm - Running-time analysis

How many pairs \vec{v}, \vec{w} are there s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v}=\vec{w}$?

If \vec{v} is fixed, then $v_{i}=1 \Rightarrow w_{i}=\overline{1}$.
Thus, for a fixed \vec{v} there are at most $2^{k^{\prime}-\|\vec{v}\|}$ many \vec{w} 's, where $\|\vec{v}\|$ denotes the number of positions i such that $v_{i}=1$.
The total number of pairs \vec{v}, \vec{w} such that $\vec{w}=\vec{v} \oplus \vec{u}$ for some \vec{u} is therefore at most

An exact algorithm - Running-time analysis

How many pairs \vec{v}, \vec{w} are there s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v}=\vec{w}$?

If \vec{v} is fixed, then $v_{i}=1 \Rightarrow w_{i}=\overline{1}$.
Thus, for a fixed \vec{v} there are at most $2^{k^{\prime}-\|\vec{v}\|}$ many \vec{w} 's, where $\|\vec{v}\|$ denotes the number of positions i such that $v_{i}=1$.
The total number of pairs \vec{v}, \vec{w} such that $\vec{w}=\vec{v} \oplus \vec{u}$ for some \vec{u} is therefore at most

$$
\sum_{\vec{v} \in\{0,1\}} 2^{k^{\prime}} k^{k^{\prime}-\|\vec{v}\|} \leq p p\left(k^{\prime}\right)
$$

An exact algorithm - Running-time analysis

How many pairs \vec{v}, \vec{w} are there s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v}=\vec{w}$?

If \vec{v} is fixed, then $v_{i}=1 \Rightarrow w_{i}=\overline{1}$.
Thus, for a fixed \vec{v} there are at most $2^{k^{\prime}-\|\vec{v}\|}$ many \vec{w} 's, where $\|\vec{v}\|$ denotes the number of positions i such that $v_{i}=1$.
The total number of pairs \vec{v}, \vec{w} such that $\vec{w}=\vec{v} \oplus \vec{u}$ for some \vec{u} is therefore at most

$$
\sum_{\vec{v} \in\{0,1\}^{k^{\prime}}} 2^{k^{\prime}-\|\vec{v}\|} \leq p p\left(k^{\prime}\right)
$$

\Rightarrow We need to make $p p\left(k^{\prime}\right)$ recursive computations of \oplus on sets of vectors of length $n-k^{\prime}$.

An exact algorithm - Running-time analysis

By Theorem (\star), the total length of the vectors is $n^{\prime} \leq n(1+1 / k)$.
In each recursive computation :
P Prepare up to $p p\left(k^{\prime}\right)$ many pairs of sets of vectors of length $n^{\prime}-k^{\prime}$

- Recursively compute \oplus on these pairs
- From the result, compute $T_{\ell+1}$ in linear time
- The size of B is at most $O\left(n 2^{n^{\prime}}\right)$ bits
- The size of A is at most $O\left(n p p\left(n^{\prime}\right)\right)$ bits :
the 1's form a 2-packing and there are only two possibilities (1 or $0 / \overline{0}$) for the other nodes.

Thus the running-time is given by
where $k \leq k^{\prime} \leq 2 k$.

An exact algorithm - Running-time analysis

By Theorem (\star), the total length of the vectors is $n^{\prime} \leq n(1+1 / k)$.
In each recursive computation :
P Prepare up to $p p\left(k^{\prime}\right)$ many pairs of sets of vectors of length $n^{\prime}-k^{\prime}$

- Recursively compute \oplus on these pairs
- From the result, compute $T_{\ell+1}$ in linear time
- The size of B is at most $O\left(n 2^{n^{\prime}}\right)$ bits
- The size of A is at most $O\left(n p p\left(n^{\prime}\right)\right)$ bits :
the 1's form a 2-packing and there are only two possibilities (1 or $0 / \overline{0}$) for the other nodes.

Thus the running-time is given by

$$
T(n) \leq O\left(n \cdot p p\left(n^{\prime}\right)+p p\left(k^{\prime}\right) \cdot T\left(n^{\prime}-k^{\prime}\right)\right)
$$

where $k \leq k^{\prime} \leq 2 k$.

An exact algorithm - Running-time analysis

The solution of

$$
T(n) \leq O\left(n \cdot p p\left(n^{\prime}\right)+p p\left(k^{\prime}\right) \cdot T\left(n^{\prime}-k^{\prime}\right)\right)
$$

is

$$
T(n)=O^{*}\left(p p\left(n^{\prime}\right)\right)=O^{*}(p p(n(1+1 / k)))
$$

Choosing constant k big enough :

$$
T(n)=O\left(2.6488^{n}\right)
$$

An exact algorithm - Running-time analysis

The solution of

$$
T(n) \leq O\left(n \cdot p p\left(n^{\prime}\right)+p p\left(k^{\prime}\right) \cdot T\left(n^{\prime}-k^{\prime}\right)\right)
$$

is

$$
T(n)=O^{*}\left(p p\left(n^{\prime}\right)\right)=O^{*}(p p(n(1+1 / k)))
$$

Choosing constant k big enough :

$$
T(n)=O\left(2.6488^{n}\right)
$$

Conclusion

(1) Definitions and Known Results

(2) A (Simple) Dynamic Programming Based Algorithm
(3) A Combinatorial Result
(4) A Faster Exact Exponential-Time Algorithm
(5) Conclusion

Conclusion

- Combinatorial result : number of proper pairs

$$
2.6117^{n} \leq p p(n) \leq 2.6488^{n}
$$

- Exact exponential-time algorithm for $L(2,1)$-labelings $O\left(2.6488^{n}\right)$

Interesting questions :

- Does inclusion/exclusion or subset convolution can achieve a $O\left(2^{n}\right)$-time algorithm?
- Is it possible to find a 2-approx in $O\left(c^{n}\right)$ with $c \leq 2$?
$>\operatorname{In}$ [GY92], it is conjectured that $\lambda(G) \leq \Delta(G)^{2}$.
It is still not fully resolved. It has been proved for graphs of large maximum degree [HRS08].

Merci !

Bibliographie I

```
    Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J. :
    Approximations for lambda-Colorings of Graphs. Computer Journal 47 (2004), pp. 193-204.
    Chang, G. J., Kuo, D. :
    The L(2,1)-labeling problem on graphs.
    SIAM Journal of Discrete Mathematics }9\mathrm{ (1996), pp. 309-316.
    Cygan, M., Kowalik, L. :
    Channel Assignment via Fast Zeta Transform.
    arXiv :1103.2275
    Fiala, J., Golovach, P., Kratochvíl, J. :
    Distance Constrained Labelings of Graphs of Bounded Treewidth.
    Proceedings of ICALP 2005, LNCS 3580 (2005), pp. 360-372.
    Fiala, J., Kloks, T., Kratochvíl, J. :
    Fixed-parameter complexity of }\lambda\mathrm{ -labelings.
    Discrete Applied Mathematics 113 (2001), pp. 59-72.
    Golovach, P., Kratsch, D., Couturier, J.-F. :
    Coloring With Few Colors : Counting, Enumeration and Combinatorial Bounds.
    Proceedings of WG 6410, LNCS 3580 (2010), pp. 39-50.
    Griggs, J. R., Yeh, R. K. :
    Labelling graphs with a condition at distance 2.
    SIAM Journal of Discrete Mathematics 5 (1992), pp. 586-595.
```


Bibliographie II

```
    Havet, F., Klazar, M., KratochvíL, J., Kratsch, D., Liedloff, M. :
    Exact Algorithms for L(p,q)-labelings of graphs.
    submitted to STACS'09.
    Havet, F., Klazar, M., KratochvíL, J., Kratsch, D., Liedloff, M. :
    Exact algorithms for L(2,1)-labeling of graphs.
    Algorithmica 59 (2011), pp. 169-194.
    Havet, F., Reed, B., Sereni, J.-S. :
    L(2, 1)-labellings of graphs.
    Proceedings of SODA 2008 (2008), pp. 621-630.
    Hell, P., NeŠEtřil, J. :
    On the complexity of H-colouring,
    Journal of Combinatorial Theory Series B 48 (1990), 92-110.
    Janczewski, R., Kosowski, A., Ma乇AFiejski. M. :
    The complexity of the L(p,q)-labeling problem for bipartite planar graphs of small degree.
    Discrete Mathematics 309 (2009), pp. 3270-3279.
    Junosza-Szaniawski, K., Kratochvíl, J., Liedloff, M., RzA̧żewski, P. :
    Determining the L(2,1)-Span in Polynomial Space.
    proceedings of WG'12.
    KRÁL', D. :
    Channel assignment problem with variable weights.
    SIAM Journal on Discrete Mathematics 20 (2006), pp. 690-704.
```


Bibliographie III

Roberts, F.S. :
private communication to J. Griggs.
Strassen, V. :
Gaussian Elimination is not Optimal.
Numerische Mathematik 13 (1969), pp. 354-356.

[^0]: $\operatorname{Lab}(X, Y, i)$ is true iff
 there is an $L(2,1)$-labeling of span i of the vertices of X such that the vertices of $N(Y) \cap X$ have label at most $i-1$.

[^1]: Theorem :
 Computing an $L(2,1)$ of span k can be obtain in time $O^{*}\left(4^{n}\right)$.

