Fast Exact Algorithm for L(2,1)-Labeling of Graphs

Mathieu Liedloff

Université d'Orléans - LIFO

joint work with:

Konstanty Junosza-Szaniawski 1 $\,$ Jan Kratochvíl 2

Peter Rossmanith ³ Paweł Rzążewski ¹

¹Warsaw University of Technology, Faculty of Mathematics and Information Science, Warszawa, Poland

²Department of Applied Mathematics, and Institute for Theoretical Computer Science, Charles University, Praha, Czech Republic

³Department of Computer Science, RWTH Aachen University,

Aachen, Germany

Journées Franciliennes de Recherche Opérationnelle 20 novembre 2012

m	tro	ТΠ	Т	٦ľ	1

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Outline

1 Definitions and Known Results

- 2 A (Simple) Dynamic Programming Based Algorithm
- **(3) A Combinatorial Result**
- (4) A Faster Exact Exponential-Time Algorithm

5 Conclusion

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Frequency assignment problem

broadcast network

- assign frequencies to transmitters
- avoid undesired interference

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Frequency assignment problem

- broadcast network
- assign frequencies to transmitters
- avoid undesired interference

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Frequency assignment problem

- broadcast network
- assign frequencies to transmitters
- avoid undesired interference

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Definition of L(2, 1)-labeling

L(2,1)-LABELING

Input : A graph G = (V, E). **Question** : Compute a function ℓ of minimum span k $\ell : V \to \{0, \dots, k\}$ s.t.

• *u* and *v* adjacent
$$\Rightarrow |\ell(u) - \ell(v)| \ge 2$$

• *u* and *v* at distance two
$$\Rightarrow |\ell(u) - \ell(v)| \ge 1$$

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Known complexity results

Theorem [GY92] Determining the minimum span $\lambda(G)$ of a graph G is NP-hard.

Theorem[FKK01]Deciding whether $\lambda(G) \leq k$ remains NP-complete for every fixed $k \geq 4$.(trivial for $k \leq 3$)

Theorem

[CK96, FGK05]

When the span k is part of the input, L(2,1)-labeling problem is polynomial time solvable on trees. However, the problem is NP-complete for series-parallel graphs.

 \rightarrow The problem "separates" graphs of treewidth 1 and 2 by P / NP-completeness dichotomy.

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Known complexity results

Theorem [GY92] Determining the minimum span $\lambda(G)$ of a graph G is NP-hard.

Theorem[FKK01]Deciding whether $\lambda(G) \leq k$ remains NP-complete for every fixed $k \geq 4$.(trivial for $k \leq 3$)

Theorem

[CK96, FGK05]

When the span k is part of the input, L(2,1)-labeling problem is polynomial time solvable on trees. However, the problem is NP-complete for series-parallel graphs. \rightarrow The problem "separates" graphs of treewidth 1 and 2

by P / NP-completeness dichotomy.

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Known complexity results

The distance constrained labeling problem is more difficult than ordinary coloring :

[FGK05] Theorem Deciding whether $\lambda(G) \leq k$ is NP-complete for series-parallel graphs (k is part of the input).

[BKTvL04, JKM09] Theorem Deciding whether $\lambda = k$ is NP-complete for planar graphs for k = 8[BKTvL04] [JKM09]

• for
$$k = 4$$

L(2,1)-labeling and Locally Injective Homomorphisms

Fiala and Kratochvíl defined the notion of H(2, 1)-labeling :

- mapping from vertices of G to vertices of a graph H;
- ▶ adjacent vertices in *G* are mapped onto non-adjacent vertices in *H*;
- vertices with a common neighbor in G are mapped onto distinct vertices of H.

They show that :

 \rightarrow H(2,1)-labelings are exactly locally injective homomorphisms from G to \overline{H} .

 \rightarrow L(2, 1)-labeling of span k is a locally injective homomorphism into the complement of the path of length k.

L(2,1)-labeling and Locally Injective Homomorphisms

Fiala and Kratochvíl defined the notion of H(2, 1)-labeling :

- mapping from vertices of G to vertices of a graph H;
- ▶ adjacent vertices in *G* are mapped onto non-adjacent vertices in *H*;
- vertices with a common neighbor in G are mapped onto distinct vertices of H.

They show that :

 \rightarrow H(2,1)-labelings are exactly locally injective homomorphisms from G to $\overline{H}.$

 \rightarrow L(2,1)-labeling of span k is a locally injective homomorphism into the complement of the path of length k.

L(2,1)-labeling and Locally Injective Homomorphisms

Fiala and Kratochvíl defined the notion of H(2, 1)-labeling :

- mapping from vertices of G to vertices of a graph H;
- adjacent vertices in G are mapped onto non-adjacent vertices in H;
- vertices with a common neighbor in G are mapped onto distinct vertices of H.

They show that :

 \rightarrow H(2,1)-labelings are exactly locally injective homomorphisms from G to $\overline{H}.$

 \rightarrow L(2, 1)-labeling of span k is a locally injective homomorphism into the complement of the path of length k.

L(2, 1)-labeling and Locally Injective Homomorphisms

homomorphism : A mapping $f : V(G) \rightarrow V(H)$ is a homomorphism from *G* to *H* if $f(u)f(v) \in E(H)$ for every edge $uv \in E(G)$.

Remark : k-coloring of a graph G corresponds to homomorphism from G to the graph K_k .

homomorphism : A mapping $f : V(G) \rightarrow V(H)$ is a homomorphism from G to H if $f(u)f(v) \in E(H)$ for every edge $uv \in E(G)$.

locally injective homomorphism (LIH) : A homomorphism $f: G \to H$ is locally injective if for every vertex $u \in V(G)$ its neighborhood is mapped injectively into the neighborhood of f(u) in H, i.e., every two vertices having a common neighbor in G are mapped onto disctinct vertices in H.

Theorem

[HKKKL11]

H-locally-injective-homorphism can be solved in time

 $O^*ig((\Delta(H)-1)^nig)$

homomorphism : A mapping $f : V(G) \rightarrow V(H)$ is a homomorphism from *G* to *H* if $f(u)f(v) \in E(H)$ for every edge $uv \in E(G)$.

locally injective homomorphism (LIH) : A homomorphism $f: G \to H$ is locally injective if for every vertex $u \in V(G)$ its neighborhood is mapped injectively into the neighborhood of f(u) in H, i.e., every two vertices having a common neighbor in G are mapped onto disctinct vertices in H.

Theorem

[HKKKL11]

H-locally-injective-homorphism can be solved in time

 $O^*\bigl((\Delta(H)-1)^n\bigr)$

DP algorithm

combinatorial result

faster exact algorithm

conclusion

L(2,1)-labeling problem - Exact algorithms

Theorem[HKKKL11]H-locally-injective-homorphism can be solved in time $O^*((\Delta(H) - 1)^n)$

\rightarrow L(2,1)-labeling of span k is a locally injective homomorphism into the complement of the path of length k.

Theorem [HKKKL11] Hence, L(2,1)-labeling problem of span k can be decided in time $O^*((k-1)^n)$

in	trod	uction
	uou	uction

DP algorithm

combinatorial result

faster exact algorithm

conclusion

L(2,1)-labeling problem - Exact algorithms

Theorem $L(2, 1)$ -labeling of span 4 : $O(1.3006^n)$	[HKKKL11] (branching)
Theorem $L(2,1)$ -labeling of span 5 in cubic graphs : $O(1.8613^n) \rightarrow$	[GKC10] <i>O</i> (1.7990 ^{<i>n</i>})
Theorem $L(2, 1)$ -labeling of min span : $O^*(4^n)$	[Kráľ'06]
Theorem $L(2,1)$ -labeling of min span : $O^*(15^{n/2}) = O(3.88^n)$	[HKKKL11] (D.P.)
Theorem[HKKKL08] $L(2,1)$ -labeling of min span : $O((9+\epsilon)^n) \rightarrow O(7.50^n)$, [J-SKLR12] (D. & C.)

DP algorithm

combinatorial result

faster exact algorithm

conclusion

A DP based algorithm for L(2, 1)-labeling of min span

1 Definitions and Known Results

(2) A (Simple) Dynamic Programming Based Algorithm

3 A Combinatorial Result

(4) A Faster Exact Exponential-Time Algorithm

5 Conclusion

A DP based algorithm for L(2, 1)-labeling of min span

How to compute an L(2, 1)-labeling of span k by Dynamic Programming?

First, we show the following :

Theorem : An L(2, 1) labeling of span k can be decided in time $O^*(4^n)$.

A DP based algorithm for L(2, 1)-labeling of min span

How to compute an L(2,1)-labeling of span k by Dynamic Programming?

First, we show the following :

Theorem : An L(2, 1) labeling of span k can be decided in time $O^*(3.88^n)$.

2-packings = Independent Sets in G^2 A subset $S \subseteq V$ s.t. $\forall u, v \in S$, $N[u] \cap N[v] = \emptyset$ is a 2-packing.

(2-packing \equiv set of vertices pairwise at distance greater than 2.)

A DP based algorithm for L(2, 1)-labeling of min span

Reminder : Let G = (V, E) be a graph. An L(2, 1)-labeling of span k asks to find a labeling f of G such that :

- ▶ for all $\{u, v\} \in E \implies |f(u) f(v)| \ge 2$;
- ▶ for all $u, v \in V$ s.t. $dist(u, v) = 2 \implies f(u) \neq f(v)$.

 $\forall i \in \{0, 1, \dots, k\}$ and $\forall X, Y \subseteq V$ such that $X \cap Y = \emptyset$, we define the boolean variable Lab(X, Y, i).

Lab(X, Y, i) is true iff there is an L(2, 1)-labeling of span i of the vertices of X such that the vertices of $N(Y) \cap X$ have label at most i - 1.

the vertices of $N(Y) \cap X$ have label at most i - 1.

It is not difficult to check that

▶ Lab
$$(\emptyset, Y, i) \leftarrow \text{true} \quad \forall Y, \forall i;$$

Then, Lab(X, Y, i) is computed by considering the sets X and Y by increasing order of cardinality, and by increasing value of i:

$$Lab(X, Y, i) = true iff \quad \exists U \subseteq (X \setminus N(Y))$$
 such that

▶ Lab
$$(X \setminus U, U, i-1) =$$
true.

16/49

If X has an L(2,1)-labeling of span *i* then there is a (possibly empty) set $U \subseteq X \setminus N(Y)$ of vertices having label *i*. This set is a 2-packing of *G*.

⇒ the neighbors of U must obtain label at most i - 2 and $X \setminus U$ must have an L(2, 1)-labeling of span at most i - 1. If a such labeling exists then $Lab(X \setminus U, U, i - 1) = true$.

A DP based algorithm for L(2, 1)-labeling of min span

Running-time analysis :

Lab(X, Y, i) is computed for all $X, Y \subseteq V$ such that $X \cap Y = \emptyset$, and for all $i \in \{0, 1, ..., k\}$.

For each X, Y, we compute all sets $U \subseteq X$ being 2-packings of G.

$$k \cdot \sum_{x=0}^{n} \left(\binom{n}{x} \sum_{y=0}^{n-x} \binom{n-x}{y} \sum_{u=0}^{x} \binom{x}{u} \right)$$

DP algorithm

combinatorial result

faster exact algorithm

conclusion

A DP based algorithm for L(2, 1)-labeling of min span

Running-time analysis :

Lab(X, Y, i) is computed for all $X, Y \subseteq V$ such that $X \cap Y = \emptyset$, and for all $i \in \{0, 1, ..., k\}$.

For each X, Y, we compute all sets $U \subseteq X$ being 2-packings of G.

$$k \cdot \sum_{x=0}^{n} \left(\binom{n}{x} \sum_{y=0}^{n-x} \binom{n-x}{y} \sum_{u=0}^{x} \binom{x}{u} \right)$$

A DP based algorithm for L(2, 1)-labeling of min span

Running-time analysis :

Lab(X, Y, i) is computed for all $X, Y \subseteq V$ such that $X \cap Y = \emptyset$, and for all $i \in \{0, 1, ..., k\}$.

For each X, Y, we compute all sets $U \subseteq X$ being 2-packings of G.

$$k \cdot \sum_{x=0}^{n} \left(\binom{n}{x} \sum_{y=0}^{n-x} \binom{n-x}{y} \sum_{u=0}^{x} \binom{x}{u} \right)$$
$$= k \cdot \sum_{x=0}^{n} \left(\binom{n}{x} 2^{n-x} 2^{x} \right)$$
$$= k \cdot 2^{n} \cdot 2^{n}$$

Theorem : Computing an L(2,1) of span k can be obtain in time $O^*(4^n)$.

[HKKKL11]

A DP based algorithm for L(2, 1)-labeling of min span

By using a bound on the number of 2-packing of a certain size,

Theorem

Let u_k be the number of 2-packings of size k in a connected graph. Then, (n/2)

 $u_k \leq \binom{n/2}{k} \cdot 2^k$

$$u_k = 0$$
 for $k > n/2$

we are able to prove that :

Theorem : An L(2,1) of span k can be obtain in time $O^*(4^n) \rightsquigarrow O^*(3.8730^n)$.

[improving upon Král's result]

Note : These results can be extended to L(p, q)-labelings.

DP algorithm

combinatorial result

faster exact algorithm

conclusion

An auxiliary combinatorial result

1 Definitions and Known Results

2 A (Simple) Dynamic Programming Based Algorithm

3 A Combinatorial Result

(4) A Faster Exact Exponential-Time Algorithm

5 Conclusion

2-Packings and Proper Pairs

Like *independent sets* are heavily related to colorings, it seems that 2-*packings* are related to L(2, 1)-labelings.

Theorem : An L(2, 1) of span k can be obtain in time $O^*(2.6488^n)$.

But in fact we need another combinatorial object :

Proper Pairs

... and we need a bound on its maximum number in a graph.

2-Packings and Proper Pairs

Like *independent sets* are heavily related to colorings, it seems that 2-*packings* are related to L(2, 1)-labelings.

Theorem : An L(2,1) of span k can be obtain in time $O^*(2.6488^n)$.

But in fact we need another combinatorial object :

Proper Pairs

... and we need a bound on its maximum number in a graph.

DP algorithm

combinatorial result

faster exact algorithm

conclusion

... and Proper Pairs

Definition A pair (S, X) of subsets of V is a proper pair if $S \cap X = \emptyset$ and S is a 2-packing.

Definition

The number of proper pairs in a graph G is given by

$$pp(G) = \sum_{2- ext{packings } S} 2^{n-|S|}$$

Let $pp(n) = \max pp(G)$ be the maximum number of proper pairs in a connected graph with *n* vertices.

DP algorithm

combinatorial result

faster exact algorithm

conclusion

... and Proper Pairs

Definition A pair (S, X) of subsets of V is a proper pair if $S \cap X = \emptyset$ and S is a 2-packing.

Definition

The number of proper pairs in a graph G is given by

$$pp(G) = \sum_{2- ext{packings } S} 2^{n-|S|}$$

Let $pp(n) = \max pp(G)$ be the maximum number of proper pairs in a connected graph with *n* vertices.

Theorem

$2.6117^n \le pp(n) \le 2.6488^n$

(will be very useful in the next)

trod	

combinatorial result

faster exact algorithm

conclusion

... and Proper Pairs

Proof.1/2Let G = (V, E) be a connected graph.Fact 1. If S is a 2-packing, then S is also a 2-packing of $G = (V, E \setminus e)$, for any edge e. \Rightarrow we can assume that G is a tree.

Fact 2. Suppose that there are two leaves which have a common neighbor. Every 2-packing in G is also a 2-packing in H.

 \Rightarrow we can assume that there are no two or more leaves with a common neighbor

DP algorithm

combinatorial result

faster exact algorithm

conclusion

 $\begin{bmatrix} a_k = 2b_{k-1} + 4a_{k-1} \\ b_k = 2c_k + 2d_k \\ c_k = 2a_k + 12d_{k-1} \end{bmatrix}$

 $d_k = 4d_{k-1} + 12a_{k-1}$

 $2.6117^n \le pp(n) \le 2.6488^n$

2

 C_k

Theorem

6

 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{k}$

An Exact Exponential-Time Algorithm

1 Definitions and Known Results

2 A (Simple) Dynamic Programming Based Algorithm

3 A Combinatorial Result

(4) A Faster Exact Exponential-Time Algorithm

5 Conclusion

DP algorithm

combinatorial result

faster exact algorithm

conclusion

One key ingredient of our algorithm

Main idea : Use algebraic manipulations similar to

fast matrix multiplication

Assume that A and B are $2^k \times 2^k$ matrices.

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \quad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \quad C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

where

$$\begin{array}{l} C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1} \\ C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2} \\ C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1} \\ C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2} \end{array}$$

Thus, 8 matrix multiplications of $2^{k-1} \times 2^{k-1}$ matrices are necessary :

$$T(n) = 8 \cdot T(n/2) = O(n^3)$$

One key ingredient of our algorithm

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \quad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \quad C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

$$\begin{array}{l} \text{trassen [Stra69]}:\\ M_1 = (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2})\\ M_2 = (A_{2,1} + A_{2,2}) \cdot B_{1,1}\\ M_3 = A_{1,1} \cdot (B_{1,2} - B_{2,2})\\ M_4 = A_{2,2} \cdot (B_{2,1} - B_{1,1})\\ M_5 = (A_{1,1} + A_{1,2}) \cdot B_{2,2}\\ M_6 = (A_{2,1} - A_{1,1}) \cdot (B_{1,1} + B_{1,2})\\ M_7 = (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2}) \end{array}$$

and

By St

$$C_{1,1} = M_1 + M_4 - M_5 + M_7$$

$$C_{1,2} = M_3 + M_5$$

$$C_{2,1} = M_2 + M_4$$

$$C_{2,2} = M_1 - M_2 + M_3 + M_6$$

Then,

$$T(n) = 7 \cdot T(n/2) = O(n^{2.807})$$

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Our approach

Our algorithm uses Dynamic Programming

We reduce the number of operations (like in Strassen's algo)

We use a representation for partial L(2, 1)-labelings

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Representation of partial L(2, 1)-labelings

Span 1

Table T_1

combinatorial result

faster exact algorithm

conclusion

Representation of partial L(2, 1)-labelings

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Representation of partial L(2, 1)-labelings

Span 1

Table T_1

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Representation of partial L(2, 1)-labelings

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Representation of partial L(2, 1)-labelings

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Representation of partial L(2,1)-labelings

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Representation of partial L(2,1)-labelings

Jump to a compact representation

Table T_{ℓ} contains a vector $\vec{a} \in \{0, \overline{0}, 1, \overline{1}\}^n$ if and only if there is a partial labeling $\varphi \colon V \to \{0, \dots, \ell\}$ such that :

▶ $a_i = 0$ iff v_i is not labeled by φ and there is no neighbor u of v_i with $\varphi(u) = \ell$

▶ $a_i = \overline{0}$ iff v_i is not labeled by φ and there is a neighbor u of v_i with $\varphi(u) = \ell$

$$\bullet \quad \mathsf{a}_i = \mathbf{1} \quad \text{iff} \quad \varphi(\mathsf{v}_i) < \ell$$

$$\blacktriangleright \quad a_i = \overline{1} \quad \text{ iff } \quad \varphi(\mathsf{v}_i) = \ell$$

Representation of partial L(2, 1)-labelings

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Computing the tables

How to compute table $T_{\ell+1}$ from table T_{ℓ} ?

33/49

ed

Computing the tables

Let $P \subseteq \{0,1\}^n$ be the encodings of all 2-packings of G. Formally, $\vec{p} \in P \Leftrightarrow \exists$ a 2-packing $S \subseteq V$ such that $\forall i, p_i = 1$ iff $v_i \in S$.

We compute $T_{\ell+1}$ from $T_{\ell} \oplus P$. We define the partial function \oplus : $\{0, \overline{0}, 1, \overline{1}\} \times \{0, 1\} \rightarrow \{0, 1, \overline{1}\}$:

We generalize \oplus to vectors :

$$a_1a_2\ldots a_n\oplus b_1b_2\ldots b_n = egin{cases} (a_1\oplus b_1)\ldots (a_n\oplus b_n) & ext{if }\oplus ext{ is defined} \\ ext{undefined} & ext{otherwise} \end{cases}$$

introduction	DP algorithm	combinatorial result	faster exact algorithm	conclusion
Comput	ing the table	S		

Then $T_{\ell} \oplus P$ is already almost the same as $T_{\ell+1}$:

 $ec{a} \in \mathcal{T}_{\ell+1}$ iff there is an $ec{a'} \in \mathcal{T}_\ell \oplus P$ such that

▶ $a_i = 0$ iff $a'_i = 0$ and there is no $v_j \in N(v_i)$ with $a'_j = \overline{1}$

$$\blacktriangleright \quad a_i = \overline{0} \text{ iff } a_i' = 0 \text{ and there is a } v_j \in N(v_i) \text{ with } a_j' = \overline{1}$$

$$a_i = 1 \text{ iff } a'_i = 1$$

Б

$$a_i = \overline{1} \text{ iff } a'_i = \overline{1}$$

combinatorial result

faster exact algorithm

conclusion

Computing efficiently the tables

What remains is to find a method to compute $T_\ell\oplus P$

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Computing efficiently the tables

What remains is to find a method to compute $T_\ell\oplus P$

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Computing efficiently the tables

Definition

$$A_w = \{ \vec{v} \mid w \cdot v \in A \}$$

$$egin{array}{rll} A\oplus B&=&0((A_0\cup A_{\overline{0}})\oplus B_0)\ &&\cup&1((A_1\cup A_{\overline{1}})\oplus B_0)\ &&\cup&\overline{1}(A_0\oplus B_1) \end{array}$$

introdu	uction		DP al	gorithm		comb	inatoria	al resul	t	fas	ter exac	t algorit	hm	c	conclusio	on
Co	mpu	iting	; efl	ficie	ntly	the	tal	bles	5							
									_							
					\oplus	0	0	1								
					0	0	0	1	1							
					1	$\overline{1}$	\sim	—	—							
\oplus	00	00	01	01	00	00	<u>0</u> 1	01	10	1 0	11	$1\overline{1}$	10	10	$\overline{1}1$	11
00 01																

10

introdu	uction		DP a	algorithm		combi	natoria	al resul	t	fast	er exact	t algorit	hm	C	onclusio	n
Co	mpı	uting	g e	fficie	ntly	the	tal	oles)							
					⊕ 0	$\left \begin{array}{c} 0 \\ 0 \\ \overline{1} \end{array} \right $	<mark>0</mark> 0		<mark>1</mark> 1							
					1	1	2	—	—							
\oplus	00	00	01	01	00	$\overline{00}$	01	01	10	1 0	11	$1\overline{1}$	10	$\overline{10}$	11	$\overline{11}$
00 01 10																
11																

introduction

combinatorial result

faster exact algorithm

conclusion

Computing efficiently the tables

\oplus	0	$\overline{0}$	1	1
		0	1	1
1	$\overline{1}$	\sim	_	_

for two adjacent vertices

for two adjacent vertices

		$0\overline{0}$	01	01	00	00	$\overline{0}1$	$\overline{01}$	1 0	10	11	$1\overline{1}$	1 0	10	$\overline{1}1$	$\overline{11}$
00																
01			_	—			—	—			_	—			_	—
10									_	_	_	_	—	_	—	_
11	_															

combinatorial result

faster exact algorithm

conclusion

Computing efficiently the tables

		$\overline{0}$		
0			1	1
1	$\overline{1}$	\sim		_

for two adjacent vertices

for two adjacent vertices

		$0\overline{0}$	01	01	$\overline{0}0$	$\overline{00}$	$\overline{0}1$	01	1 0	1 0	11	$1\overline{1}$	1 0	1 0	$\overline{1}1$	$\overline{11}$
00																
01		\sim	—	—		2	—	—		2	—	—		2	—	—
10					\sim	2	~	\sim	_	_	_	_	_	_	_	—
11	-															

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Computing efficiently the tables

\oplus	0	$\overline{0}$	1	$\overline{1}$
0	0	0	1	1
1	$\overline{1}$	\sim	—	—

for two adjacent vertices

for two adjacent vertices

\oplus	00	$0\overline{0}$	01	01	$\overline{0}0$	$\overline{00}$	$\overline{0}1$	01	1 0	$1\overline{0}$	11	$1\overline{1}$	1 0	10	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$0\overline{1}$	2	_	_	$0\overline{1}$	2	_	_	$1\overline{1}$	2	_	_	$1\overline{1}$	2	_	_
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	\sim	\sim	\sim	\sim	_	—	—	_	_	_	—	

introd	uction

combinatorial result

faster exact algorithm

conclusion

Computing efficiently the tables

\oplus	0	$\overline{0}$	1	$\overline{1}$
0	0	0	1	1
1	$\overline{1}$	\sim	_	_

for two adjacent vertices

for two adjacent vertices

\oplus	00	$0\overline{0}$	01	01	$\overline{0}0$	$\overline{00}$	$\overline{0}1$	01	1 0	1 0	11	$1\overline{1}$	1 0	10	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$0\overline{1}$	2	_	_	$0\overline{1}$	\sim	—	_	$1\overline{1}$	\sim	_	_	$1\overline{1}$	2	_	_
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	2	2	\sim	\sim	_	_	_	_	_	_	_	

 \rightarrow Prefix $\overline{11}$ cannot appear.

introdu	introduction DP algorithm						binator	ial result	t	fast	er exact	hm	conclusion			
Computing efficiently							e ta	bles								
\oplus	00	$0\overline{0}$	01	01	00	$\overline{00}$	<u>0</u> 1	01	1 0	1 0	11	$1\overline{1}$	1 0	$\overline{10}$	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	_
01	$0\overline{1}$	2	—	_	$0\overline{1}$	2	—	_	$1\overline{1}$	\sim	_	_	$1\overline{1}$	2	_	_
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	\sim	\sim	\sim	\sim	_	—	_	—	_	_	_	_
11																

 $A \oplus B =$

introdu	iction		DP al	gorithm		com	binatori	al result		fast	er exact	hm	conclusion			
Co	mpι	utin	g ef	ficie	ently	' the	e ta	bles								
\oplus	00	00	01	01	00	00	0 1	01	1 0	1 0	11	$1\overline{1}$	1 0	1 0	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$0\overline{1}$	2	_	_	$0\overline{1}$	2	—	—	$1\overline{1}$	2	—	_	$1\overline{1}$	2	—	_
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	2	\sim	\sim	2	_	_	_	_	_	_	_	_
11																

 $A \oplus B = 00((A_{00} \cup A_{\overline{00}} \cup A_{\overline{00}} \cup A_{\overline{00}}) \oplus B_{00})$

introdu	uction		DP al	gorithm		com	binator	ial result		fast	er exact	hm	conclusion			
Co	ՠբւ	uting	g ef	ficie	ently	' the	e ta	bles								
\oplus	00	00	01	$0\overline{1}$	00	00	0 1	01	10	1 0	11	$1\overline{1}$	1 0	10	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	_
01	$0\overline{1}$	\sim	_	_	$0\overline{1}$	\sim	_	_	$1\overline{1}$	\sim	_	_	$1\overline{1}$	\sim	_	—
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	\sim	\sim	\sim	\sim	_	_	_	_	_	_	_	_
11																

 $A \oplus B = \overline{00((A_{00} \cup A_{0\overline{0}} \cup A_{\overline{00}} \cup \overline{A_{\overline{00}}}) \oplus B_{00})}$ $\cup 01((A_{01} \cup A_{0\overline{1}} \cup A_{\overline{01}} \cup A_{\overline{01}}) \oplus B_{00})$

introdu	iction		DP al	gorithm		com	binatori	al result		fast	er exact	hm	conclusion			
Co	ՠբւ	utin	g ef	ficie	ntly	' the	e ta	bles								
\oplus	00	00	01	01	00	00	<u>0</u> 1	01	1 0	1 0	11	$1\overline{1}$	1 0	10	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	_
01	$0\overline{1}$	\sim	_	_	$0\overline{1}$	\sim	_	_	$1\overline{1}$	\sim	_	_	$1\overline{1}$	\sim	_	—
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	\sim	\sim	\sim	\sim	_	_	_	_	_	_	_	_
11																

 $\begin{array}{rcl} A \oplus B = & 00((A_{00} \cup A_{0\overline{0}} \cup A_{\overline{00}} \cup A_{\overline{00}}) \oplus B_{00}) \\ & \cup & 01((A_{01} \cup A_{0\overline{1}} \cup A_{\overline{01}} \cup A_{\overline{01}}) \oplus B_{00}) \\ & \cup & 10((A_{10} \cup A_{\overline{10}} \cup A_{\overline{10}} \cup A_{\overline{10}}) \oplus B_{00}) \end{array}$

introdu	uction		DP al	gorithm		com	nbinator	ial result		fast	er exac	hm	conclusion			
Co	mpι	utin	g ef	ficie	ntly	' the	e ta	bles								
\oplus	00	00	01	01	00	00	01	01	10	1 0	11	$1\overline{1}$	<u>1</u> 0	10	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	_
01	$0\overline{1}$	\sim	_	_	$0\overline{1}$	\sim	—	_	$1\overline{1}$	\sim	_	_	$1\overline{1}$	\sim	_	—
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	\sim	\sim	\sim	\sim	_	_	_	_	_	_	_	_
11	-															

 $A \oplus B = 00((A_{00} \cup A_{\overline{00}} \cup A_{\overline{00}} \cup A_{\overline{00}}) \oplus B_{00})$

- $\cup \quad 01((A_{01}\cup A_{0\overline{1}}\cup A_{\overline{01}}\cup A_{\overline{01}})\oplus B_{00})$
- $\cup \quad 10((A_{10}\cup A_{\overline{10}}\cup A_{\overline{10}}\cup A_{\overline{10}})\oplus B_{00})$
- $\cup \quad 11((A_{11}\cup A_{1\overline{1}}\cup A_{\overline{11}})\oplus B_{00})$

introdu	uction		DP al	gorithm		com	ibinator	ial result		fast	er exact	: algorit	hm	C	onclusio	on
Computing efficiently the tables																_
\oplus	00	00	01	$0\overline{1}$	00	00	<u>0</u> 1	01	1 0	10	11	$1\overline{1}$	$\overline{1}0$	$\overline{10}$	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	_
01	$0\overline{1}$	\sim	_	_	$0\overline{1}$	\sim	—	_	$1\overline{1}$	\sim	_	_	$1\overline{1}$	2	_	_
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	\sim	\sim	\sim	\sim	_	_	_	_	_	_	_	_
11	-															

- $\cup \quad 01((A_{01}\cup A_{0\overline{1}}\cup A_{\overline{01}}\cup A_{\overline{01}})\oplus B_{00})$
- $\cup \quad 10((A_{10}\cup A_{\overline{10}}\cup A_{\overline{10}}\cup A_{\overline{10}})\oplus B_{00})$
- $\cup \quad 11((A_{11}\cup A_{1\overline{1}}\cup A_{\overline{11}})\oplus B_{00})$
- $\cup \quad \overline{01}((A_{00} \cup A_{\overline{0}0}) \oplus \overline{B_{01}})$

introdu	uction		DP al	gorithm		com	ibinator	ial result		fast	er exact	: algorit	hm	C	onclusio	on
Computing efficiently the tables																_
\oplus	00	00	01	$0\overline{1}$	00	00	<u>0</u> 1	01	1 0	10	11	$1\overline{1}$	$\overline{1}0$	$\overline{10}$	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	_
01	$0\overline{1}$	\sim	_	_	$0\overline{1}$	\sim	—	_	$1\overline{1}$	\sim	_	_	$1\overline{1}$	2	_	_
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	\sim	\sim	\sim	\sim	_	_	_	_	_	_	_	_
11	-															

- $\cup \quad 01((A_{01}\cup A_{0\overline{1}}\cup A_{\overline{01}}\cup A_{\overline{01}})\oplus B_{00})$
- $\cup \quad 10((A_{10}\cup A_{\overline{10}}\cup A_{\overline{10}}\cup A_{\overline{10}})\oplus B_{00})$
- $\cup \quad 11((A_{11}\cup A_{1\overline{1}}\cup A_{\overline{11}})\oplus B_{00})$
- $\cup \quad 0\overline{1}((A_{00}\cup A_{\overline{0}0})\oplus B_{01})$
- $\cup \quad 1\overline{1}((A_{10}\cup A_{\overline{1}0})\oplus B_{01})$

introdu	iction		DP al	gorithm		com	ibinator	ial result		fast	er exac	t algorit	hm	C	onclusio	n
Computing efficiently the tables																_
\oplus	00	$0\overline{0}$	01	01	00	$\overline{00}$	0 1	01	1 0	1 0	11	$1\overline{1}$	<u>1</u> 0	$\overline{10}$	$\overline{1}1$	11
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	_
01	$0\overline{1}$	\sim	_	_	$0\overline{1}$	\sim	—	_	$1\overline{1}$	\sim	_	_	$1\overline{1}$	2	_	—
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	\sim	\sim	\sim	\sim	_	—	_	_	_	_	_	—
11	-															

- $\cup \quad 01((A_{01}\cup A_{0\overline{1}}\cup A_{\overline{01}}\cup A_{\overline{01}})\oplus B_{00})$
- $\cup \quad 10((A_{\underline{1}0}\cup A_{\underline{1}\overline{0}}\cup A_{\overline{1}\overline{0}}\cup A_{\overline{1}\overline{0}})\oplus B_{00})$
- $\cup \quad 11((A_{11}\cup A_{1\overline{1}}\cup A_{\overline{11}})\oplus B_{00})$
- $\cup \quad 0\overline{1}((A_{00}\cup A_{\overline{0}0})\oplus B_{01})$
- $\cup \quad 1\overline{1}((A_{10}\cup A_{\overline{1}0})\oplus B_{01})$
- $\cup \quad \overline{10}((A_{00}\cup A_{0\overline{0}})\oplus B_{10})$

introdu	iction		DP al	gorithm		com	ibinator	ial result		fast	er exac	t algorit	hm	C	onclusio	n
Computing efficiently the tables																_
\oplus	00	$0\overline{0}$	01	01	00	$\overline{00}$	0 1	01	1 0	1 0	11	$1\overline{1}$	<u>1</u> 0	$\overline{10}$	$\overline{1}1$	11
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	_
01	$0\overline{1}$	\sim	_	_	$0\overline{1}$	\sim	—	_	$1\overline{1}$	\sim	_	_	$1\overline{1}$	2	_	—
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	\sim	\sim	\sim	\sim	_	—	_	_	_	_	_	—
11	-															

- $\cup \quad 01((A_{01}\cup A_{0\overline{1}}\cup A_{\overline{01}}\cup A_{\overline{01}})\oplus B_{00})$
- $\cup \quad 10((A_{\underline{1}0}\cup A_{\underline{1}\overline{0}}\cup A_{\overline{1}\overline{0}}\cup A_{\overline{1}\overline{0}})\oplus B_{00})$
- $\cup \quad 11((A_{11}\cup A_{1\overline{1}}\cup A_{\overline{11}})\oplus B_{00})$
- $\cup \quad 0\overline{1}((A_{00} \cup A_{\overline{00}}) \oplus B_{01})$
- $\cup \quad 1\overline{1}((A_{10}\cup A_{\overline{1}0})\oplus B_{01})$
- $\cup \quad \overline{10}((A_{00}\cup A_{0\overline{0}})\oplus B_{10})$
- $\cup \quad \overline{11}((A_{01}\cup A_{0\overline{1}})\oplus B_{10})$

introdu	iction		DP al	gorithm		com	ibinator	ial result		fast	er exac	t algorit	hm	C	onclusio	on
Co	Computing efficiently the tables														_	
\oplus	00	00	01	01	00	$\overline{00}$	01	01	1 0	1 0	11	$1\overline{1}$	<u>1</u> 0	$\overline{10}$	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	_
01	$0\overline{1}$	\sim	_	_	$0\overline{1}$	\sim	_	_	$1\overline{1}$	\sim	_	_	$1\overline{1}$	\sim	_	—
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	\sim	\sim	\sim	\sim	_	_	_	_	_	_	_	_
11																

- $\cup \quad 01((A_{01}\cup A_{0\overline{1}}\cup A_{\overline{01}}\cup A_{\overline{01}})\oplus B_{00})$
- $\cup \quad 10((A_{10}\cup A_{\overline{10}}\cup A_{\overline{10}}\cup A_{\overline{10}})\oplus B_{00})$
- $\cup \quad 11((A_{11}\cup A_{1\overline{1}}\cup A_{\overline{11}})\oplus B_{00})$
- $\cup \quad 0\overline{1}((A_{00}\cup A_{\overline{0}0})\oplus B_{01})$
- $\cup \quad 1\overline{1}((A_{10}\cup A_{\overline{1}0})\oplus B_{01})$
- $\cup \quad \overline{10}((A_{00}\cup A_{0\overline{0}})\oplus B_{10})$
- $\cup \quad \overline{11}((A_{01}\cup A_{0\overline{1}})\oplus B_{10})$

Running-time : $T(n) = 8 \cdot T(n-2) = 8^{n/2} < 2.8285^n$

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Decomposing the graph into connected subgraphs

What about using a \oplus -table for k' = O(1) vertices?

Imagine that a graph can be decomposed into some connected subsets of constant size k' ...

Decomposing the graph into connected subgraphs

Theorem (\star) Let *G* be a connected graph of order *n*. Let k < n be a positive integer.

Then there exist connected subgraphs G_1, G_2, \ldots, G_q of G s.t.

- (i) every vertex of G belongs to at least one of them
- (ii) the order of each of $G_1, G_2, \ldots, G_{q-1}$ is at least k and at most 2k (while for G_q we only require $|V(G_q)| \le 2k$)
- (iii) the sum of the numbers of vertices of $G'_i s$ is at most $n(1+\frac{1}{k})$

Decomposing the graph into connected subgraphs

Proof

1/2

- Consider a DFS-tree T of G rooted at r.
- For every v let T(v) be the subtree rooted in v.
- If $|T(r)| \le 2k$ then add G to the set of desired subgraphs and stop.
- If there is a vertex v such that k ≤ |T(v)| ≤ 2k then add G[V(T(v))] to the set of desired subgraphs and proceed recursively with G \ V(T(v)).

Proof

Decomposing the graph into connected subgraphs

- 2/2
- Otherwise there must be a vertex v such that |T(v)| > 2k and for its every child u, |T(u)| < k.</p>

In such a case find a subset $\{u_1, \ldots, u_i\}$ of children of v such that $k-1 \leq |T(u_1)| + \cdots + |T(u_i)| \leq 2k-1$.

Add $G[\{v\} \cup V(T(u_1)) \cup \cdots \cup V(T(u_i))]$ to the set of desired subgraphs and proceed recursively with $G \setminus (V(T(u_1)) \cup \cdots \cup V(T(u_i))).$

► This procedure terminates after at most ⁿ/_k steps and in each of them we have left at most one vertex of the identified connected subgraph in the further processed graph.

introduction	DP algorithm	combinatorial result	faster exact algorithm	conclusion

An exact algorithm

Let $A \subseteq \{0, \overline{0}, 1, \overline{1}\}^n$ and $B \subseteq \{0, 1\}^n$ where n > k'. We compute $A \oplus B$ is the following way :

$$A \oplus B = \bigcup_{\substack{\vec{u} \in \{0, \bar{0}, 1, \bar{1}\}^{k'} \\ \vec{v} \in \{0, 1\}^{k'} \\ \text{s.t. } \vec{u} \oplus \vec{v} \text{ is defined}}} (\vec{u} \oplus \vec{v}) (A_{\vec{u}} \oplus B_{\vec{v}})$$
$$= \bigcup_{\substack{\vec{v} \in \{0, 1\}^{k'} \\ \vec{w} \in I \cap 1}} \left[\left(\bigcup_{\substack{\vec{u} \in \{0, \bar{0}, 1, \bar{1}\}^{k'} \\ \vec{v} \in \vec{v} = \vec{w}}} A_{\vec{u}} \right) \oplus B_{\vec{v}} \right]$$

Remark :

Computation can be omitted whenever $\left(\bigcup_{\vec{u} \in \{0, \vec{0}, 1, \vec{1}\}^{k'}} A_{\vec{u}}\right)$ is empty. s.t. $\vec{u} \oplus \vec{v} = \vec{w}$

How many pairs \vec{v}, \vec{w} are there s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v} = \vec{w}$?

If \vec{v} is fixed, then $v_i = 1 \Rightarrow w_i = \overline{1}$.

Thus, for a fixed \vec{v} there are at most $2^{k'-||\vec{v}||}$ many \vec{w} 's, where $||\vec{v}||$ denotes the number of positions *i* such that $v_i = 1$.

The total number of pairs \vec{v}, \vec{w} such that $\vec{w} = \vec{v} \oplus \vec{u}$ for some \vec{u} is therefore at most

$$\sum_{ec{v} \in \{0,1\}^{k'}} 2^{k' - ||ec{v}||} \le pp(k')$$

How many pairs \vec{v}, \vec{w} are there s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v} = \vec{w}$?

If \vec{v} is fixed, then $v_i = 1 \Rightarrow w_i = \overline{1}$.

Thus, for a fixed \vec{v} there are at most $2^{k'-||\vec{v}||}$ many \vec{w} 's, where $||\vec{v}||$ denotes the number of positions *i* such that $v_i = 1$.

The total number of pairs \vec{v}, \vec{w} such that $\vec{w} = \vec{v} \oplus \vec{u}$ for some \vec{u} is therefore at most

$$\sum_{ec{v} \in \{0,1\}^{k'}} 2^{k' - ||ec{v}||} \le pp(k')$$

How many pairs \vec{v}, \vec{w} are there s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v} = \vec{w}$?

If \vec{v} is fixed, then $v_i = 1 \Rightarrow w_i = \overline{1}$.

Thus, for a fixed \vec{v} there are at most $2^{k'-||\vec{v}||}$ many \vec{w} 's, where $||\vec{v}||$ denotes the number of positions *i* such that $v_i = 1$.

The total number of pairs \vec{v}, \vec{w} such that $\vec{w} = \vec{v} \oplus \vec{u}$ for some \vec{u} is therefore at most

$$\sum_{ec{ au} \in \{0,1\}^{k'}} 2^{k' - ||ec{ au}||} \le pp(k')$$

How many pairs \vec{v}, \vec{w} are there s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v} = \vec{w}$?

If \vec{v} is fixed, then $v_i = 1 \Rightarrow w_i = \overline{1}$.

Thus, for a fixed \vec{v} there are at most $2^{k'-||\vec{v}||}$ many \vec{w} 's, where $||\vec{v}||$ denotes the number of positions *i* such that $v_i = 1$.

The total number of pairs \vec{v}, \vec{w} such that $\vec{w} = \vec{v} \oplus \vec{u}$ for some \vec{u} is therefore at most

$$\sum_{ec{
u} \in \{0,1\}^{k'}} 2^{k' - ||ec{
u}||} \leq pp(k')$$

How many pairs \vec{v}, \vec{w} are there s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v} = \vec{w}$?

If \vec{v} is fixed, then $v_i = 1 \Rightarrow w_i = \overline{1}$.

Thus, for a fixed \vec{v} there are at most $2^{k'-||\vec{v}||}$ many \vec{w} 's, where $||\vec{v}||$ denotes the number of positions *i* such that $v_i = 1$.

The total number of pairs \vec{v}, \vec{w} such that $\vec{w} = \vec{v} \oplus \vec{u}$ for some \vec{u} is therefore at most

$$\sum_{ec{
u} \in \{0,1\}^{k'}} 2^{k' - ||ec{
u}||} \leq pp(k')$$

By Theorem (*), the total length of the vectors is $n' \le n(1+1/k)$. In each recursive computation :

- Prepare up to pp(k') many pairs of sets of vectors of length n' k'
- ▶ Recursively compute ⊕ on these pairs
- From the result, compute $T_{\ell+1}$ in linear time
- The size of B is at most $O(n2^{n'})$ bits
- ► The size of A is at most O(npp(n')) bits : the 1̄'s form a 2-packing and there are only two possibilities (1 or 0/0̄) for the other nodes.

Thus the running-time is given by

 $T(n) \leq O(n \cdot pp(n') + pp(k') \cdot T(n' - k'))$

where $k \leq k' \leq 2k$.

By Theorem (*), the total length of the vectors is $n' \le n(1+1/k)$. In each recursive computation :

- ▶ Prepare up to pp(k') many pairs of sets of vectors of length n' k'
- ▶ Recursively compute ⊕ on these pairs
- From the result, compute $T_{\ell+1}$ in linear time
- The size of B is at most $O(n2^{n'})$ bits
- ► The size of A is at most O(npp(n')) bits : the 1̄'s form a 2-packing and there are only two possibilities (1 or 0/0̄) for the other nodes.

Thus the running-time is given by

 $T(n) \le O(n \cdot pp(n') + pp(k') \cdot T(n' - k'))$

where $k \leq k' \leq 2k$.

The solution of

 $T(n) \leq O(n \cdot pp(n') + pp(k') \cdot T(n' - k'))$

is

 $T(n) = O^*(pp(n')) = O^*(pp(n(1+1/k)))$

Choosing constant k big enough :

 $T(n) = O(2.6488^n)$

The solution of

 $T(n) \leq O(n \cdot pp(n') + pp(k') \cdot T(n' - k'))$

is

$$T(n) = O^*(pp(n')) = O^*(pp(n(1+1/k)))$$

Choosing constant k big enough :

 $T(n) = O(2.6488^n)$

Conclusion

1 Definitions and Known Results

2 A (Simple) Dynamic Programming Based Algorithm

3 A Combinatorial Result

(4) A Faster Exact Exponential-Time Algorithm

5 Conclusion

Conclusion

Combinatorial result : number of proper pairs $2.6117^n \le pp(n) \le 2.6488^n$

Exact exponential-time algorithm for L(2, 1)-labelings $O(2.6488^{n})$

Interesting questions :

- Does inclusion/exclusion or subset convolution can achieve a $O(2^n)$ -time algorithm?
- ▶ Is it possible to find a 2-approx in $O(c^n)$ with c < 2?
- ▶ In [GY92], it is conjectured that $\lambda(G) < \Delta(G)^2$. It is still not fully resolved. It has been proved for graphs of large maximum degree [HRS08].

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Merci!

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Bibliographie I

BODLAENDER, H.L., KLOKS, T., TAN, R.B., VAN LEEUWEN, J.: Approximations for lambda-Colorings of Graphs. Computer Journal 47 (2004), pp. 193–204. Chang, G. J., Kuo, D. : The L(2, 1)-labeling problem on graphs. SIAM Journal of Discrete Mathematics 9 (1996), pp. 309-316. Cygan, M., Kowalik, L.: Channel Assignment via Fast Zeta Transform. Fiala, J., Golovach, P., Kratochvíl, J. : Distance Constrained Labelings of Graphs of Bounded Treewidth. Proceedings of ICALP 2005, LNCS 3580 (2005), pp. 360-372. FIALA, J., KLOKS, T., KRATOCHVÍL, J. : Fixed-parameter complexity of λ -labelings. GOLOVACH, P., KRATSCH, D., COUTURIER, J.-F.: Coloring With Few Colors : Counting, Enumeration and Combinatorial Bounds. GRIGGS, J. R., YEH, R. K. : Labelling graphs with a condition at distance 2. SIAM Journal of Discrete Mathematics 5 (1992), pp. 586–595.

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Bibliographie II

HAVET, F., KLAZAR, M., KRATOCHVÍL, J., KRATSCH, D., LIEDLOFF, M. : Exact Algorithms for L(p, q)-labelings of graphs. submitted to STACS'09.

HAVET, F., REED, B., SERENI, J.-S. : *L*(2, 1)-labellings of graphs. Proceedings of SODA 2008 (2008), pp. 621–630.

HELL, P., NEŠETŘIL, J. : On the complexity of *H*-colouring, Journal of Combinatorial Theory Series B 48 (1990), 92–110.

JANCZEWSKI, R., KOSOWSKI, A., MAŁAFIEJSKI. M. : The complexity of the L(p, q)-labeling problem for bipartite planar graphs of small degree. Discrete Mathematics 309 (2009), pp. 3270–3279.

JUNOSZA-SZANIAWSKI, K., KRATOCHVÍL, J., LIEDLOFF, M., RZĄŻEWSKI, P. : Determining the L(2, 1)-Span in Polynomial Space. proceedings of WG'12.

DP algorithm

combinatorial result

faster exact algorithm

conclusion

Bibliographie III

ROBERTS, F.S. : private communication to J. Griggs.

STRASSEN, V. : Gaussian Elimination is not Optimal. Numerische Mathematik 13 (1969), pp. 354–356