Domination-like problems parameterized by tree-width

Mathieu Chapelle

LIGM, Université Paris-Est Marne-la-Vallée

JFRO 2012 LIP6, Université Paris 6

• Very few problems are known to be **W**-hard (*i.e.* not **FPT**) when parameterized by tree-width;

- Very few problems are known to be **W**-hard (*i.e.* not **FPT**) when parameterized by tree-width;
- All the studied cases of GENERALIZED DOMINATION are **FPT** when parameterized by tree-width;

- Very few problems are known to be **W**-hard (*i.e.* not **FPT**) when parameterized by tree-width;
- All the studied cases of GENERALIZED DOMINATION are **FPT** when parameterized by tree-width;
- 1. We extend known results of "FPTness" to more cases;

- Very few problems are known to be W-hard (*i.e.* not FPT) when parameterized by tree-width;
- All the studied cases of GENERALIZED DOMINATION are **FPT** when parameterized by tree-width;
- 1. We extend known results of "FPTness" to more cases;
- 2. We prove that there exists (many) cases for which GENERALIZED DOMINATION become W[1]-hard when parameterized by tree-width.

$\mathsf{FPT} \subset \mathsf{W}[1] \subset \mathsf{W}[2] \subset \, \ldots \subset \mathsf{XP}$

$\mathsf{FPT} \subset \mathsf{W}[1] \subset \mathsf{W}[2] \subset \ldots \subset \mathsf{XP}$

Definition

A problem \mathcal{P} is in **FPT** parameterized by k if it can be solved in time $\mathcal{O}(f(k) \cdot \text{poly}(n))$.

Example

k-VERTEX COVER can be solved in time $\mathcal{O}(1.2738^k \cdot k \cdot n)$. [Chen, Kanj, Xia, 2010]

$\mathsf{FPT} \subset \mathsf{W}[1] \subset \mathsf{W}[2] \subset \ldots \subset \mathsf{XP}$

Definition

A problem \mathcal{P} is in **XP** parameterized by k if it can be solved in time $\mathcal{O}(poly(n)^{f(k)})$.

Example *k*-COLORATION is not in **XP**.

$\mathsf{FPT} \subset \mathsf{W}[1] \subset \mathsf{W}[2] \subset \ldots \subset \mathsf{XP}$

Definition

A problem \mathcal{P} is $\mathbf{W}[t]$ -hard parameterized by k if there exists an *fpt*-reduction from any known $\mathbf{W}[1]$ -hard problem \mathcal{Q} to \mathcal{P} , that is:

 $\mathcal{Q} \preceq_{\mathrm{fpt}} \mathcal{P}$

Examples *k*-INDEPENDENT SET is W[1]-hard. *k*-DOMINATING SET is W[2]-hard.

Some definitions

FPT cases

W[1]-hardness

Conclusion

Definition $D \subseteq V$ is a dominating set if, for all $v \in V$:

- $v \in D$; or
- $\exists u \in V : u \in D \cap N(v).$

Definition $D \subseteq V$ is a dominating set if, for all $v \in V$:

- $v \in D \Rightarrow |D \cap N(v)| \ge 0$;
- $v \notin D \Rightarrow |D \cap N(v)| \ge 1$.

Definition $D \subseteq V$ is a dominating set if, for all $v \in V$:

- $v \in D \Rightarrow |D \cap N(v)| \in \mathbb{N};$
- $v \notin D \Rightarrow |D \cap N(v)| \in \mathbb{N}^*$.

Definition $D \subseteq V$ is a $[\sigma, \varrho]$ -dominating set if, for all $v \in V$:

- $v \in D \Rightarrow |D \cap N(v)| \in \sigma$; $\sigma \subseteq \mathbb{N}$
- $v \notin D \Rightarrow |D \cap N(v)| \in \varrho$. $\varrho \subseteq \mathbb{N}$

 σ and ϱ fix some constraints on the neighborhood of each vertex:

- σ fixes constraints on the neighborhood of vertices in D;
- ρ fixes constraints on the neighborhood of vertices not in D.

Definition $D \subseteq V$ is a $[\sigma, \varrho]$ -dominating set if, for all $v \in V$:

- $v \in D \Rightarrow |D \cap N(v)| \in \sigma$; $\sigma \subseteq \mathbb{N}$
- $v \notin D \Rightarrow |D \cap N(v)| \in \varrho$. $\varrho \subseteq \mathbb{N}$

 σ and ϱ fix some constraints on the neighborhood of each vertex:

- σ fixes constraints on the neighborhood of vertices in D;
- ρ fixes constraints on the neighborhood of vertices not in D.

Remark

A graph G does not always admit a $[\sigma, \varrho]$ -dominating set.

Known domination-like problems

Problem	σ	ρ
DOMINATING SET	\mathbb{N}	\mathbb{N}^*
INDEPENDENT SET	{0}	\mathbb{N}
Perfect code	{0}	{1}
INDEPENDENT DOMINATING SET	{0}	\mathbb{N}^*
TOTAL DOMINATING SET	\mathbb{N}^*	\mathbb{N}^*
INDUCED MATCHING	$\{1\}$	\mathbb{N}

. . .

Definition

- $\forall v \in V, \exists i : v \in X_i;$
- $\forall uv \in E, \exists i : u, v \in X_i;$
- $\forall v \in V$, the *bags* containing v induce a subtree of T.

Definition

- $\forall v \in V, \exists i : v \in X_i;$
- $\forall uv \in E, \exists i : u, v \in X_i;$
- $\forall v \in V$, the *bags* containing v induce a subtree of T.

Definition

- $\forall v \in V, \exists i : v \in X_i;$
- $\forall uv \in E, \exists i : u, v \in X_i;$
- $\forall v \in V$, the *bags* containing v induce a subtree of T.

Definition

- $\forall v \in V, \exists i : v \in X_i;$
- $\forall uv \in E, \exists i : u, v \in X_i;$
- $\forall v \in V$, the *bags* containing v induce a subtree of T.

Definition

A tree decomposition $(T, \{X_i \subseteq V\})$ of a graph G = (V, E) is such that:

- $\forall v \in V, \exists i : v \in X_i;$
- $\forall uv \in E, \exists i : u, v \in X_i;$
- $\forall v \in V$, the *bags* containing v induce a subtree of T.

Width of a decomposition $= \max |X_i| - 1$.

Tree-width of G, tw(G) = smallest width over all decompositions of G.

Some definitions

FPT cases

W[1]-hardness

Conclusion

Known results

Theorem (van Rooij, Bodlaender, Rossmanith, 2009) $[\sigma, \varrho]$ -DOMINATING SET can be solved in time $\mathcal{O}^*(s^{\text{tw}})$, if σ and ϱ are both finite or cofinite, where s is the minimum number of states needed to represent σ and ϱ .

Known results

Theorem (van Rooij, Bodlaender, Rossmanith, 2009) $[\sigma, \varrho]$ -DOMINATING SET can be solved in time $\mathcal{O}^*(s^{tw})$, if σ and ϱ are both finite or cofinite, where s is the minimum number of states needed to represent σ and ϱ .

Corollary

INDEPENDENT SET can be solved in time $\mathcal{O}^*(2^{tw})$.

[Niedermeier, 2006]

DOMINATING SET can be solved in time $\mathcal{O}^*(3^{tw})$.

[van Rooij, Bodlaender, Rossmanith, 2009]

Known results

Theorem (van Rooij, Bodlaender, Rossmanith, 2009) $[\sigma, \varrho]$ -DOMINATING SET can be solved in time $\mathcal{O}^*(s^{tw})$, if σ and ϱ are both finite or cofinite, where s is the minimum number of states needed to represent σ and ϱ .

Corollary

INDEPENDENT SET can be solved in time $\mathcal{O}^*(2^{tw})$.

[Niedermeier, 2006]

DOMINATING SET can be solved in time $\mathcal{O}^*(3^{tw})$.

[van Rooij, Bodlaender, Rossmanith, 2009]

Under **SETH** hypothesis, this time complexity is optimal.

[Lokshtanov, Marx, Saurabh, 2010]

Using the famous Courcelle's theorem: [Courcelle, 1997]

If σ and ρ are finite or cofinite, then $[\sigma, \rho]$ -DOMINATING SET is expressible in MSOL₂.

 \rightarrow FPT when parameterized by tree-width.

Using an extension of the famous Courcelle's theorem:

[Courcelle, Makowsky, Rotics, 2001]

If σ and ρ are ultimately periodics, then $[\sigma, \rho]$ -DOMINATING SET is expressible in **CMSOL**.

 \rightarrow FPT when parameterized by tree-width.

Using an extension of the famous Courcelle's theorem:

[Courcelle, Makowsky, Rotics, 2001] If σ and ρ are ultimately periodics, then $[\sigma, \rho]$ -DOMINATING SET is expressible in CMSOL.

 \rightarrow FPT when parameterized by tree-width.

$$\exists S, \overline{S} \ \forall v \in V : \qquad (v \in S \land v \notin \overline{S}) \lor (v \notin S \land v \in \overline{S}) \\ \land \ v \in S \Rightarrow |N(v) \cap S| \in \sigma \\ \land \ v \in \overline{S} \Rightarrow |N(v) \cap S| \in \rho$$

$$\begin{split} |N(v) \cap S| &\in \sigma \quad \equiv \quad \bigvee_{i \in \{1, \dots, k_{\sigma}\}} \exists \mathsf{Y}_{\mathcal{S}} \left(\operatorname{Card}_{t_{i}^{\sigma}}(\mathsf{Y}_{\mathcal{S}}) \land \lor_{p \in \sigma, p \leq p_{\sigma}} \exists u_{1}, \dots, u_{p} \zeta \right) \\ \text{avec} \quad \zeta \quad \equiv \quad \left[\left(u_{i} \in (N(v) \cap S) \land u_{i} \notin \mathsf{Y}_{\mathcal{S}} \right) \land \forall u \ (u \neq u_{i}) \right] \Rightarrow \left(u \in \mathsf{Y}_{\mathcal{S}} \Leftrightarrow u \in (N(v) \cap S) \right) \end{split}$$

Theorem

 $[\sigma, \varrho]$ -DOMINATING SET can be solved in time $\mathcal{O}^*(s^{\text{tw}})$, if σ and ϱ are both ultimately periodics, where s is a *small* function on the minimum number of states needed to represent σ and ϱ by two automata.

 $s = |\sigma_0| + |\varrho_0| + \operatorname{maxperiod}(\sigma)^2 + \operatorname{maxperiod}(\varrho)^2$

We use two finite deterministic unary-language automata to enumerate σ and $\varrho.$

We use two finite deterministic unary-language automata to enumerate σ and ϱ .

The state associated to a given vertex $v \in V$ encode:

- whether v is in D (state in σ) or not in D (state in ϱ);
- the number of neighbors it has in D.

Algorithm idea

• Represent σ and ϱ by two finite unary-language automata;

Algorithm idea

- Represent σ and ϱ by two finite unary-language automata;
- Apply a classical dynamic programming scheme on a (nice) tree decomposition of the input graph;

Algorithm idea

- Represent σ and ϱ by two finite unary-language automata;
- Apply a classical dynamic programming scheme on a (nice) tree decomposition of the input graph;
- Encode the number of selected neighbors of each vertex using the corresponding state in one of the two automata;

Algorithm idea

- Represent σ and ϱ by two finite unary-language automata;
- Apply a classical dynamic programming scheme on a (nice) tree decomposition of the input graph;
- Encode the number of selected neighbors of each vertex using the corresponding state in one of the two automata;
- Use fast subset convolution to fasten the join operation.

Algorithm idea

- Represent σ and ϱ by two finite unary-language automata;
- Apply a classical dynamic programming scheme on a (nice) tree decomposition of the input graph;
- Encode the number of selected neighbors of each vertex using the corresponding state in one of the two automata;
- Use fast subset convolution to fasten the join operation.

Theorem

 $[\sigma, \varrho]$ -DOMINATING SET can be efficiently solved in FPT time if σ and ϱ are both ultimately periodics.

Some definitions

FPT cases

W[1]-hardness

Conclusion

Motivation

Question

Is $[\sigma, \varrho]$ -DOMINATING SET always FPT when parameterized by tree-width?

Remark

Very few *parameterized* graph problems are known not to be **FPT** when parameterized by tree-width.

Motivation

Question

Is $[\sigma, \varrho]$ -DOMINATING SET always FPT when parameterized by tree-width?

Remark

Very few *parameterized* graph problems are known not to be **FPT** when parameterized by tree-width.

Lemma

For any polytime decidable sets σ and ρ , $[\sigma, \rho]$ -DOMINATING SET is in **XP** when parameterized by tree-width.

Some W[1]-hard cases

Theorem If σ exclude arbitrary long intervals and ρ is cofinite, then $[\sigma, \rho]$ -DOMINATING SET is W[1]-hard when parameterized by tw.

Technical condition on σ :

We require that an excluded interval of length t can be found at distance poly(t).

Some W[1]-hard cases

Theorem If σ exclude arbitrary long intervals and ρ is cofinite, then $[\sigma, \rho]$ -DOMINATING SET is W[1]-hard when parameterized by tw.

Given σ and ρ , we will reduce k-CAPACITATED DOMINATING SET to $[\sigma, \rho]$ -DOMINATING SET.

k-CAPACITATED DOMINATING SET is W[1]-hard when parameterized by the tree-width of the input graph + the size *k* of the expected solution.

[Dom, Lokshtanov, Saurabh, Villanger, 2008]

Two-steps reduction

Step 1 k-Capacitated dominating set \leq_{fpt} $[\sigma, \varrho]$ -Dominating set with preselected vertices

Step 2 $[\sigma, \varrho]$ -Dominating set with preselected vertices \leq_{fpt} $[\sigma, \varrho]$ -Dominating set

Two-steps reduction

Step 1 k-Capacitated dominating set \leq_{fpt} $[\sigma, \varrho]$ -Dominating set with preselected vertices

Step 2 $[\sigma, \varrho]$ -Dominating set with preselected vertices \leq_{fpt} $[\sigma, \varrho]$ -Dominating set

Definition Let G = (V, E), cap : $V \to \mathbb{N}$. (C, dom) is a capacitated dominating set of G, with $C \subseteq V$ and dom(v) a function which associates to each vertex $v \in C$ a subset of its vertices, if:

- $\forall v \in C$, $|\mathsf{dom}(v)| \leq \mathsf{cap}(v)$;
- $\forall u \notin C, \exists v \in C : u \in \operatorname{dom}(v).$

Definition Let G = (V, E), cap : $V \to \mathbb{N}$. (C, dom) is a capacitated dominating set of G, with $C \subseteq V$ and dom(v) a function which associates to each vertex $v \in C$ a subset of its vertices, if:

- $\forall v \in C$, $|\mathsf{dom}(v)| \leq \mathsf{cap}(v)$;
- $\forall u \notin C, \exists v \in C : u \in \operatorname{dom}(v).$

Definition Let G = (V, E), cap : $V \to \mathbb{N}$. (C, dom) is a capacitated dominating set of G, with $C \subseteq V$ and dom(v) a function which associates to each vertex $v \in C$ a subset of its vertices, if:

- $\forall v \in C$, $|\mathsf{dom}(v)| \leq \mathsf{cap}(v)$;
- $\forall u \notin C, \exists v \in C : u \in \operatorname{dom}(v).$

Definition Let G = (V, E), cap : $V \to \mathbb{N}$. (C, dom) is a capacitated dominating set of G, with $C \subseteq V$ and dom(v) a function which associates to each vertex $v \in C$ a subset of its vertices, if:

- $\forall v \in C$, $|dom(v)| \leq cap(v)$;
- $\forall u \notin C, \exists v \in C : u \in \operatorname{dom}(v).$

k-CAPACITATED DOMINATING SET Input: G = (V, E) of tree-width tw, and cap : $V \to \mathbb{N}$. Parameter: k + tw. Question: Decide whether G admits a capacitated dominating set (C, dom) such that $|C| \le k$.

Let G be an instance of k-CAPACITATED DOMINATING SET.

Let G be an instance of k-CAPACITATED DOMINATING SET. Starting with H = I(G) (incidence graph), we add several gadgets:

domination (\mathcal{D}) : force G to admit a (classical) dominating set;

Let G be an instance of k-CAPACITATED DOMINATING SET. Starting with H = I(G) (incidence graph), we add several gadgets:

domination (\mathcal{D}) : force G to admit a (classical) dominating set; capacity (\mathcal{C}) : encode the capacity function cap, and allows a selected vertex to be satisfied;

Let G be an instance of k-CAPACITATED DOMINATING SET. Starting with H = I(G) (incidence graph), we add several gadgets:

domination (\mathcal{D}) : force G to admit a (classical) dominating set; capacity (\mathcal{C}) : encode the capacity function cap, and allows a selected vertex to be satisfied;

edge-selection (\mathcal{E}) : encode the domination function dom;

Let G be an instance of k-CAPACITATED DOMINATING SET. Starting with H = I(G) (incidence graph), we add several gadgets:

 $\begin{array}{l} \textit{domination} \ (\mathcal{D}): \ \textit{force} \ G \ \textit{to} \ \textit{admit} \ \textit{a} \ (\textit{classical}) \ \textit{dominating set}; \\ \textit{capacity} \ (\mathcal{C}): \ \textit{encode the capacity function cap, and allows} \end{array}$

a selected vertex to be satisfied;

edge-selection (\mathcal{E}) : encode the domination function dom; satisfiability (\mathcal{S}) : allow a non-selected vertex to be satisfied;

Let G be an instance of k-CAPACITATED DOMINATING SET. Starting with H = I(G) (incidence graph), we add several gadgets:

domination (\mathcal{D}) : force G to admit a (classical) dominating set;

capacity(C): encode the capacity function cap, and allows a selected vertex to be satisfied;

edge-selection (\mathcal{E}) : encode the domination function dom; satisfiability (\mathcal{S}) : allow a non-selected vertex to be satisfied; limitation (\mathcal{L}) : encode the parameter k.

Let G be an instance of k-CAPACITATED DOMINATING SET. Starting with H = I(G) (incidence graph), we add several gadgets:

domination (\mathcal{D}) : force G to admit a (classical) dominating set;

capacity(C): encode the capacity function cap, and allows a selected vertex to be satisfied;

edge-selection (\mathcal{E}) : encode the domination function dom; satisfiability (\mathcal{S}) : allow a non-selected vertex to be satisfied; limitation (\mathcal{L}) : encode the parameter k.

Use of arbitrary long excluded intervals

gadget capacity (C)

Two-steps reduction

Step 1 k-Capacitated dominating set \leq_{fpt} $[\sigma, \varrho]$ -Dominating set with preselected vertices

Step 2 $[\sigma, \varrho]$ -Dominating set with preselected vertices \leq_{fpt} $[\sigma, \varrho]$ -Dominating set

Reduction (second step)

Let *H* be an instance of $[\sigma, \rho]$ -DOMINATING SET WITH **PRESELECTED VERTICES**. We construct *H'* as follows:

$$\beta = \min\{p-1 \mid \sigma_{\min} + p \in \sigma\}$$

Two-steps reduction

Step 1 k-Capacitated dominating set \leq_{fpt} $[\sigma, \varrho]$ -Dominating set with preselected vertices

Step 2 $[\sigma, \varrho]$ -Dominating set with preselected vertices \leq_{fpt} $[\sigma, \varrho]$ -Dominating set Some definitions

FPT cases

W[1]-hardness

Conclusion

Results

If σ and ρ are ultimately periodics, then [σ, ρ]-DOMINATING
SET is FPT when parameterized by tree-width.

Results

- If σ and ϱ are ultimately periodics, then $[\sigma, \varrho]$ -DOMINATING SET is FPT when parameterized by tree-width.
- If σ exclude arbitrary long intervals and ϱ is cofinite, then $[\sigma, \varrho]$ -DOMINATING SET is W[1]-hard when parameterized by tree-width.

Results

- If σ and ϱ are ultimately periodics, then $[\sigma, \varrho]$ -DOMINATING SET is FPT when parameterized by tree-width.
- If σ exclude arbitrary long intervals and ϱ is cofinite, then $[\sigma, \varrho]$ -DOMINATING SET is W[1]-hard when parameterized by tree-width.

And now?

- In which W[t] class does this problem fall?
- What about other cases of $[\sigma, \varrho]$ (e.g. with bounded intervals)?
- Other W[1]-hard problems parameterized by tree-width?

Results

- If σ and ϱ are ultimately periodics, then $[\sigma, \varrho]$ -DOMINATING SET is FPT when parameterized by tree-width.
- If σ exclude arbitrary long intervals and ϱ is cofinite, then $[\sigma, \varrho]$ -DOMINATING SET is W[1]-hard when parameterized by tree-width.

And now?

- In which W[t] class does this problem fall?
- What about other cases of $[\sigma, \varrho]$ (e.g. with bounded intervals)?
- Other W[1]-hard problems parameterized by tree-width?

And voilà!