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Abstract
Selecting a set of alternatives based on the prefer-
ences of agents is an important problem in commit-
tee selection and beyond. Among the various crite-
ria put forth for desirability of a committee, Pareto
optimality is a minimal and important requirement.
As asking agents to specify their preferences over
exponentially many subsets of alternatives is prac-
tically infeasible, we assume that each agent speci-
fies a weak order on single alternatives, from which
a preference relation over subsets is derived us-
ing some preference extension. We consider four
prominent extensions (responsive, leximax, best,
and worst). For each of them, we consider the cor-
responding Pareto optimality notion, and we study
the complexity of computing and verifying Pareto
optimal outcomes. We also consider strategic is-
sues: for three of the set extensions, we present
linear-time, Pareto optimal and strategyproof algo-
rithms that work even for weak preferences.

1 Introduction
Pareto optimality is a central concept in economics and has
been termed the “single most important tool of normative
economic analysis” [Moulin, 2003]. An outcome is Pareto
optimal if there does not exist another outcome that all agents
like at least as much and at least one agent strictly prefers.
Although Pareto optimality has been considered extensively
in single-winner voting and other social choice settings such
as fair division or hedonic games, it has received only little
attention in multiwinner voting, in which the outcomes are
sets of alternatives. Multiwinner voting applies to selecting a
set of plans or a committee, hiring team members, movie rec-
ommendations, and more. For convenience, we use the ter-
minology “committee” even if our results have an impact far
beyond committee elections.

In single-winner voting setting, agents express preferences
over alternatives and a single alternative is selected. Pareto
optimality in this context is straightforward to define, achieve,
and verify. In multiwinner voting, a well-known difficulty is
that it is unrealistic to assume that agents will report pref-
erences over all possible committees, since there are an ex-
ponential number of them. For this reason, most approaches

assume that they only report a small part of their preferences,
and that some extension principle is used to induce a pref-
erence over all possible subsets from this ‘small input’ over
single alternatives [Barberà et al., 2004]. Such preference ex-
tensions are also widely used in other social choice settings
such as fair division or matching. The most two widely used
choices of ‘small inputs’ in multiwinner voting are rankings
(linear orders) over alternatives and sets of approved alter-
natives. In this paper we make a choice that generalizes both
of them: agents report weak orders over single alternatives.
Then we consider four prominent preference extension prin-
ciples: the responsive extension, where a set of alternatives S
is at least as preferred as a set of alternatives T if S is obtained
from T by repeated replacements of an alternative by another
alternative which is at least as preferred; the optimistic, or
‘best’ (respectively pessimistic, or ‘worst’) extension, which
orders subsets of alternatives according to their most (respec-
tively, least) preferred element; and the leximax extension, a
lexicographic refinement of the optimistic extension.

The responsive extension [Barberà et al., 2004; Roth and
Sotomayor, 1990] can be seen as the ordinal counterpart of
additivity. The leximax extension has been considered in var-
ious papers [Bossert, 1995; Lang et al., 2012; Klamler et
al., 2012]. The ‘best’ set extension has been considered in
a number of approaches such as full proportional represen-
tation [Chamberlin and Courant, 1983; Monroe, 1995] and
other committee voting settings [Elkind et al., 2015]. The
‘worst’ set extension, also used by Klamler et al. [2012] and
Skowron et al. [2015b], captures settings where the impact
of a bad alternative in the selection overwhelms the benefits
of good alternatives: for instance, when the decision about
a crucial issue will be made by one of the members of the
committee but the agent ignores which one and is risk-averse;
or the case of a parent’s preferences over a set of movies to
be watched by a child. The ‘best’ and ‘worst’ set extensions
have been used in coalition formation [Aziz and Savani, 2016;
Cechlárová, 2008].

Although set extensions have been implicitly or explicitly
considered in multiwinner voting, most of the computational
work has dealt with specific voting rules (see the related work
section). Instead, we concentrate on Pareto optimality, con-
sider the computation and verification of Pareto optimal com-
mittees, as well as the existence of a polynomial-time and
strategyproof algorithm that returns Pareto optimal outcomes.



Computation Verification
Set Extension

Responsive (RS) in PIC (Th. 5)
coNP-C (Th. 2), W[2]-hard
in P—dich. prefs and tw ≤ 2 (Th. 4)

Leximax (LX) in PIC (Th. 6) coNP-C (Th. 1), W[2]-hard

Best (B) NP-hard (Th. 8) coNP-C, W[2]-hard (Th. 7)in P for strict prefs

Worst (W) in PIC (Th. 10) in P (Th.9)

Table 1: Complexity of computing and verifying Pareto op-
timal committees. PIC (coined by Christos Papadimitriou in
a seminar at Simons Institute in 2015) indicates a class of
problems in which agents provide the input and the problems
admit a strategyproof and polynomial-time algorithm.

Contributions We consider Pareto optimality with respect
to the four aforementioned preference set extensions. We
present various connections between the Pareto optimality
notions. For each of the notions, we undertake a detailed
study of complexity of computing and verifying Pareto op-
timal outcomes. Table 1 summarizes the complexity results.

An important take-home message of the results is that test-
ing Pareto optimality or obtaining Pareto improvements over
status-quo committees is computationally hard even though
computing some Pareto optimal committee is easy. For re-
sponsive and leximax extensions we give a complete charac-
terization of the complexity of testing Pareto optimality when
preferences are dichotomous and the size of top equivalence
class is two: unless P = NP, Pareto optimality can be tested in
polynomial time if and only if the size of the first equivalence
classes is at most two. For the ‘best’ extension, we show that
even computing a Pareto optimal outcome is NP-hard. An-
other interesting contrast with the responsive set extension
is that even when preferences are dichotomous and the size
of top equivalence class is two, testing Pareto optimality is
coNP-complete. In contrast to the other extensions, for the
‘worst’ extension, both problems of computing and verifying
Pareto optimal outcomes admit polynomial-time algorithms.

We also consider the requirement of strategyproofness on
top of Pareto optimality. We show that there exist linear-time
Pareto optimal and strategyproof algorithms for committee
voting even for weak preferences for three of the four set ex-
tensions. The algorithms can be considered as careful adapta-
tions of serial dictatorship for committee voting.

2 Related Work
A first related stream of work involves studying specific com-
mittee elections rules from a computational point of view
(generally with little or no focus on Pareto optimality). Our
focus on determining whether a committee is Pareto optimal
or on finding a Pareto optimal committee, is in some sense
orthogonal to the study of committee election rules. The sim-
plest (and most widely used) rules for electing a commit-
tee, called best-k rules, compute a score for each alternative
based on the ranks, and the alternatives with the best k scores
are elected [Elkind et al., 2014; Faliszewski et al., 2016].
Scoring-based extension principles have also been used by
Darmann [2013]. Note that the output of a best k-rule is obvi-

ously Pareto-optimal for the preferences induced by this scor-
ing function, but not necessarily with respect to other set ex-
tensions.

Klamler et al. [2012] compute optimal committees under
a weight constraint for a single agent (therefore optimality
is equivalent to Pareto optimality), using several preference
extensions including ‘worst’, ‘best’, and leximax.

The ‘best’ (B) extension principle has been used in a num-
ber of papers on committee elections by full proportional
representation, starting with [Chamberlin and Courant, 1983]
and studied from a computational point of view in a long se-
ries of papers (e.g., [Procaccia et al., 2008; Lu and Boutilier,
2011; Betzler et al., 2013; Skowron et al., 2015a; Elkind and
Ismaili, 2015]. These rules obviously output Pareto optimal
committees for B, but not necessarily for other extensions.

Some works are based on the Hamming extension. Each
agent specifies his ideal committee and he prefers committees
with less Hamming distance from the ideal committee. The
Hamming distance notion can be used to define specific rules
such as minimax approval voting [Brams et al., 2007], which
selects the committee minimizing the maximum Hamming
distance for the agents. Although the output of minimax ap-
proval voting is not always Pareto-optimal for the Hamming
extension, there are good Pareto-optimal approximations of
it [Caragiannis et al., 2010]. Note that for dichotomous pref-
erences, the Hamming extension coincides with the respon-
sive and the leximax extensions, therefore our computational
results for responsive set extension for dichotomous prefer-
ences also hold for the Hamming and leximax extensions.

A second line of work concerns understanding the classes
of rules that result in Pareto optimal outcomes. Most works
along this line bear on a different type of committee elections,
called designated-seat voting, where candidates must declare
the seat they contest [Benoı̂t and Kornhauser, 2010].1 Results
about the existence or non-existence of Pareto optimal rules
have been presented [Özkal-Sanver and Sanver, 2006; Benoı̂t
and Kornhauser, 2010; Cuhadaroǧlu and Lainé, 2012].

3 Setup
We consider a set of agents N = {1, . . . , n}, a set of alter-
natives A = {a1, . . . , am} and a preference profile %= (%1

, . . . ,%n) such that each %i is a complete and transitive re-
lation over A. We write a %i b to denote that agent i values
a at least as much as b and use �i for the strict part of %i,
i.e., a �i b iff a %i b but not b %i a. Finally, ∼i denotes i’s
indifference relation, i.e., a ∼i b iff both a %i b and b %i a.

The relation %i results in equivalence classes
E1
i , E

2
i , . . . , E

ki
i for some ki such that a �i a′ if a ∈ Eli

and a′ ∈ El
′

i for some l < l′. We will use these equiv-
alence classes to represent the preference relation of an
agent as a preference list i : E1

i , E
2
i , . . . , E

ki
i . For example,

we will denote the preferences a ∼i b �i c by the list
i : {a, b}, {c}. An agent i’s preferences are strict if the size
of each equivalence class is 1. An agent i’s preferences are

1If there are exactly two candidates per seat, then designated vot-
ing is equivalent to multiple referenda, where a decision has to be
taken on each of a series of yes-no issues.



dichotomous if he partitions the alternatives into just two
equivalence classes, i.e., ki = 2. Let Topwidth(%) be the
maximum size of the most preferred equivalence class, i.e.,
Topwidth(%) = maxi≤n |E1

i |. For any S ⊆ A, we will
denote by max%i

(S) and min%i
(S) the alternatives in S that

are maximally and minimally preferred by i respectively.
Thus, if q and r are respectively the smallest and the largest
indices such that Eqi ∩ S 6= ∅ and Eri ∩ S 6= ∅, then
max%i

(S) = Eqi ∩ S and min%i
(S) = Eri ∩ S. For k ≤ m,

let Sk(A) = {W ⊆ A : |W | = k}.

4 Set Extensions and Pareto Optimality
Set Extensions Set extensions are used for reasoning about
the preferences of an agent over sets of alternatives given their
preferences over single alternatives. For fixed-size committee
voting, the responsive extension is very natural and has been
applied in various matching settings as well [Barberà et al.,
2004; Roth and Sotomayor, 1990]. For all V,W ∈ Sk(A), we
say that W %RSi V if and only if there is an injection f from
V toW such that for each a ∈ V , agent iweakly prefers f(a)
to a, i.e. f(a) %i a.

We define the ‘best’ set extension and the ‘worst’ set ex-
tension which are denoted B and W respectively. For all
W,V ∈ Sk(A), W %Bi V if and only if w %i v for
w ∈ max%i

(W ) and v ∈ max%i
(V ). On the other side,

W %Wi V if and only if w %i v for w ∈ min%i(W ) and
v ∈ min%i

(V ).
In the leximax (LX) extension, an agent prefers a committee

that selects more alternatives from his most preferred equiv-
alence class, in case of equality, the one with more alterna-
tives for the second most preferred equivalence class, and so
on. Formally, W �LXi V iff for the smallest (if any) l with
|W ∩ Eli| 6= |V ∩ Eli| we have |W ∩ Eli| > |V ∩ Eli|.2

Efficiency based on Set Extensions With each set exten-
sion E , we can define Pareto optimality with respect to E . A
committeeW ∈ Sk(A) is Pareto optimal with respect to E , or
simply E-efficient, if there exists no committee W ′ ∈ Sk(A)
such that W ′ %Ei W for all i ∈ N and W ′ �Ei W for some
i ∈ N . Note that for each of our set extensions, E-efficiency
coincides with standard Pareto optimality when k = 1. An
outcome is a Pareto improvement over another if each agent
weakly improves and at least one agent strictly improved.

In Figure 1, we illustrate the relations between the different
efficiency notions. In one case, The inclusion relation follows
from the fact that %LXi is a refinement of %RSi . Most of the
other observations can be proved by small examples consist-
ing of two or three agents.

We also make the following general observation.

Lemma 1. If there is a polynomial-time algorithm to com-
pute a Pareto improvement over a committee, then there exists
a polynomial-time algorithm to compute an E-efficient com-
mittee under set extensions E ∈ {RS,LX,W,B}.

2One could define in a similar way a leximin refinement of %W .
For the sake of brevity we do not consider such a refinement here.

B W

RSLX

Figure 1: Relations between the four notions of efficiency.
An arrow from E1 to E2 means that E1-efficiency implies E1-
efficiency; a dashed line means there always exists a commit-
tee that is both E1- and E2-efficient; absence of arrow or line
means that the sets of E1- and E2-efficient committees can be
disjoint.

Proof. Here, we start from any committee and we recursively
apply Pareto improvement until we reach a Pareto optimal
committee. For the ‘best’ and ‘worst’ extensions, there can be
at most mn Pareto improvements because for one agent there
can be at most m improvements. Since an RS-improvement
implies an LX-improvement, let us bound the number of
LX-improvements. The maximum number of improvements
is when we start from the set of worst alternatives and move to
the set of best alternatives. The number of movements for the
best alternative in the set is at most m, and similarly for other
alternatives. Thus there can be at most m2 improvements and
in total there can be nm2 Pareto improvements.

We end this section by observing that, under any of the set
extensions we consider, a set of Pareto optimal alternatives
may be Pareto dominated. Consider the following example.
Example 1.

1 : a, c, b, d 2 : a, d, b, c

3 : b, c, a, d 4 : b, d, a, c

The set {c, d} consists of Pareto optimal alternatives but is
Pareto dominated by {a, b} under any of our set extensions.

5 Responsive Set Extension
There is a trivial way to achieve Pareto optimality under the
responsive set extension by taking any decreasing scoring
vector consistent with the ordinal preferences, finding the to-
tal score of each alternative and returning the set of k alterna-
tives with the maximum scores. For instance, on Example 1,
the outcome of the rule that outputs the alternatives with the
best k Borda scores is {a, b}.
Theorem 1. A Pareto optimal committee under the respon-
sive set extension committee can be computed in linear time.

In many situations, one may already have a status-quo
committee and one may want to find a Pareto improvement
over it. This problem of testing Pareto optimality and find-
ing a Pareto improvement under the responsive set exten-
sion turns out to be a much harder task. Note that if there
exists a polynomial-time algorithm to compute a Pareto im-
provement, then it means that testing Pareto optimality is also
polynomial-time solvable.
Theorem 2. Checking whether a committee is Pareto optimal
under the responsive set extension is coNP-complete, even for
dichotomous preferences and Topwidth(%) ≥ 3, or for strict
preferences.



Proof. We only present the case where Topwidth(%) = 3.
The reduction is from the NP-complete problem VERTEX
COVER [Garey and Johnson, 1979]. Given a simple graph
G = (V,E), the MINIMUM VERTEX COVER problem con-
sists in finding a subset C ⊆ V of minimum size such that
every edge e ∈ E is incident to some node of C. Its deci-
sion version VERTEX COVER consists, given a simple graph
G = (V,E) and an integer k, of deciding if there exists a
vertex cover C ⊆ V of G with |C| ≤ k.

Let 〈(V,E), k〉 be an instance of VERTEX COVER, with
[x, y] being one arbitrary edge in E. We build the following
instance of Pareto optimality under RS:
• N = ∪e∈ENe ∪ {a}, where for each edge e ∈ E, Ne is

a set of k agents, and a is a special agent.
• A = V ∪D, where D = {d1, . . . , dk}.
• For each e = [u, v] ∈ E, the preferences of agent ei, for
i = 1, . . . , k, and of agent a, are

ei : {u, v, di}, (D − di) ∪ (V \ {u, v})
a : {x, y}, D ∪ (V \ {x, y})

The reduction is clearly done within polynomial time and
preferences are dichotomous. We can check easily that com-
mittee D (of size k) is not Pareto optimal under RS if and
only if there exists a vertex cover of G of size at most k.

For strict preferences, in the previous reduction we replace
{u, v, di}, . . . by {u}, {v}, {di}, . . . in the preferences of ei.
It is easy to see that the proof is similar.

Using a similar reduction from the HITTING SET problem,
we can also prove Theorem 3 that concerns a parametrized
complexity intractability result [Downey and Fellows, 2013].
HITTING SET is defined as follows: given a ground set X of
elements, and a collection C = {C1, . . . , C`} of subsets ofX ,
does there exist a H ⊂ X such that |H| ≤ k and H ∩ C 6= ∅
for all C ∈ C?
Theorem 3. Checking whether a committee is Pareto optimal
under the responsive set extension is W[2]-complete under
parameter k, even for dichotomous preferences.

For dichotomous preferences we present a complete char-
acterization of the complexity according to the Topwidth(%)
parameter. If Topwidth(%) = 1, then in any Pareto improve-
ment over committee D, any alternative in D that is most
preferred by some agent needs to be remain selected, and
therefore the problem of checking RS-efficiency is easy. If
Topwidth(%) ≥ 3, from Theorem 2, the problem is hard.
Remains the case Topwidth(%) = 2.
Theorem 4. For dichotomous preferences, a Pareto im-
provement over a committee with respect to the responsive
set extension can be computed in polynomial time when
Topwidth(%) ≤ 2.

Proof. Consider a preference profile %= (%1, . . . ,%n)
where each %i is dichotomous and verifies Topwidth(%) =
2, and let D ∈ Sk(A). For each i ∈ N , let (E1

i , E
2
i ) be the

partition associated with %i.
First, if for all i ∈ N , E1

i ⊆ D, then D is obviously RS-
efficient. Assume it is not the case, that is, (1) for some i ∈ N ,
E1
i \D 6= ∅. Let

• N ′ = {i ∈ N : E1
i ∩ D = E1

i }, W ′ = ∪i∈N ′E1
i (by

construction, W ′ ⊆ D), and k′ = |W ′|.

• N ′′ = {i ∈ N \ N ′ : E1
i ∩ (D \ W ′) 6= ∅} and

A′′ = ∪i∈N ′′E1
i .

Now, we build a graph G = (V,E) with V = {v1, . . . , vr}
isomorphic to A′′, and [vp, vq] ∈ E iff E1

i = {ap, aq} for
some i ∈ N ′′: each edge of G corresponds to the top two
alternatives of some agent, provided one of them is inD\W ′.
Let τ(G) be the size of an optimal vertex cover of G.

We first claim that there is a Pareto improvement over D if
and only if one of follows two conditions is satisfied:

(i) τ(G) < k − k′, or
(ii) τ(G) = k − k′, and there is an optimal vertex cover of

G containing either at least an element of E1
i for some

i /∈ N ′ ∪N ′′, or two elements of E1
i for some i ∈ N ′′.

We first show that (i) and (ii) are sufficient. If (i) holds then
take a committee corresponding to a minimum vertex cover of
G, add to it the k′ alternatives ofW ′, and add (k−k′)−τ(G)
alternatives, with at least one in ∪i(E1

i \ D); this is possi-
ble because of (1). If (ii) holds, then take a committee corre-
sponding to a minimum vertex cover of G, and add to it the
k′ alternatives of W ′. In both cases, the obtained committee
contains E1

i for all i ∈ N ′, contains at least one element of
E1
i for all i ∈ N ′, and contains either two elements of E1

i for
some i ∈ N ′′, or an element of E1

i for some i /∈ N ∪ N ′′.
Therefore it is a Pareto-improvement over D.

Now, we show that (i) and (ii) are necessary. Let W ∈
Sk(A) be a Pareto improvement of D containing a maximum
number of alternatives from D. We have the following two
properties: W ′ ⊆ W and W \ W ′ is a vertex cover of G.
W ′ ⊆ W holds, since otherwise there would be an i ∈ N ′

such that W ′ %RSi W does not hold. For similar reasons,
C ′ = (W \W ′) ∩A′′ is a vertex cover of G. If |(W \W ′) ∩
A′′| < τ(G), then by adding to it any set ofD\C ′ of size k−
k′− τ(G) we obtain a set of size k which constitutes a Pareto
improvement of D because now, E1

i ⊆ W for some i ∈ N ′′.
If |(W \W ′)∩A′′| = τ(G), then (W \W ′)∩A′′ =W \W ′
and necessarily either E1

i ∩ C 6= ∅ for some i /∈ (N ′ ∪N ′′)
or E1

i ⊆ C for some i ∈ N ′′.
It remains to be shown that (i) and (ii) can be checked in

polynomial time. (i) can be done in polynomial-time because
G is bipartite: indeed, by construction, G is two-colorable
with color sets A′′ ∩ D and A′′ \ D, and by König’s the-
orem, for bipartite graphs, the problem of finding the min-
imum vertex cover is equivalent to computing a maximum
matching, hence solvable in polynomial time. As for (ii), if
τ(G) = k − k′, we have to check whether for some optimal
vertex cover C of G, either (ii.1) E1

i ∩C 6= ∅ holds for some
i /∈ (N ′ ∪N ′′), or (ii.2) E1

i ⊆ C for some i ∈ N ′′. In order
to check (ii.1), for each i /∈ (N ′ ∪N ′′) such that there exists
x ∈ E1

i ∩A′′, we transformG into a new bipartite graphG{x}
where we add a new vertex x′ and an edge [x, x′]. In order to
check (ii.2), for each i /∈ N ′′, let E1

i = {x, y}; we transform
G into a new bipartite graph G{x,y} where we add two new
vertices x′ and y′, and two edges [x, x′] and [y, y′]. Finally,
we test if τ(G) = τ(G{x}) or if τ(G) = τ(G{x,y}) for one



of these graphs, because all optimal vertex covers ofG{x} (re-
spectively G{x,y}) must contain x (respectively {x, y}).

Example 2. We illustrate the algorithm in the proof of Theo-
rem 4. Let k = 2 and consider the dichotomous profile, where
we specify only the top equivalence class of each agent:

1 : {a, c} 2 : {b, c} 3 : {b, d}
4 : {d, e} 5 : {e, f}

Let D = {a, b}. We have N ′ = W ′ = ∅, k′ = 0,
D \W ′ = {a, b}, N ′′ = {1, 2, 3}, and A′′ = {a, b, c, d}. We
construct the graph G = (V,E): V = {va, vb, vc, vd} and
E = {{va, vc}, {vb, vc}, {vb, vd}}. We have τ(G) = 2 =
k−k′. Now we consider the four graphsG{d}, resulting from
the addition to G of a new vertex vd′ and edge [vd, vd′ ], and
G{a,c},G{b,c} andG{b,d}:G{a,c} results from the addition to
G of two new vertices va′ , vc′ and edges [va, va′ ] and [vc, vc′ ],
etc. Two of these graphs have an optimal cover of size 2:
G{d}, with optimal cover {vc, vd}, and G{b,c}, with optimal
cover {vb, vc}. Therefore, {c, d} and {b, c} are RS-Pareto-
improvements over {a, b}, and {a, b} is not RS-efficient.

va vb

vdvc

va vb

vd vd′vc vc′

va vb vb′

vdvc

G G{d} G{b,c}

Note that finding an algorithm that computes a Pareto im-
provement over a committee can be used to decide whether
a given a committee D of size k, is Pareto optimal under the
responsive set extension.

Pareto optimality and Strategyproofness We now try to
achieve both RS-efficiency and strategyproofness simultane-
ously. A mechanism is strategyproof if no agent can get a
more preferred outcome by misreporting his/her preference.

A naive way of achieving RS-efficiency and Pareto opti-
mality is to enumerate the list of possible winning sets and
implement serial dictatorship over the possible outcomes as is
done in voting [Aziz et al., 2013b]. However, the number of
possible outcomes is exponential and responsive preferences
result in a partial order over the possible winning sets and not
a complete and transitive order. This problem is solved by Al-
gorithm 1 which can be viewed as a computationally efficient
serial dictatorship.
Theorem 5. There exists a linear-time and strategyproof al-
gorithm that returns a committee that is Pareto optimal under
the responsive set extension.

Proof. Consider Algorithm 1. We show that at each stage i′,
agent π(i′), implicitly refines the set of feasible committees
to the maximal set of most preferred outcomes from the set by
providing additional constraints. This is true for the base case
i′ = 1. Now assume it holds from 1 to i′. Note that L con-
tains all those alternatives that are strictly less preferred by
agents in {π(1), . . . , π(i′)} than the ones they respectively
fixed. Moreover, each agent in {1, . . . , π(i′)} is indifferent
between the alternatives in L. As for π(i′ + 1), he fixes the

Input: (N,A,%, k, permutation π of N)
Output: W ∈ Sk(A).

1 L (last set to be refined)←− A
2 r (number of alternatives yet to be fixed)←− k; W ←− ∅
3 i′ (index of the permutation π)←− 1
4 while r 6= 0 or i′ 6= n do
5 Agent i = π(i′) selects first t equivalence classes such

that |
⋃t

j=1E
j
i ∩ L| ≥ r and |

⋃t−1
j=1E

j
i ∩ L| < r.

6 W ←− W ∪ (
⋃t−1

j=1E
j
i ∩ L) (we say agent i fixes the

alternatives in
⋃t−1

j=1E
j
i );

7 r←− |
⋃t

j=1E
j
i ∩ L| − |

⋃t−1
j=1E

j
i ∩ L|

8 L←− Et
i ; ri′ ←− r

9 Increment i′ by one
10 if r > 0 then
11 pick any r alternatives from L and add them to W
12 return W

Algorithm 1: Committee Voting Serial Dictatorship

best |
⋃t−1
j=1E

j
π(i′+1)∩L| alternatives in Lwhere t is the value

such that |(
⋃t
j=1E

j
π(i′+1)) ∩ L| ≥ ri′ and |

⋃t−1
j=1E

j
π(i′+1) ∩

L| < ri′ . For Etπ(i′+1), the agent only requires that ri′+1 =

|(
⋃t−1
j=1E

j
π(i′+1)) ∩ L| − |(

⋃t−1
j=1E

j
π(i′+1)) ∩ L| alternatives

are selected from his equivalence class Etπ(i′+1) which is en-
sured by the definition of the algorithm. It follows from the
argument that the returned set is Pareto optimal under the re-
sponsive set extension. For strategyproofness, when an agent
π(i′) turn comes, it only has a choice over fixing the alterna-
tives in L and requiring ri′ alternatives from his equivalence
class Etπ(i′). In this case the algorithm already chooses one of
the best possible committees for the agent.

Note that for k = 1, the algorithm is equivalent to serial
dictatorship as formalized by Aziz et al. [2013a]. Note that
a committee that is Pareto optimal under the responsive set
extension may not be a result of serial dictatorship. This holds
even for k = 1 and the basic voting setting.

The problem with the serial dictatorship algorithm formal-
ized is that it overly favours the agent that is the first in the
permutation. One way to limit his power is to let him choose
only dk/ne alternatives. We note that this attempt at having
a fairer extension of serial dictatorship comes at an expense
because strategyproofness is compromised. Consider the pro-
file in which 1 has preferences a, b, c and 2 has preferences
a, c, b. For k = 2, and permutation 12, the outcome is {a, c}.
But if agent 1 reports b, a, c, then the outcome is {a, b}.

6 Leximax Set Extension
We point out that for dichotomous preferences, the responsive
set extension coincides with the leximax set extension. Hence
we get a corollary of our results for responsive preferences:
Corollary 1. Checking whether a committee is LX-efficient
is coNP-complete, even for dichotomous preferences and
Topwidth(%) ≥ 3.

Note that Algorithm 1 returns a LX-efficient committee.
Theorem 6. There exists a linear-time and strategyproof al-
gorithm that returns a LX-efficient committee.



7 ‘Best’ Set Extension
Next, we consider Pareto optimality with respect to B, which
has been used for defining many rules (see Section 2).

Theorem 7. Unless P=NP, there is no polynomial-time al-
gorithm to compute a Pareto improvement over a commit-
tee with respect to B, even for dichotomous preferences and
Topwidth(%) = 2.

Proof. We show that if it is not the case, then we can solve
polynomially the vertex cover decision problem. Consider
an instance of VERTEX COVER given by a simple graph
G = (V,E) with V = {v1, . . . , vq} and E = {e1, . . . , er},
and an integer k. Assume the existence of a polynomial-time
algorithm Algo that computes a Pareto improvement over a
committee with respect to B when Topwidth(%) ≤ 2: given
a profile % and a set of k alternatives W , Algo(%,W ) re-
turns, in time polynomial in | % |, Yes if W is Pareto op-
timal with respect to B, and otherwise returns a k-set U of
alternatives which Pareto dominates W . We will now prove
by applying at most n times Algo with different inputs that
we can decide in polynomial if G has a vertex cover C ⊆ V
of G with |C| ≤ k. We construct the following profile P :

• The set of agents isN = {1, . . . , q+r−k}, where agent
i ≤ r corresponds to edge ei ∈ E.
• The set of 2q − k alternatives is A = V ∪ D where
D = {d1, . . . , dq−k}.
• Let ei = [u, v] ∈ E be an edge of G; the preferences of

agent i for i = 1, . . . , r are:

i : {u, v}, D ∪ (V \ {u, v}).

The preferences of the last set of q − k agents {r +
1, . . . , q + r − k} are given by: for i = 1, . . . , q − k,

r + i : di, V ∪ (D \ {di}).

The reduction is clearly done within polynomial time and
the set of preferences given by % are dichotomous.

Consider the following inductive procedure: W0 = V and
for i ≥ 1, Wi = Algo (%,Wi−1) if Wi−1 is not Pareto
optimal with respect to B, otherwise we return Wi−1. Let
W =Wn−k be the solution output after n− k calls. Because
Algo is polynomial, the whole procedure is polynomial.

We claim that G has a vertex cover of size k iff D ⊆ W .
We will first prove by induction that at each step i, Wi \D is
a vertex cover of G. For the initial step, it is valid because V
is a vertex cover of G. Assume that it is true for i < n − k
and let us prove that Wi+1 \ D is a vertex cover of G. If
it is not the case, some edge ej = [u, v] ∈ E is not cov-
ered. By assumption, ej is covered by Wi \ D. This implies
Wi �Bj Wi+1, which is a contradiction. Hence, Wi+1 %Bj
Wi. From this hypothesis, we deduce D \Wi+1 %Bj D \Wi

for j = n + 1, . . . , 2n − k with a strict preference for some
agent. Equivalently,D \Wi ⊂ D \Wi+1. In conclusion, after
n−k recursive calls, |W \D| ≤ k if and only ifD ⊆W .

Theorem 8. Computing a B-efficient committee is NP-hard,
even for dichotomous preferences.

Proof. We give a reduction from HITTING SET. Let N =
{1, . . . , `}, A = X and for each i ∈ N , i’s dichotomous
preferences are i : Ci, (X \Ci). If there exists a polynomial-
time algorithm to compute a B-efficient committee, it will
return a committee in which each agent gets a most preferred
alternative if such a committee exists. But such a committee
corresponds to a hitting set of size k.

8 ‘Worst’ Set Extension
In contrast to all the other set extensions considered in the pa-
per, Pareto optimality with respect to the ‘worst’ set extension
can be checked in polynomial time.

Theorem 9. There exists a polynomial-time algorithm that
checks whether there a committee is W-efficient and com-
putes a Pareto improvement over it if possible.

Proof. Let W ∈ Sk(A). For each i ∈ N , let Etii be the least
preferred equivalence class such that Etii ∩W 6= ∅. We want
to check whether there is a k-set D of alternatives in which
at least some agent i ∈ N gets a strictly better outcome and
all the other agents get at least as preferred an outcome. We
check this as follows. For i ∈ N , let Bi = A \ (

⋃ki
`=ti

E`i ) ∪⋃
j∈N\{i}

⋃kj
`=tj+1E

`
j). We check whether |Bi| ≥ k or not.

If |Bi| ≥ k, we know that there exists a subset of Bi, that
is strictly more preferred by i ∈ N and at least as preferred
by each agent. If |Bi| < k, then this means that a Pareto
improvement with i strictly improving is only possible if the
size of the winning set is less than k which is not feasible.

We now consider strategyproofness together with W-
efficiency. We first note that Algorithm 1 may not return a
W-efficient outcome. However, we construct a suitable strat-
egyproof andW-efficient by formalising an appropriate serial
dictatorship algorithm for the worst set extension.

Theorem 10. There exists a linear-time and strategyproof al-
gorithm that returns aW-efficient committee.

Proof. Consider the agents in a permutation π. The set of al-
ternatives A′ is initialized to A. We reduce the set A′ while
ensuring that it of size at least k. The next agent i in the per-
mutation comes and deletes the maximum number of least
preferred equivalence classes from his preferences and the
corresponding alternatives inA′ while ensuring that |A′| ≥ k.
Each successive agent in the permutation gets a most pre-
ferred outcome while ensuring that agents before him in the
permutation get at least as preferred an outcome as before.
Thus the algorithm is strategyproof and Pareto optimal with
respect to the ‘worst’ set extension.

9 Conclusions
We considered Pareto optimality in multi-winner voting with
respect to a number of prominent set extensions. We pre-
sented results on the relations between the notions as well as
complexity of computing and verifying Pareto optimal out-
comes. Further directions of future work include considering
Pareto optimality with respect to other set extensions [Brandt
and Brill, 2011].
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Jérôme Monnot thank the ANR project CoCoRICo-CoDec.

References
[Aziz and Savani, 2016] H. Aziz and R. Savani. Hedonic games. In

F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia,
editors, Handbook of Computational Social Choice, chapter 15.
Cambridge University Press, 2016. Forthcoming.

[Aziz et al., 2013a] H. Aziz, F. Brandt, and M. Brill. The computa-
tional complexity of random serial dictatorship. Economics Let-
ters, 121(3):341–345, 2013.

[Aziz et al., 2013b] H. Aziz, F. Brandt, and M. Brill. On the trade-
off between economic efficiency and strategyproofness in ran-
domized social choice. In Proc. of 12th AAMAS Conference,
pages 455–462. IFAAMAS, 2013.

[Barberà et al., 2004] S. Barberà, W. Bossert, and P. K. Pattanaik.
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C. Seidl, editors, Handbook of Utility Theory, volume II, chap-
ter 17, pages 893–977. Kluwer Academic Publishers, 2004.

[Benoı̂t and Kornhauser, 2010] J.-P. Benoı̂t and L. Kornhauser.
Only a dictatorship is efficient. Games and Economic Behavior,
70(2):261–270, 2010.

[Betzler et al., 2013] N. Betzler, A. Slinko, and J. Uhlmann. On the
computation of fully proportional representation. JAIR, 47:475–
519, 2013.

[Bossert, 1995] W. Bossert. Preference extension rules for ranking
sets of alternatives with a fixed cardinality. Theory and Decision,
39:301—317, 1995.

[Brams et al., 2007] S. Brams, D. Kilgour, and R. Sanver. A min-
imax procedure for electing committees. Public Choice, 3-
4(132):401–420, 2007.

[Brandt and Brill, 2011] F. Brandt and M. Brill. Necessary and suf-
ficient conditions for the strategyproofness of irresolute social
choice functions. In Proc. of 13th TARK Conference, pages 136–
142. ACM Press, 2011.

[Caragiannis et al., 2010] I. Caragiannis, D. Kalaitzis, and
E. Markakis. Approximation algorithms and mechanism design
for minimax approval voting. In Proc. of 24th AAAI Conference,
pages 737–742, 2010.
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