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Abstract

We consider the following problem in which a given number
of items has to be chosen from a predefined set. Each item is
described by a vector of attributes and for each attribute there
is a desired distribution that the selected set should fit. We look
for a set that fits as much as possible the desired distributions
on all attributes. Examples of applications include choosing
members of a representative committee, where candidates are
described by attributes such as sex, age and profession, and
where we look for a committee that for each attribute offers a
certain representation, i.e., a single committee that contains
a certain number of young and old people, certain number
of men and women, certain number of people with different
professions, etc. With a single attribute the problem boils
down to the apportionment problem for party-list proportional
representation systems (in such case the value of the single
attribute is the political affiliation of a candidate). We study
some properties of the associated subset selection rules, and
address their computation.

1 Introduction

A research department has to choose k members for a re-
cruiting committee. A selected committee should be gender
balanced, ideally containing 50% of male and 50% of female.
Additionally, a committee should represent different research
areas in certain proportions: ideally it should contain 55% of
researchers specializing in area A, 25% of experts in area B,
and 20% in area C. Another requirement is that the commit-
tee should contain 30% junior and 70% senior researchers,
and finally, the repartition between local and external mem-
bers should be kept in proportions 30% to 70 %. The pool of
possible members is given in Table 1.

In the given example, if the department wants to select
k = 3 members, then it is easy to see that there exists no such
committee that would ideally satisfy all the criteria. Never-
theless, some committees are better than others: intuitively
we feel the sex ratio should be either equal to 2:1 or to 1:2,
the area ratio should be equal to 2:1:0, the age ratio to 1:2,
and the affiliation ratio to 1:2. Such relaxed criteria can be
achieved by selecting Ann, Donna, and George. Now, let us
consider the above example for the case when k = 4. In such
case, the ideal sex ratio should be equal to 2:2, the research
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Name Sex Group Age Affiliation
Ann F A J L
Bob M A J E

Charlie M A S L
Donna F B S E
Ernest M A S L
George M A S E
Helena F B S E
John M B J E

Kevin M C J E
Laura F C J L

Table 1: An example of the pool of candidates.

area ratio to 2:1:1, the age ratio to 1:3, and the affiliation ratio
to 1:3. It can be proved, however, that for k = 4 there exists
no committee satisfying such relaxed criteria. Intuitively, in
such case the best committee is either {Ann, Charlie, Donna,
George}, with two externals instead of three, or {Charles,
Donna, George, Kevin}, with males being over-represented.

In this paper we formalize the intuition given in the above
example and define what it means for a committee to be opti-
mal. First, we notice that our model generalizes the appor-
tionment problem for proportional representation (Balinski
and Young 2001). The central question of the apportionment
problem is how to distribute parliament seats between polit-
ical parties, given the numbers of votes cast for each party:
this setting corresponds to our problem when there is a single
attribute being the political affiliation of a candidate, and the
desired distributions being the proportions of votes cast for
different parties.

There is a variety of apportionment methods studied in the
literature (see (Balinski and Young 2001) for a survey), evalu-
ated along a set of desirable criteria (Balinski and Young
1979), especially non-reversal, exactness and respect of
quota, population monotonicity, and house monotonicity. We
define the analogs of these properties for multi-attribute do-
mains, and identify which of those are satisfied by our notion
of optimal committee.

To emphasize the analogy between our model and appor-
tionment methods, we should provide some discussion on
where the desired proportions for attributes come from. Typ-
ically, but not always, they come from votes. For instance,
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each voter might give her preferred value for each attribute,
and the ideal proportions coincide with the observed frequen-
cies. For instance, out of 20 voters, 10 would have voted for
a male and 10 for a female, 13 for a young person and 7 for
a senior one, etc. In other contexts, proportions can come
from approval ballots. Yet in other contexts, voters can also
express their preferred proportions, which are then aggre-
gated. Finally, sometimes, instead of votes, there are “global”
preferences on the composition of the committee, expressed
directly by the group, imposed by law, or by other constraints
that should be respected as much as possible independently
of voter preferences.

The multi-attribute case, however, is also substantially
different from the single-attribute one. In particular, multi-
attribute proportional representation systems exhibit compu-
tational problems that do not appear in the single-attribute
setting. In the second part of our paper we show that find-
ing an optimal committee is often NP-hard. Yet, we show
that this challenge can be addressed by designing efficient
approximation and fixed-parameter tractable algorithms.

We believe that the model formalized in this paper has
broad applications. As an example, consider a political sys-
tem where the voters do not vote for the candidates directly,
but rather for their opinions on various issues. For instance,
quoting (Lang and Xia 2016), in 2012, voters in California
had to decide in simultaneous multiple referenda whether
to adopt each of the given eleven propositions 1; a similar
vote also took place in Florida. Given that the voters vote
on propositions, our algorithms can be used to find a set of
candidates that, in some sense, best represents opinions of
voters about propositions. The number of propositions can be
even larger: for instance, political parties have usually quite
elaborate programs in which they refer to tens or hundreds of
issues.

As another example, consider a library selecting a set of
movies to buy. In ImDB 2 movies can be described by many
attributes, such as genre, country, language, year, actors,
directors, awards, etc. The users usually look for movies
by their attributes. Our algorithms can help such a library
finding a representative collection of movies.

After positioning our work with respect to related areas
in Section 2, we present our model in Section 3. In Sec-
tions 4 and 5 we discuss relevant properties of methods for
multi-attribute fair representation. In Section 6 we show
that, although computing optimal committees is generally
NP-hard, there exist good approximation and fixed-parameter
tractable algorithms for finding them. In Section 7 we point
to further research issues. All proofs omitted from the main
text are provided in the full version of this paper (Lang and
Skowron 2015).

2 Related work

Our model is related to three distinct research areas:
Voting on multi-attribute domains (see (Lang and Xia
2016) for a survey). There, the aim is to output a single

1http://en.wikipedia.org/wiki/California elections, November
2012

2http://www.imdb.com/

winning combination of attributes (e.g., in multiple referenda,
a combination of binary values). Our model in case when
k = 1 can be viewed as a voting problem on a constrained
multi-attribute domain (constrained because not all combina-
tions are feasible).

Multiwinner (or committee) elections, and in particular full
proportional representation (Chamberlin and Courant 1983;
Monroe 1995). There, the voters vote directly for candidates
and do not consider attributes that characterize them. Thus,
in this literature, the term “proportional representation” has
a different meaning: these methods are ‘representative’ be-
cause each voter feels represented by some member of the
elected committee. The computational aspects of full pro-
portional representation and its extensions have raised a lot
of attention lately (Procaccia, Rosenschein, and Zohar 2008;
Betzler, Slinko, and Uhlmann 2013; Cornaz, Galand, and
Spanjaard 2012; Skowron, Faliszewski, and Slinko 2015;
Lu and Boutilier 2013). Our study of the properties of multi-
attribute proportional representation is close in spirit to the
work of Elkind et al. (Elkind et al. 2014), who gives a nor-
mative study of multiwinner election rules. Budgeted social
choice (Lu and Boutilier 2011) is technically close to com-
mittee elections, but it has a different motivation: the aim
is to make a collective choice about a set of objects to be
consumed by the group (perhaps, subject to some constraints)
rather than about the set of candidates to represent voters.

Apportionment for party-list representation systems (see
the work of Balinski and Young (Balinski and Young 2001)
for a survey). As we already pointed out, the apportion-
ment methods correspond to the restriction of our model to
a single attribute (albeit with a different motivation). While
voting on multi-attribute domains and multiwinner elections
have lead to significant research effort in computational so-
cial choice, this is less the case for party-list representation
systems. Ding and Lin (Ding and Lin 2014) studied a game-
theoretic model for a party-list proportional representation
system under specific assumptions, and show that comput-
ing the Nash equilibria of the game is hard. Also related is
the computation of bi-apportionment (assignment of seats
to parties within regions), investigated in a few recent pa-
pers (Pukelsheim et al. 2012; Serafini and Simeone 2012;
Lari, Ricca, and Scozzari 2014).

Constrained approval voting (CAP) (Brams. 1990;
Potthoff 1990) is probably the closest work to our setting
(MAPR). In CAP there are also multiple attributes, candi-
dates are represented by tuples of attribute values, there
is a target composition of the committee and we try to
find a committee close to this target. However, there are
also substantial differences between MAPR and CAP. First,
in CAP, the target composition of the committee, exoge-
nously defined, consists of a target number of seats for each
combination of attributes (called a cell), that is, for each
�z ∈ D1 × . . .×Dp, we have a value s(�z); while in MAPR
we have a smaller input consisting of a target number for
each value of each attribute. Note that the input in CAP is
exponentially large in the number of attributes, which makes
it infeasible in practice as soon as this number exceeds a few
units (probably CAP was designed for very small numbers
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of attributes). Second, in CAP, the selection criterion of an
optimal committee is made in two consecutive steps: first a
set of admissible committees is defined, and the choice be-
tween these admissible committees is made by using approval
ballots, and the chosen committee is the admissible commit-
tee maximizing the sum, over all voters, of the number of
candidates approved (there is no loss function to minimize
as in MAPR). A simple translation of CAP into an inte-
ger linear programming problem is given in (Potthoff 1990;
Straszak et al. 1993).

3 The model
Let X = {X1, . . . , Xp} be a set of p attributes, each with
a finite domain Di = {x1

i , . . . , x
qi
i }. We say that Xi is

binary if |Di| = 2. We let D = D1 × . . . × Dp. Let
C = {c1, . . . , cm} be a set of candidates, also referred to as
the candidate database. Each candidate ci is represented as
a vector of attribute values (X1(ci), . . . , Xp(ci)) ∈ D.3

For each i ≤ p, by πi we denote a target distribution πi =

(π1
i , . . . , π

qi
i ) with

∑qi
i=1 π

j
i = 1. We set π = (π1, . . . , πp).

Typically, n voters have casted a ballot expressing their pre-
ferred value on every attribute Xi, and πj

i is the fraction of
voters who have xj

i as their preferred value for Xi, but the
results presented in the paper are independent from where the
values πj

i come from (see the discussion in the Introduction).
The goal is to select a committee4 of k ∈ {1, . . . ,m}

candidates (or items) such that the distribution of attribute
values is as close as possible to π. Formally, let Sk(C) denote
the set of all subsets of C of cardinality k. Given A ∈
Sk(C), the representation vector for A is defined as r(A) =

(r1(A), . . . , rp(A)), where ri(A) = (rji (A)|1 ≤ j ≤ qi)

for each i = 1, . . . , p, and rji (A) =
|{c∈A:Xi(c)=xj

i}|
k . While

these representation vectors are normalized, sometimes it will
be convenient to use unnormalized vectors, which sum up
to k instead of 1. We define R(A) = (R1(A), . . . , Rp(A)),
where Ri(A) = (Rj

i (A)|1 ≤ j ≤ qi) for each i = 1, . . . , p,
and Rj

i (A) = k.rji (A) = |{c ∈ A : Xi(c) = xj
i}|.

Definition 1. A committee A ∈ Sk(C) is perfect for π if
ri(A) = πi for all i.

Thus, a perfect committee matches exactly the target dis-
tribution. Clearly, there is no perfect committee if for some
i, j, πj

i is not an integer multiplicity of 1
k . In some of our

results we will focus on target distributions such that for each
i, j the value kπj

i is an integer. We will refer to such target
distributions as to natural distributions.

We define metrics measuring how well a committee fits a
target distribution, called loss functions.
Definition 2. A loss function f maps π and r to
f(π, r(A)) ∈ R, and satisfies f(π, r(A)) = 0 if and only if
π = r(A).

3By writing Xj(ci), we slightly abuse notation, that is, we con-
sider Xj both as an attribute name and as a function that maps any
candidate to an attribute value; this will not lead to any ambiguity.

4We will stick to the terminology “committee” although the
meaning of subsets of candidates has sometimes nothing to do with
the election of a committee.

There are a number of loss functions that can be considered.
As often, the most classical loss functions use Lp norms,
with the most classical examples of L1, L2, and L∞. We
focus on two representative Lp norms, L1, and L∞, but we
believe that other choices are also justified and may lead to
interesting variants of our model. Consequently, we consider
the following loss functions:

• ‖ · ‖1 : ‖π, r(A)‖1 =
∑

i,j |rji (A)− πj
i |.

• ‖ · ‖1,max : ‖π, r(A)‖1,max =
∑

i maxj |rji (A)− πj
i |.

• ‖ · ‖max : ‖π, r(A)‖max = maxi,j |πj
i − rji (A)|.

Now, we are ready to formally define the central problem
addressed in the paper.

Definition 3 (OPTIMALREPRESENTATION). Given X , C,
π, k, and a loss function f , find a committee A ∈ Sk(C)
minimizing f(π, r(A)).

Example 1. For the example of the Introduction, we have X
= {sex, group, age, affiliation}, D = {F,M}×{A,B,C}×
{J, S} × {L,E}, and X1(Ann) = F , X1(Bob) = M etc.
{Charlie,Donna,George,Kevin} is optimal for ‖ · ‖1, with
‖π, r(A)‖1 = 0.5 + 0.1 + 0.1 + 0.1 = 0.8, and for ‖ ·
‖1,max, with ‖π, r(A)‖1,max = 0.4, but not for ‖ · ‖max.
{Ann,Charlie,Donna,George} is optimal for ‖·‖max, with
‖π, r(A)‖max = max(0, 0.2, 0.05, 0.2) = 0.2, but not for
the other criteria.

4 The single-attribute case

In this section we focus on the single-attribute case (p = 1).
Without loss of generality, let us assume that the single at-
tribute be party affiliation. Further, let us for a moment
assume that for each value xj

1 there are at least k candidates
with value xj

1 (this is typically the case in party-list elections).
Then finding the optimal committee comes down to appor-
tionment problem for party-list elections, where a fractional
distribution s1 has to be “rounded up” to an integer-valued
distribution R1 such that

∑
j R

j
1 = k.

There are two main families of apportionment methods:
largest remainders and highest average methods (Balinski
and Young 2001). We shall not discuss highest average meth-
ods here, because they are weakly relevant to our model.
For largest remainders methods, a quota q is computed as
a function of the number of seats k and the number of vot-
ers n. The number of votes for party i is ni = n.πi. The
most common choice of a quota is the Hare quota, defined as
n
k ; the method based on the Hare quota is called the Hamil-
ton method. One of our aims is to generalize the Hamilton
method to multiattribute domains.

Definition 4 (The largest remainder method.). The largest
remainder method with quota q is defined as follows:

• for all i, s∗i = ni

q is the ideal number of seats for party i.

• each party i receives si = �s∗i � seats; let ti = si − s∗i
(called the remainder).

• the remaining k −∑
i si seats are given to the k −∑

i si
parties with the highest remainders ti.
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Equivalently (see below), the largest remainder
methods selects a distribution (k1, . . . , kq) minimizing
maxi=1,...,p(s

∗
i − ki) = maxi=1,...,p(

ni

q − ki), which
in the case of Hamilton comes down to minimizing
maxi=1,...,p(

k.ni

n − ki). After defining πi
1 = ni

n for all i, we
obtain the following result, that shows that our definition of
an optimal committee, with any of the three loss functions,
generalize the Hamilton apportionment method.
Proposition 1. When p = 1 and assuming there are at least
k items for each attribute, optimal subsets for ‖·‖1, ‖·‖1,max

and ‖ · ‖max coincide, and correspond to the subsets given
by the Hamilton apportionment method.

Therefore, our model can be seen as a generalization of
the Hamilton apportionment method to more than one at-
tribute. Note that our model can easily extend other largest
remainder methods, and our results would be easily adapted.
Interestingly, when p ≥ 2, our three criteria no longer coin-
cide. However, for binary domains, the optimal committee
are the same for both loss functions, ‖ · ‖1 and ‖ · ‖1,max,
since

∑
j=1,2 |rji (A)− πj

i | = 2maxj=1,2 |rji (A)− πj
i |.

Proposition 2.

1. For each p ≥ 3 and binary domains, optimal subsets for
‖ · ‖1 and ‖ · ‖max may be disjoint, even for k = 2.

2. For each p ≥ 3, optimal subsets for ‖ ·‖max and ‖ ·‖1,max

can be disjoint.
3. For each p ≥ 2, if at least one attribute has 4 values, then

optimal subsets for ‖ · ‖1 and ‖ · ‖1,max can be disjoint.
4. For p = 2 and binary domains, optimal subsets for ‖ · ‖1

and ‖ · ‖max may differ.
These negative results come from the constraints imposed

by the candidate database, which prevent the selection on the
different attributes to be done independently. In the example
of the proof of point 1, for instance, since all items with
the value x1

2 for X2 have value x1
3 for X3, selecting q items

with X2 = x1
2 implies selecting q items with X3 = x1

3.
However, if the database is sufficiently diverse so that no such
constraints exist, the optimization can be done separately on
each attribute. This is captured by the following notion.
Definition 5. A candidate database C satisfy the Full Supply
(FS) property with respect to k if for any �x ∈ D, C has at
least k candidates associated with value vector �x.

The candidate database of Example 1 does not satisfy
FS, even for k = 1, because there is not a single candidate
with group C and age S. If we ignore attributes group and
affiliation, then we are left with 2 (resp., 3, 2, 3) candidates
with value vector FJ (resp. MJ , FS, MS): the reduced
database satisfies FS for k ∈ {1, 2}.
Proposition 3. Let (X,C, k) be an optimal committee selec-
tion problem. If C satisfies FS w.r.t. k, then the following
statements are equivalent:
• A is an optimal committee for ‖ · ‖1
• A is an optimal committee for ‖ · ‖1,max

• for any attribute Xi, A is a Hamilton committee for the
single-attribute problem ({Xi}, D↓Xi , πi, k), where D↓Xi

is the projection of D on {Xi}.

Moreover, any ‖ · ‖1 (and ‖ · ‖1,max) optimal committee is
optimal for ‖ · ‖max. (The converse does not always hold.)

5 Properties of multi-attribute proportional

representation

Several properties of apportionment methods have been stud-
ied, starting with (Balinski and Young 1979). We omit their
definition in the single-attribute case and directly give their
generalizations to our more general model. Let A be any
optimal committee for some criterion given π, C and k. We
recall that Rj

i (A) = k rji (A) denotes the number of elements
of A with the attribute Xi equal to xj

i .

• Non-reversal: for any attribute Xi, and attribute values xj
i ,

xj′
i , if πj

i > πj′
i then rji (A) ≥ rj

′
i (A).

• Exactness and respect of quota: for all i, either Rj
i =

�kπj
i � or Rj

i = �kπj
i 	.

• Population monotonicity (with respect to Xi): consider
π and ρ such that there exists j that (a) πj

i > ρji , (b) for

all j′, j′′ 
= j, πj′′
i

πj′
i

=
ρj′′
i

ρj′
i

, and (c) for all i′ 
= i and all

j, ρji′ = πj
i′ . Then there is an optimal committee B for ρ

such that rji (A) ≥ rji (B).
• House monotonicity: let B be an optimal committee for π,
C and k′ > k. Then for all i, j, rji (B) ≥ rji (A).

5

In the single-attribute case, it is known for long that the
Hamilton method satisfies all these properties except house
monotonicity (this failure of house monotonicity is better
known under the name Alabama paradox).

We start by noticing that if a property fails to be satisfied
in the single-attribute case, a fortiori it is not satisfied in the
multi-attribute case. As a consequence, house monotonicity
is not satisfied, even under the FS assumption. We now
consider the other properties.
Proposition 4. Under the full supply assumption, non-
reversal, exactness and respect of quota, and population
monotonicity are all satisfied, for any of our loss functions.
In the general case, non-reversal, exactness and respect of
quota are not satisfied. If Xi is a binary variable, and for
‖ · ‖1, population monotonicity with respect to Xi is satisfied;
however it is not satisfied in the general case.

6 Computing Optimal Committees

In this section we now investigate the computation complex-
ity of optimal committees. We start with observing that the
problem of deciding whether there is a perfect committee for
a given instance is NP-complete.
Proposition 5. Given set of attributes X , a set of candidates
C, a vector of target distributions π, an integer k, deciding
whether there is a perfect committee is NP-complete.

5Some other properties, such as consistency, seem more difficult
to generalize to the multi-attribute case. Also, resistance to party
merging or party splitting are less relevant in our setting than for
political elections and we omit them.
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This simple result implies that the decision problem associ-
ated with finding an optimal committee (is there a committee
whose loss is less than θ?) is NP-hard for all loss functions.
However, if the number of attributes p is fixed, the problem
is solvable in polynomial time.

Proposition 6. Let p be a constant integer. Given set of
p attributes X , a set of candidates C, a vector of target
distributions π, an integer k, deciding whether there is a
perfect committee is solvable in polynomial time.

Approximating optimal committees

A natural approach to alleviate the NP-hardness of the prob-
lem is to analyze whether it can be well approximated. Before
proceeding to presentation of our approximation algorithms,
the core technical contribution of this paper, we define the
notion of approximability used in our analysis.

Definition 6. An algorithm A is an α-additive-
approximation algorithm for OPTIMALREPRESENTATION
if for each instance I of OPTIMALREPRESENTATION it
holds that |f(π, r(A)) − f(π, r(A∗))| ≤ α, where A is
the committee returned by A for I , and A∗ an optimal
committee.

It is easy to observe that for binary domains it holds that
‖π, r(A)‖1 = 2‖π, r(A)‖1,max. This implies that for binary
domains, an α-additive-approximation algorithm for ‖ · ‖1 is
an α

2 -additive-approximation algorithm for ‖ · ‖1,max.

In this paper we mostly present computational results for
binary domains. However, this assumption is not as restrictive
as it may seem—every instance of the OPTIMALREPRESEN-
TATION problem can be transformed to a new instance with
binary domains in the following way:

• Xnew = {Xij | i = 1, . . . , p, j = 1, . . . , |Di|}.

• Cnew = {c′l | l = 1, . . . ,m}.

• πnew = (πi,j | 1 ≤ i ≤ p, 1 ≤ j ≤ |Di|), where for all
i = 1, . . . ,m, j = 1, . . . , p and j = 1, . . . , |Di|, π0

i,j =

πj
i and π1

i,j = 1− πj
i .

The following lemma shows how to obtain approximation
guarantees for arbitrary domains having guarantees for the
problem transformed to binary domains.

Lemma 1. For a given committee A and target distribution
π, let πnew denote target distributions obtained as above and
let Anew be a committee consisting of such candidates from
Cnew which correspond to the members of A. The following
holds:

1. ‖πnew, r(Anew)‖1 = 2‖π, r(A)‖1.

2. 1 ≤ ‖πnew,r(Anew)‖1,max

‖π,r(A)‖1,max
≤ maxi |Di|.

3. max(πnew, r(Anew)) = max(π, r(A)).

Lemma 1 has interesting implications—first shows that
the transformed instance has the same perfect committees
as the original instance; then it shows how to obtain addi-
tive approximation guarantees for arbitrary domains having
guarantees for the problem restricted to binary domains, for
different loss functions.

Algorithm 1: Local search approximation algorithm.
Parameters:
π = (π1, . . . , πp)—input target distributions.
�—the parameter of the algorithm.

A← k random items from C;
while there exist C� ⊂ C and A� ⊂ A such that |C�| ≤ �,
|A�| ≤ �, and f(π, r(A)) > f(π, r((A \A�) ∪ C�)) do

A← (A \A�) ∪ C�;
return A;

Approximation algorithms

In this section we show an approximation algorithm for
the OPTIMALREPRESENTATION problem. The algorithm
is given in Algorithm 1 and is parameterized by an integer
value �. It starts with a random collection of k samples and,
in each step, it looks whether it is possible to replace some
� items from the current solution with some other � items to
obtain a better solution. The algorithm continues until it can-
not find any pair of sets of � items that improves the current
solution. As we show now, the approximation guarantees
depend on the value of the parameter �.
Theorem 1. For binary domains natural distributions, and
for the ‖ · ‖1 loss function, the local search algorithm defined
as Algorithm 1 with � = 1 is a |X|-additive-approximation
algorithm for OPTIMALREPRESENTATION.

Proof. Let A∗ denote an optimal solution for a given instance
I of the problem of finding a perfect committee. Let A ∈
Sk(C) denote the set returned by the local search algorithm
from Algorithm 1. From the condition in the “while” loop,
we know that there exist no c ∈ C and a ∈ A such that
‖π, r(A)‖1 > ‖π, r((A \ {a})∪ {c})‖1. Now, let Xex ⊆ X
denote the set of all attributes for which A achieves exact
match with π, that is, such that for each Xi ∈ Xex, we have
that r1i (A) = π1

i and r2i (A) = π2
i .

Let us consider the procedure consisting in taking the
items from A \A∗ and, one by one, replace them with arbi-
trary items from A∗ \A. This procedure, in |A \A∗| steps,
transforms A into an optimal solution A∗. We now estimate
the total gain g induced by this procedure. For each item
a ∈ A \ A∗, by a′ ∈ A∗ \ A we denote the item which
was taken to replace a in the procedure. For each attribute
Xi ∈ X we define the gain gi(a, a

′) of replacing a by a′ as:

gi(a, a
′) =

∑
j∈{1,2}

(
|rji (A)− πj

i | − |rji (A \ {a} ∪ {a′})− πj
i |
)

.

We now extend this definition to sets of k candidates:

gi(B,B′) =
∑

j∈{1,2}

(
|rji (A)− πj

i | − |rji ((A \B) ∪B′)− πj
i |
)

.

If Xi ∈ Xex, then ri(A) = πi, and so the replacement
cannot improve the quality of the solution relatively to Xi,
hence ∑

i∈Xex

gi(A \A∗, A∗ \A) ≤ 0.

Note that gi(a, a′) ∈ {− 2
k , 0,

2
k}. Moreover, for each at-

tribute Xi /∈ Xex there are two possible cases:
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1. rji (A) > πj
i and each exchange of candidate that results

in a negative gain increases rji (A).

2. rji (A) < πj
i and each exchange that results in a negative

gain decreases rji (A).

Intuitively, 1. and 2. mean that for attributes outside of Xex,
the negative gains cumulate. Formally, for each X /∈ Xex:

gi(A \A∗, A∗ \A) ≤
∑

a∈A\A∗
gi(a, a

′). (1)

From the condition in the “while” loop, we have that
for each a ∈ A \ A∗:

∑
i gi(a, a

′) ≤ 0, and so:∑
i

∑
a∈A\A∗ gi(a, a

′) ≤ 0.
We now give the following sequence of inequalities:

g =
∑
i

gi(A \A∗, A∗ \A)

=
∑

i∈Xex

gi(A \A∗, A∗ \A) +
∑

i/∈Xex

gi(A \A∗, A∗ \A)

≤
∑

i/∈Xex

gi(A \A∗, A∗ \A) ≤
∑

i/∈Xex

∑
a∈A\A∗

gi(a, a
′)

≤ −
∑

i∈Xex

∑
a∈A\A∗

gi(a, a
′) ≤ |Xex| · k · 2

k
= 2|Xex|.

(2)

Finally, for each attribute Xi ∈ Xex the loss relative to
Xi, i.e., |r0i − π0| + |r1i − π1|, is at most 2. Thus, we get
g ≤ 2(|X| − |Xex|), which leads to g ≤ |X|.

Is the bound |X| from Theorem 1 a good result? One way
to interpret this result is to observe that a solution that for
half of the attributes gives exact match, and for other half is
arbitrarily bad, is an |X|-approximate solution. We do not
know whether the bound |X| is reached, but we now show
that a lower bound on the error made by the algorithm with
� = 1 is 2

3 |X| (see Example 2 in the full version of this
paper (Lang and Skowron 2015)).

A better approximation bound can be obtained with � = 2,
however it requires much more involved analysis:

Theorem 2. For binary domains (|Di| = 2, for each 1 ≤
i ≤ p), natural distributions, and for ‖ · ‖1 loss function,
the local search algorithm from Algorithm 1 with � = 2 is a

ln(k/2)
2 ln(k/2)−1

(
|X|+ 6|X|

k

)
-additive-approximation algorithm

for OPTIMALREPRESENTATION.

Since a brute-force algorithm can be used to compute an
optimal solution for small values of k, Theorem 2 implies that
for every ε > 0 we can achieve an additive approximation
of 1

2 (|X| + ε), that is we can guarantee that the solution
returned by our algorithm will be at least 4 times better than
a solution that is arbitrarily bad on each attribute. A natural
open question is whether the local search algorithm achieves
even better approximation guarantees for larger values of �.

One may argue that the restriction to normal target dis-
tributions is a strong one. However, for a given vector of
target distributions π, we can easily find a vector πN of target

normal distributions such that ‖π, πN‖1 ≤ 2X
k . Thus, the

results from Theorems 1 and 2 can be modified by provid-
ing approximation ratio worse by an additive value of 2X

k
but valid for arbitrary target distributions. Again, since an
optimal solution can easily be computed for small values of
k, we can get arbitrarily close to the approximation guaran-
tees given by Theorems 1 and 2, even for non-normal target
distributions.

Example 3 in the full version of this paper (Lang and
Skowron 2015) provides a lower bound of 2X

7 for the approx-
imation ratio of the local search algorithm from Algorithm 1
with � = 2.

Parameterized Complexity

In this section, we study the parameterized complexity of the
problem of finding a perfect committee. We are specifically
interested whether for some natural parameters there exist
fixed parameter tractable (FPT) algorithms. We recall that
the problem is FPT for a parameter P if its each instance I
can be solved in time O(g(P ) · poly(|I|)), where g is some
arbitrary computable function.

From the point of view of parameterized complexity,
FPT is seen as the class of easy problems. There is also
a whole hierarchy of hardness classes, FPT ⊆ W [1] ⊆
W [2] ⊆ · · · . For details, we point the reader to appropriate
overviews (Downey and Fellows 1999; Niedermeier 2006;
Flum and Grohe 2006).

Obviously, the problem admits an FPT algorithm for the
parameter m. Now, we present a negative result for parameter
k (committee size) and a positive result for the parameter p
(number of attributes).
Theorem 3. The problem of deciding whether there exists a
perfect committee is W[1]-hard for the parameter k, even for
binary domains.
Theorem 4. For binary domains, there is an FPT algorithm
for the perfect committee problem for parameter p.

Proof. Each item can be viewed as a vector of values in-
dexed with the attributes; there are 2p such possible vectors:
v1, . . . , v2p . For each vi, let ai denote the number of items
that correspond to vi. Consider the following integer linear
program, in which each variable bi is the number of candi-
dates corresponding to vi in a perfect committee.

minimize
2p∑
i=1

bi

subject to:
(a) : bi ≥ 0 1 ≤ i ≤ 2p

(b) : bi ≤ ai 1 ≤ i ≤ 2p

(c) :
2p∑
i=1

bi = k

(d) :
∑

i:vi[j]=1

bi = π1
i 1 ≤ j ≤ p

This linear program has 2p variables, thus, by the result
of Lenstra (Lenstra 1983, Section 5) it can be solved in
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FPT time for parameter p. Below we provide an example
illustrating this proof.

We conclude this section by a short discussion. Finding
an optimal committee is likely to be difficult if the candidate
database C is large, and the number of attributes not small.
Assume |C| is large compared to the size of the domain∏p

i=1 |Di|, that each attribute value appears often enough in
C and that there is no strong correlation between attributes
in C: then, the larger |C|, the more likely C satisfies Full
Supply, in which case finding an optimal committee is easy.
The really difficult cases are when |C| is not significantly
larger than the domain, or when C shows a high correlation
between attributes.

7 Conclusion

We have defined, and studied, multi-attribute generalizations
of a well-known apportionment method (Hamilton), albeit
with motivations that go far beyond party-list elections (such
as the selection of a common set of items). We have shown
positive and negative results concerning the properties satis-
fied by these generalizations and their computation, but a lot
remains to be done. Note that other largest remainder appor-
tionment methods can be generalized in a similar way, but it
is unclear how largest-average methods can be generalized.
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