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Abstract. Picking sequences are a natural way of allocating indi-
visible items to agents in a decentralized manner: at each stage, a
designated agent chooses an item among those that remain available.
We address the computational issues of the manipulation of picking
sequences by an agent or a coalition of agents. We show that a sin-
gle agent can compute an optimal manipulation in polynomial time.
Then we consider several notions of coalitional manipulation; for one
of these notions, we show that computing an optimal manipulation is
easy. We temper these results by giving a nontrivial upper bound on
the impact of manipulation on the loss of social welfare.

1 INTRODUCTION

We study a very simple protocol for allocating indivisible goods to
agents. The picking sequence protocol works as follows: we define a
sequence of agents, and each agent is asked to take in turn one ob-
ject among those that remain. For example, according to sequence
ABCCBA, agent A will choose first, then agent B will pick one
object, then C (two objects), and so on. This simple protocol is used
in a lot of everyday life situations (allocating courses to students, ini-
tial resources in some board games...). Its simplest version, namely,
the strict alternation protocol for two agents (e.g., ABABABAB)
has been studied first by Kohler and Chandrasekaran [9] in a game-
theoretic setting, and then further by Brams and Taylor [4], who
also pay attention to balanced alternation (e.g., ABBABAAB) and
Brams and King [3] for characterizing efficient allocations in a cen-
tralized setting. Budish and Cantillon [5] study a variant of the model
(course allocation to students with a randomized version of a pick-
ing sequence) and show that not only it is manipulable in theory, but
that it also is manipulated by students in practice. Picking sequences
were formally studied in a more general and systematic way by Bou-
veret and Lang [2], and further by Kalinowski et al. [8] who give a
game-theoretic study of picking sequences, and Kalinowski et al. [7]
who (among other results) prove that for a plausible set of criteria,
strict alternation is the best picking sequence for two agents.

In this paper, we study this protocol from the point of view of
single-agent and coalitional manipulation. The strategical issues of
picking sequences have already been studied by Kohler and Chan-
draesekaran [9], who prove that the subgame perfect Nash equilib-
rium can be computed in by reversing the policy and preference
orderings. Kalinowski et al. [8] extend this result to any two-agent
picking sequence, and investigate the computational complexity of
computing a subgame perfect Nash equilibrium for more than two
agents. These papers give a game-theoretic study of picking se-
quences: more precisely, they focus on the characterization and the
computation of subgame perfect Nash equilibria. In this paper, we
use a different approach. We view manipulation in picking sequences
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exactly as manipulation in voting. Voting theory, and especially com-
putational social choice, has devoted a lot of attention to the manip-
ulation of voting rules by a single deviating agent, or by a coalition
of deviating agents (see [6] for a recent survey); the assumption on
both cases is that the votes of the non-manipulators are known. This
approach to manipulation in picking sequences remains largely un-
explored, if we except some previous results [2].

The paper is organized as follows. We introduce some formal
background in Section 2. Then we study manipulation by a single
agent (Section 3) and a coalition of agents (Section 4) under various
assumptions. In Section 5 we briefly study the price of manipulation
in a two-agent setting, that is, the worst-case loss of social welfare
caused by one agent acting strategically. We conclude in Section 6.

2 BACKGROUND AND NOTATIONS

N = {A,B, . . . } is a set of n agents and O = {1, . . . ,m} a set
of m objects. Each agent i is equipped with a (private) preference
relation �i, which is a weak order (transitive and complete relation)
on 2O . The restriction of �i to O is denoted by �i. We write � (resp.
�) to denote the strict part of � (resp. �). �i is (weakly) separable,
if for any S, S′ ⊆ O and o, o′ ∈ O\(S∪S′), S∪{o} �i S∪{o′} ⇔
S′ ∪ {o} �i S

′ ∪ {o′}.
A policy π is a sequence of m agents. For any agent i, we

write ps(π, i)1, . . . , ps(π, i)r(i) to denote the r(i) successive pick-
ing stages of agent i. For all k, we will also denote by PS(π, i)k
the number of picking stages of agent i until stage k. A (determinis-
tic, simple) picking strategy for agent i is a function σi : 2O → O,
specifying which object σi(O) agent i should take when the set of
remaining objects is O (see Section 3 for more about strategies).

Given a set of agents C, a joint strategy for C is a function σC

mapping each agent i ∈ C to a given strategy σi. Given a joint strat-
egy σ concerning all the agents, we will denote by σ−i the joint strat-
egy of all the agents but i, and similarly σ−C the joint strategy of all
the agents but the ones in C. Given two strategies σ and τ concerning
different agents, σ · τ will denote the joint strategy built out from σ
and τ . Finally, given a joint strategy σ concerning all the agents and
a policy π, we will denote by Oi(π, σ) the set of objects obtained by
agent i in picking sequence π if every agent j follows strategy σj .

We make use of the following notation for allocations resulting
form a picking sequence: [O1| . . . |On] is the allocation where agent
i has set of objects Oi. Moreover, we often omit curly brackets for
sets. For instance, if n = 3 and m = 7, [1234|5|67] is the allocation
giving {1, 2, 3, 4} to agent A, {5} to agent B and {6, 7} to agent C.

3 MANIPULATION BY A SINGLE AGENT

Clearly, the only strategyproof picking sequences are those where
each agent acts in a single “picking row”, without alternation, that
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is, sequences of the form σ = am1
i1

am2
i2

. . . a
mk
ik

, where ai1 , . . . , aik

are all different agents, and m1 + . . .+mk = m.3

Bouveret and Lang ([2], Proposition 7) show that finding a manip-
ulation for an n-agent picking sequence can be polynomially reduced
to finding a manipulation for a 2-agent picking sequence. Therefore,
without loss of generality, we consider in this Section that we have
only two agents {A,B}, where A will be the manipulating agent.

A standard approach to manipulation in voting is to consider that
the manipulating agent has a complete knowledge about the other
agents’ votes. We make a similar assumption here: A has a complete
knowledge of B’s picking strategy. We now make a stronger assump-
tion about B’s strategy: we assume that B picks, at each stage, the
best object among the remaining ones, according to a (real or vir-
tual) linear order �′B , that A knows. Such picking strategies are said
to be deterministic and simple.

Assuming that B’s strategy is deterministic, simple, and known
to A, implies a loss of generality. First, if B has nonseparable pref-
erences, he may pick items in a perfectly rational way according to
a complex choice function not rationalizable by a weak order over
objects: for instance, if B is interested in getting 1 and 2 together,
but not interested in getting only one of them, then he could pick
1 if he has two more picking stages and the remaining objects are
{1, 2, 3, 4} but 3 if the remaining objects are {1, 3, 4}. Thus, in gen-
eral, a deterministic picking strategy for B would be an arbitrary
function from 2O to O.4 Second, even if B has separable prefer-
ences, B can be indifferent between two (or more) given objects, and
in this case, it is not clear (even to him) which of the two it will pick
first. (A similar phenomenon occurs in voting: nonmanipulators may
be indifferent between some candidates, yet the manipulator is as-
sumed to know how they will rank them.) It could even make sense
to assume that B acts according to a mixed strategy.

While it would make sense to study manipulation with such mixed
and/or complex strategies of B, we leave them for further research
and assume here that

(Hyp) A knows B’s picking strategy σB , and this strategy is a
deterministic, simple picking strategy.

where a deterministic, simple strategy σB is represented by a rank-
ing �′B over O, such that B always picks the preferred object, with
respect to �′B , among those that remain available. From now on we
will simply say “picking strategy” for “deterministic, simple picking
strategy”. It must be noted that σB is not necessarily sincere, and it
does not need to be: �′B can be but is not necessarily related to agent
B’s true preference relation �B . However, to avoid overloading nota-
tion, and since we will not deal at all with agent B’s true preferences,
�′B will simply be denoted by �B . In the following, we will denote
by σ� the sincere picking strategy defined (unambiguously) from �.

Because A has a complete knowledge of B’s strategy, it is enough
for her to choose a simple deterministic strategy as well, which
amounts to choosing the best possible set of objects she can get.

Now we discuss various assumptions about A’s preferences. In the
simplest case, we assume that A’s preferences are additive with no
ties on single objects. This means that A’s preferences can be repre-
sented succinctly by a utility function over single goods uA : G →
3 Such non-alternating sequences are in fact a kind of sequential dictator-

ships. In settings where agents get only one object, sequential dictatorships
are the only strategyproof resource allocation mechanisms satisfying a set
of mild properties [10].

4 Even modelling a deterministic strategy for B as a function from 2O to
O could be a loss of generality: in some contexts, B’s strategy could also
depend in the order in which A has picked her objects.

R
+. However, we shall see in Subsection 3.1 that A’s optimal strat-

egy does not depend on the values of u but only on the corresponding
ranking �A on objects – just as what we need to know for the sin-
cere strategy. In Subsection 3.2 we assume that A’s preferences are
additive with possible ties on single objects. Lastly, in Section 3.3 we
will consider manipulators with possibly non-separable preferences.

3.1 The manipulator has additive preferences
without indifferences between single objects

From what we said above (Hyp + A has additive preferences without
indifferences), a two-agent picking sequence manipulation problem
for manipulator A is a quadruple 〈O, uA,�B , π〉 where:

• O is a set of m objects;
• uA : O → R

+ is A’s utility function over single objects, and
verifies u(o) �= u(o′) if o �= o′.

• �B is a ranking over O (succinct representation of B’s simple
deterministic picking strategy);

• π ∈ {A,B}m is a picking sequence.

A’s utility over subsets of goods (denoted by uA as well) is defined
by uA(S) =

∑
o∈S uA(o), for any S ⊆ O.

Let �A be the ranking over O induced by uA, that is, o �A o′ if
and only if uA(o) > uA(o

′). If �A is induced by uA we also say
that uA is compatible with �A.

Let P = 〈�A,�B〉. Without loss of generality we assume that
1 �A 2 �A . . . �A m. σP will be the joint sincere strategy σ�A ·
σ�B , and thus 〈OA(σ

P , π),OB(σ
P , π)〉will denote the allocation

resulting from the sincere picking of agents A and B according to P
and π.

We now define manipulation. We say that a subset of objects O
is achievable for A if there is a strategy σ such that O ⊆ OA(σ ·
σ�B , π). In other words, A can obtain all the objects from O by
playing according to σ. A manipulation strategy σ is successful if
OA(σ · σ�B , π) �A OA(σ

P , π) (in other words, A obtains a better
set by playing according to σ than if it had played sincerely).

We already know from Proposition 7 in [2] that it can be checked
in polynomial time whether a given set O is achievable. An important
problem is to determine whether there is a successful strategy. It turns
out that not only can we solve this problem in polynomial time, but
we are also able to find the strategy giving the best achievable subset
in polynomial time as well, using Algorithm 1.

Algorithm 1: Best achievable subset.
input : A policy π, a ranking �B .
output: The best achievable subset for agent A.

1 O ← ∅;
2 j ← 1;
3 for k ← 1 to m do

4 find the smallest i ≥ j such that O ∪ {i} is achievable;
5 O := O ∪ {i};
6 j := i;

7 return O;

Because it can be checked in polynomial time whether a given set
is achievable, Algorithm 1 works in polynomial time. Before proving
that it indeed returns an optimal strategy, we give some examples.

Example 1 m = 12; π = ABABABABABABAB;

�A: 1 2 3 4 5 6 7 8 9 10 11 12
�B : 3 2 6 5 4 10 8 11 1 9 7 12
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The sincere picking strategy for A (and B) leads to A getting
124789. Let us apply the algorithm.
• 1 is achievable; S = 1;
• 12 is achievable; S = 1, 2;
• 123 is not achievable; S = 1, 2;
• 124 is achievable; S = 1, 2, 4;
• 1245 is achievable; S = 1, 2, 4, 5;
• 12456 is not achievable; S = 1, 2, 4, 5;
• 124567 is achievable; S = 1, 2, 4, 5, 7;
• 1245678 is achievable; S = 1, 2, 4, 5, 7, 8; stop and return S.

We will soon prove that this is indeed the best achievable set of ob-
jects for A, irrespective of the choice of the utility function satisfying
the requirement of this Subsection (namely, that A has an additive
utility function with all weights on single objects being different).

For any s, we denote B’s sth preferred object by μ(s): μ is the
permutation of {1, . . . ,m} such that μ(1) �B . . . �B μ(m). More-
over, let B(s) = {μ(1), . . . , μ(s)} be the set of B’s s most preferred
items. Finally, for any X ⊆ O, let Cl(s,X) = B(s) ∩ X . We
know from Proposition 8 in [2] that there exists a successful pick-
ing strategy σ for X ⊆ O if and only if for every picking stage s,
PS(π,A)s ≥ |Cl(s,X)|. Also, we know (again Proposition 7 in
[2]) that if O is achievable, then the standard picking strategy, in
which A picks items in O according to their increasing ranking in
�B , is successful. Such a strategy will be denoted by σst(O).

Example 2 (continued)

• μ(1) = 3;μ(2) = 2; etc.
• B(1) = {3}; B(2) = {3, 2}; etc.
• Let us check that 1245 is achievable:

– Cl(1, 1245) = ∅; PS(π,A)1 = 1;

– Cl(2, 1245) = {2}; PS(π,A)2 = 1;

– Cl(3, 1245) = {2}; PS(π,A)3 = 2;

– Cl(4, 1245) = {2, 5}; PS(π,A)4 = 2;

– Cl(5, 1245) = {2, 5, 4}; PS(π,A)5 = 3;

– Cl(6, 1245) = {2, 5, 4}; PS(π,A)6 = 3;

– Cl(7, 1245) = {2, 5, 4}; PS(π,A)7 = 4;

– Cl(8, 1245) = {2, 5, 4}; PS(π,A)8 = 4;

– Cl(9, 1245) = {1, 2, 5, 4}; PS(π,A)9 = 5; etc.

• Let us check that 123 is not achievable:

– Cl(2, 123) = {2, 3}; PS(π,A)2 = 1.

• the standard picking strategy for 1245 is σ(1) = 2;σ(2) =
5;σ(3) = 4;σ(1) = 1, which we abbreviate in 〈2, 5, 4, 1〉. For
124578 it is 〈2, 5, 4, 8, 1, 7〉.

Lemma 1 Assume that O and O′ �= O are achievable. Let i =
min((O′ \ O) ∪ (O \ O′)) and assume that i ∈ O′. Let j be B’s
most preferred item in O \O′. Then O[i ↔ j] = (O ∪ {i}) \ {j} is
achievable.

Proof: In the following proof, we will refer to Proposition 7 in [2]
as (P). We consider two cases, according to B’s preference between
i and j:

Case 1: j �B i. Because j �B i, we have that, for every picking
stage s, Cl(s,O[i ↔ j]) ⊆ Cl(s,O). Therefore, by (P), O[i ↔

j] is achievable.5

Case 2: i �B j. Assume O[i ↔ j] is not achievable. Then, by (P),
there is a picking stage s such that

PS(π,A)s < |Cl(s,O[i ↔ j])|. (1)

Let s∗ be such that μ(s∗) = j. We consider two cases.

Case 2.a: s ≤ s∗. Since j is B’s most preferred item in O \ O′,
it holds that every item l ∈ O such that l �B j also belongs
to O′. Obviously, that also holds for every item l ∈ O[i ↔ j]
such that l �B j. Hence B(t) ∩O[i ↔ j] ⊆ B(t) ∩O′ for all
t < s∗. This equation can also be extended to t = s∗ by using
the fact that μ(s∗) = j and that j neither belongs to O′ nor to
O[i ↔ j]. This in turn can be rewritten as Cl(t, O[i ↔ j]) ⊆
Cl(t, O′) for all t ≤ s∗. Using this equation for t = s together
with Equation (1) leads to PS(π,A)s < |Cl(s,O′)|, which
proves, using (P), that O′ is not achievable. Contradiction.

Case 2.b: s > s∗. Since μ(s∗) = j, j belongs to B(s∗) and
hence to B(s). Since i �B j, i also belongs to B(s∗) and
hence to B(s). Therefore, B(s) ∩ O = B(s) ∩ O[i ↔
j], which, once again, can be rewritten as Cl(s,O) =
Cl(s,O[i ↔ j]). Hence, by Equation (1), it holds that
PS(π,A)s < |Cl(s,O)|, which proves, using (P), that O is
not achievable. Contradiction. �

Example 3 (continued) O = 124789; O′ = 1245; i = 5;
O \O′ = 789; j = 8. O[5 ↔ 8] = 124579. Lemma 1 says that
124579 is achievable. We are in the case i �B j.

Proposition 1 Algorithm 1 returns the best achievable subset for A.

Proof: Assume not. Let O′ be an optimal achievable subset, and
O the subset returned by the algorithm. Let i = min((O′ \O)∪(O\
O′)). By construction of O, we must have i ∈ O. Now, by Lemma 1,
there exists j ∈ O′, j > i, such that (O′ ∪ {i}) \ {j} is achievable.
Now, i �A j, i.e., uA(i) > uA(j), therefore, uA(O

′∪{i})\{j}) >
uA(O

′), which contradicts the optimality of O′. �

Corollary 1 An optimal manipulation for (O, uA,�B , π) can be
computed in polynomial time.

Another consequence of Proposition 1 is the uniqueness of the best
achievable subset for A. Thus, even if there may be several optimal
manipulations, they are equivalent in the sense that the outcome for
A is the same for all.

Importantly, note that the proof of Proposition 1 does not depend
on the values of uA (provided, as assumed at the beginning of the
Subsection, that o �= o′ implies uA(o) �= uA(o

′)) but only on the
order �A. We state this as a formal result:

Proposition 2 The optimal manipulations for A are the same for
any utility function uA compatible with �A.

3.2 The manipulator has additive preferences with
possible indifferences between single objects

Now, a two-agent picking sequence manipulation problem for ma-
nipulator A is a quadruple 〈O, uA,�B , π〉 where:

5 Even if we don’t need it for the proof, the picking strategy obtained from the
standard picking strategy σst(O) by replacing j by i is successful – note
that it does not necessarily correspond to the standard picking strategy for
O[i ↔ j].

S. Bouveret and J. Lang / Manipulating Picking Sequences 143



• O is a set of m objects;
• uA : O → R

+ is A’s utility function over single objects.
• �B is a ranking over O (succinct representation of B’s simple

deterministic picking strategy);
• π ∈ {A,B}m is a picking sequence.

Now, the preference relation over single objects induced from
uA is a weak order �A over O, defined by o �A o′ if and only
if uA(o) ≥ uA(o

′). Let ∼A (respectively, �A) be the indiffer-
ence (resp. strict preference) relation associated with �A, defined by
o ∼A o′ if and only if o �A o′ and o′ �A o (respectively, o �A o′

and o′ ��A o).
Now let �′A be the linear order on O refining �A and defined by:

o �′A o′ if and only if o �A o′ or (o ∼A o′ and o �B o′). For
example, if 1 �A 2 ∼A 3 ∼A 4 �A 5 and 3 �B 4 �B 1 �B�B

5 �B 2, then 1 �′A 3 �′A 4 �′A 2 �′A 5. Let u′A be a utility function
on O compatible with �′A. We claim that an optimal achievable set
of objects for A can be computed as follows.

Proposition 3 The (unique) optimal achievable subset for (O, u′A,
�B , π) is a (non necessarily unique) optimal achievable subset for
(O, uA,�B , π).

Proof: Let Y be the optimal achievable set of objects returned
by the resolution of the manipulation problem for (O, u′A,�B , π).
Assume that Y is not optimal for (O, uA,�B , π), that is, there is
an achievable set Z such that uA(Z) > uA(Y ). Let δ be such that
0 < δ ≤ |uA(O) − uA(O

′)| for all subsets O,O′ ⊆ O such that
u(O) �= u(O′), and let ε < δ

m
. Now, let u′′A be the following utility

function: ∀i ∈ O, u′′A(i) = uA(i) + εq(i), where q(i) = |{j | i ∼A

j and i �B j}|. The following facts hold: (i) u′′A is compatible with
�′A, and (ii) u′′A(Z) > u′′A(Y ). To prove (i), let i and j be two ob-
jects. We consider two cases. (a) i ∼A j: then u′′A(i) > u′′A(j) iff
q(i) > q(j) iff i �B j iff i �′A j. (b) i �∼A j (assume wlog
i �A j): then u′′A(i)− u′′A(j) = uA(i)− uA(j)+ (q(i)− q(j))ε >
uA(i) − uA(j) − mε ≥ uA(i) − uA(j) − δ > 0. (ii) can be
proved as follows: u′′A(Z) − u′′A(Y ) ≥ uA(Z) − uA(Y ) − mε >
uA(Z) − uA(Y ) − δ > 0. (i) and (ii) together prove that Y cannot
be the optimal achievable set of objects for (O, u′′A,�B , π), and also
for (O, u′A,�B , π), since u′A and u′′A are both compatible with �A:
contradiction. �

From Corollary 1 and Proposition 3 we get:

Corollary 2 An optimal manipulation for (O,�′A,�B , π) can be
computed in polynomial time.

Also, we have a result analogous to Proposition 2: the optimal
achievable subset, and the picking strategy, is optimal irrespective of
the choice of the utility function uA extending �A.

3.3 The manipulator has non-additive preferences

Assume now that the manipulator A no longer has additive pref-
erences. One of the simplest forms of non-additive preferences are
(unrestricted) dichotomous monotonic preferences: there is a set of
objects GoodA ⊆ O such that (a) GoodA is upward closed, that
is, if S ⊆ S′ and S ∈ GoodA then S′ ∈ GoodA, and (b) A
equally likes all subsets in A and equally dislikes all subsets in
2O \ GoodA, that is, S �A S′ if and only if (S′ ∈ GoodA im-
plies S ∈ GoodA). We know (see for instance [1]) that a dichoto-
mous monotonic preference relation can be represented succinctly by
a positive (negation-free) propositional formula ϕA of the language

LO constructed from a set of propositional symbols isomorphic to O.
For instance, o1 ∨ (o2 ∧ o3) means that any set containing o1 or both
o2 and o3 is good for A: {o1, o2, o3} ∼A {o1, o2} ∼A {o1, o3} ∼A

{o1} ∼A {o2, o3} �A∼A {o2} ∼A {o3} ∼A ∅.
Thus, a two-agent picking sequence manipulation problem for

manipulator A with dichotomous monotonic preferences is a triple
〈O, ϕA,�B , π〉 where O, �B and π are as usual, and ϕA is a posi-
tive propositional formula of LO .

We say that a picking strategy for A is successful if it gives her a
set of objects in GoodA. Since all sets in GoodA are equally good,
optimal picking strategies coincide with successful strategies pro-
vided that there exists at least one (and with all strategies otherwise).

Proposition 4 Deciding whether a manipulation problem
〈O, ϕA,�B , π〉 has a successful picking strategy is NP-complete,
even if π is the alternating sequence.

Proof: Membership is obvious (guess the picking strategy and ap-
ply it). Hardness follows by reduction from SAT. Let α = c1∧. . .∧ck
be a propositional formula under conjunctive normal form over a
set of propositional symbols {x1, . . . , xp}. Define the following in-
stance of a manipulation problem 〈O, ϕA,�B , π〉:
• O = {o1, o′1, . . . , op, o′p};
• for every clause ci of α, let c′i be the clause obtained by replacing

every positive literal xi by oi and negative literal ¬xi by o′i; let
α′ be the conjunction of all clauses c′i and finally, let ϕA = α′ ∧∧p

i=1(oi ∨ o′i) ;
• π = (AB)p

• �B= o1 � o′1 � o2 � o′2 � . . . � op � o′p.

If ϕ is satisfiable then let ω |= ϕ; consider the picking strategy in
which, at her ith picking stage A picks oi if ω assigns xi to true and
o′i if ω assigns xi to false (and then B will pick o′i if A has picked
oi, and oi if A has picked o′i). The resulting set of objects will be
exactly S = {oi|ω |= xi} ∪ {o′i|ω |= ¬xi}, and since ω |= α, we
have that S satisfies α′; moreover, clearly S satisfies oi ∨ o′i for each
i, therefore, S satisfies ϕA.

Conversely, assume that A has a picking strategy that leads to a
set of objects S satisfying ϕA. Because S contains one of oi and o′i
for each i, and because |S| = p, S contains exactly one of oi and o′i
for each i. Let ω be the interpretation over {x1, . . . , xp} defined by
ω |= xi if oi ∈ S and ω |= ¬xi if oi /∈ S. Because S satisfies α′,
we have that ω |= α, that is, α is satisfiable. �

As a consequence, more generally, deciding whether a manipula-
tion problem (with arbitrary, compactly represented preferences) has
a successful picking strategy is NP-hard.

4 COALITIONAL MANIPULATION

Voting theory not only focuses on single-agent manipulation but also
on joint (or coalitional) manipulation, where a group of voters col-
lude to get a better outcome for themselves. It is assumed that they
can fully communicate and have full knowledge of the others’ votes.

However, there is a significant difference with voting: the outcome
of a vote is the same for all agents, whereas in fair division agents
get different shares and are thus allowed to make trades after the al-
location has been made. We thus consider three different notions of
manipulation. The first two do not need any particular assumption
about voters’ preferences. The first one says that a manipulation is a
combination of picking strategies whose outcome Pareto-dominates
(for the manipulating coalition) the outcome of the sincere picking
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strategy; it does not allow any posterior trading nor compensation.
The second one is also based on Pareto-dominance but allows agents
to trade items after the allocation has been done. The third one as-
sumes that the manipulators’ preferences are represented by trans-
ferable utilites, and allows both trading and monetary transfers after
the allocation has been done. Before giving the formal definition we
give a few examples. In all cases, we have three agents A,B,C, and
the manipulation coalition consists of A and B.

Example 4 π = ABCABC. No post-allocation trade is allowed.

�A: 125436; �B : 135246; �C : 234156

Sincere picking leads to [15|34|26]. A and B manipulating alone
cannot do better: their best responses to the other two players’ sin-
cere strategies is their sincere strategy. However, if they cooperate,
then they both can do better: A start by picking 2, then B picks 3, C
picks 4, A picks 1, B picks 5 and finally C picks 6. The final allo-
cation is [12|35|46], which (strongly) Pareto-dominates [15|34|26].
Note that it is crucial that A and B communicate beforehand and
trust each other, for after A has picked 2, B can betray A and pick 1
instead of 5, resulting in the final allocation [25|14|36], which may be
better for B then the joint strategy agreed upon if she values {1, 4}
more than {3, 5}, but for A is worse than the sincere allocation.

Example 5 π = ABCABCABC. Post-allocation exchange of
goods is allowed. Monetary transfers are not allowed.

�A: 123456789; �B : 893456712; �C : 123897456

Sincere picking leads to [134|589|267]. A and B manipulating alone
cannot do better. They also cannot do better if they are not allowed
to exchange goods (we will see later how to check this). However, if
they cooperate and are allowed to exchange goods, then A can start
by picking 1, then B picks 2, C picks 3, A picks 8, B picks 9, C picks
7, A picks 4, B picks 5 and C picks 6, leading to [148|259|367|.
then A and B exchange 2 and 8, leading to [124|589|367|, which
Pareto-dominates [134|589|367| for {A,B}.

Example 6 π = ABCABCABC. Post-allocation exchange of
goods is allowed. Monetary transfers are not allowed.

�A: 123456789; �B : 345916782; �C : 123897459

Assume that B prefers 459 to 358. Sincere picking leads to
[147|358|269]. If A and B cooperate they can get [147|259|368],
then swap 2 and 4, leading to [127|459|368]: both agents are better
off. This, of course, depends on some extra information, that is, the
manipulators’ preferences over the full power set.

Example 7 π = ABCABCABC. Post-allocation exchange of
goods is allowed. Monetary transfers are allowed.

�A: 123456789; �B : 987654321; �C : 123897459

Assume that A and B have additive preferences, that correspond to
the amount of money they are willing to pay to get the items, and that

• uA(1) = 14; uA(2) = 13; uA(3) = 12; uA(4) = 11; uA(5) =
10; uA(6), uA(7)... ≤ 5;

• uB(9) = 10; uB(8) = 9; uB(7) = 8; uB(6) = 7; uB(5) = 6;
the rest does not matter.

Sincere picking leads to [125|789|346]. If A and B cooperate they
can get [147|259|368], then B gives 2 and 5 to A, A gives 7 to B
together with some amount of money. Both are strictly better off. This
needs transferable utilities

These examples illustrate three different ways of defining what
makes a coalition better off. More formally:

Definition 1 Let N be a set of agents, π be a sequence, and C ⊂
N be a coalition of agents. Moreover, let σC and σ′C be two joint
strategies for C. We will say that :

• σC Pareto-dominates σ′C (written σC > σ′C ) if:

– ∀i ∈ C, Oi(π, σC · σ∗−C) �i Oi(π, σ
′
C · σ∗−C);

– this inequality is strict for at least one i.

• σC Pareto-dominates with transfers σ′C (written σC >T σ′C ) if
there is a function F :

⋃
i∈C Oi(π, σC · σ∗−C) → C such that:

– ∀i ∈ C, {k ∈ O | F (k) = i} �i Oi(π, σ
′
C · σ∗−C);

– this inequality is strict for at least one i.

Finally, if we assume that each agent i (at least those from C) is
equipped with a valuation function vi : 2O → R, compatible with
�i, we will say that:

• σC Pareto-dominates with transfers and side-payments σ′C (writ-
ten σC >TP σ′C ) if there is a function F :

⋃
i∈C Oi(π, σC ·

σ∗−C) → C, and a function p : C → R such that:

–
∑

i∈C pi = 0;

– ∀i ∈ C, vi({k ∈ O | F (k) = i}) + p(i) ≥ vi(Oi(π, σ
′
C ·

σ∗−C));

– this inequality is strict for at least one i.

These definitions lead to three notions of successful strategies:

• σC is a successful strategy if σC > σ∗C ;
• σC is a successful strategy with transfers if σC >T σ∗C ;
• σC is a successful strategy with transfers and side-payments if

σC >TP σ∗C .

In the following, we will focus on the following problem:

CM-SIMPLE

Given: A set of agents N , a sequence π, a coalition C ⊂
N with their preference relations �i and a joint
strategy σC

Question: Is there a strategy σ′C such that σ′C > σC?

The variant with transfers (σ′C >T σC ) and transfers with
side-payments (σ′C >TP σC – in this case, we need to add
the coalition members’ valuation functions vi to the problem
input) will be called respectively CM-TRANSFERS and CM-
TRANSFERSWITHPAYMENTS. Note that if we want to know
whether a successful strategy exists for a given setting, we just need
to solve the latter problem with σC being the sincere strategy σ∗C .

We start by considering manipulators with additive preferences.

Proposition 5 An optimal manipulation for a coalition of agents M
with transfers and side payments can be found in polynomial time.

Proof: The possibility of side payments and exchanges imply that
(a) in the optimal final allocation (after the exchanges), each ob-
ject will be assigned to the agent who gives it the highest utility (or
one of the agents who gives it the highest utility, in case there are
several), and (b) the optimal joint picking strategy is the one that
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maximizes the utilitarian social welfare of the group of manipula-
tors

∑
i∈M vi(Si). (a) and (b) together imply that the optimal set

S of objects for the group maximizes
∑

o∈S maxi∈M vi(o). This is
equivalent to solving a manipulation problem for a single manipu-
lator with a weak order over objects o � o′ iff maxi∈M vi(o) ≥
maxi∈M vi(o

′). Proposition 3 then guarantees that such an optimal
manipulation can be found in polynomial time. �

For coalitional manipulation without monetary transfers we have
the following results; due to space limitations, proofs are omitted.6

Proposition 6 Deciding if there exists a successful manipulation
without transfers nor side payments is NP-complete, even for two
manipulators with additive preferences and no non-manipulator.

Proposition 7 Deciding if there exists a successful manipulation
with transfers and without side payments is NP-complete, even for
two manipulators with additive preferences.

Finally, in the case of non-additive preferences, Proposition 4
directly entails that CM-SIMPLE is NP-hard, for any set of non-
additive preference relations �i represented in a compact way.

5 PRICE OF MANIPULATION

The results of Sections 3 and 4 can be seen as an argument against us-
ing picking sequences. However, we continue thinking that, in spite
of this, picking sequences is one of the best protocol for allocat-
ing objects without prior elicitation, because of its simplicity. More-
over, we now temper the results about the easiness of manipulation
by showing that, at least in some simple cases, the worst-case price
of manipulation (that is, the loss of social welfare caused by one
agent manipulating) is not significantly high. Note that, to define the
price of manipulation properly, we need to deal with numerical pref-
erences. A classical technique to translate ordinal preferences into
utility functions is to use scoring functions, as in voting. Formally, a
scoring function g is a non-decreasing function from {1, . . . ,m} to
R. g(j) is the utility an agent i receives for an object ranked at posi-
tion j �i. For each agent i, ui is computed by summing the utilities
g(j) for each object i receives, using the same scoring function g.

Definition 2 Let P = 〈�A,�B , . . . 〉 be a preference profile, π be a
sequence, and g be a scoring function. Let σA be a successful manip-
ulating strategy for agent A. The price of manipulation for σA given
(P, π, g) is the ratio:

PMP,π,g(σA) =

∑
i∈N (ui(Oi(π, σA · σ∗−A)))∑

i∈N (ui(Oi(π, σ∗N )))
.

In other words, the price of manipulation is the ratio between the
collective utility if all agents play sincerely and the collective utility
if agent A plays strategically and all the other ones play sincerely.
In the following, we will focus on the two agents case and Borda
scoring function [3, 2], where the utility of the ith best object for an
agent is m− i+ 1.

Proposition 8 For each (�A,�B), π, we have:

PMP,π,gBorda
(σA) ≥ 1−

2
∑

s∈{ps(π,B)1,... } PS(s)− 2

m2 +m− 2PS(m)2 + 2mPS(m) + 2PS(m)
,

where PS(s) is the number of picking stages of A until step s.

6 The missing proofs can be found in the long version of the paper:
http://recherche.noiraudes.net/resources/papers/ECAI14-full.pdf.

Proof: Let σA be a successful strategy for A, and uA, uB (resp.
u′A, u′B) be the utilities obtained by A and B if they play sin-
cerely (resp. A plays according to σA and B plays sincerely). At
its ith picking stage ps(π,B)i, B can obtain in the best case its
ith object, and obtains in the worst case its (i + PS(ps(π,B)i)

th

object. Hence u′B ≥ uB − ∑
s∈{ps(π,B)1,... } PS(s). Moreover,

since σA is successful, u′A ≥ uA + 1. And finally, since in the
best case, each agent receives his most preferred objects, we have
uA + uB ≤ ∑PS(m)

k=1 (m − k + 1) +
∑m−PS(m)

k=1 (m − k + 1) =
1/2× (m2 +m− 2PS(m)2 + 2mPS(m) + 2PS(m)). Hence:

u′A + u′B
uA + uB

≥ 1−
∑

s∈{ps(π,B)1,... } PS(s)− 1

uA + uB
.

Replacing uA + uB by its upper bound completes the result. �

Corollary 3 If π is the alternating sequence (for an even number of
objects),

PM(�A,�B),ABABAB...,gBorda
(σA) ≥ 1− m2 +m− 4

3m2 + 4m
.

Thus, at least in this simple case, manipulation by a single agent
does not have a dramatic effect on the social welfare, as it will cause
only approximately 33% loss of utility in the worst case. (We also
have results about the additive price of manipulation, that is, the
worst-case difference between social welfare when A plays a sin-
cere strategy and the social welfare when A plays strategically; due
to the lack of space, we omit them.)

6 CONCLUSION

We have studied the computation of picking sequence manipulation.
In the case of a single manipulator, we have found that for any num-
ber of non-manipulators and any picking sequence, finding an opti-
mal manipulation is easy if the manipulator has additive preferences,
and NP-hard in the general case. Next, finding a coalitional manipu-
lation is easy if post-allocation object trading and side payments are
allowed, and NP-hard in the other cases. Finally, we have shown that
in simple cases, the price of manipulation is not significantly high.
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