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Abstract

Boolean games are a logical setting for representing strategic games in a suc-

cinct way, taking advantage of the expressive power and conciseness of proposi-

tional logic. A Boolean game consists of a set of players, each of whom controls

a set of propositional variables and has a specific goal expressed by a proposi-

tional formula. We show here that Boolean games are a very simple setting, yet

sophisticated enough, for studying coalitions. Due to the fact that players have

dichotomous preferences, the following notion emerges naturally: a coalition in

a Boolean game is efficient if it guarantees that the goal of each member of the

coalition is satisfied. We study the properties of efficient coalitions, and we give

a characterization of efficient coalitions.

1 Introduction

Boolean games [10, 9, 8, 7] are a logical setting for representing strategic games in a

succinct way, taking advantage of the expressive power and conciseness of proposi-

tional logic. Informally, a Boolean game consists of a set of players, each of whom

controls a set of propositional variables and has a specific goal expressed by a propo-

sitional formula1. Thus, a player in a Boolean game has a dichotomous preference

relation: either her goal is satisfied or it is not. This restriction may appear at first

glance unreasonable. However, many concrete situations can be modelled as games

1We refer here to the version of Boolean games defined in [7], that generalizes the initial proposal

[10].
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where agents have dichotomous preferences (we give such an example in the paper).

Moreover, due to the fact that players have dichotomous preferences, the following

simple (yet sophisticated enough) notion emerges naturally: a coalition in a Boolean

game is efficient if it guarantees that all goals of the members of the coalition are

satisfied. Our aim in the following is to define and characterize efficient coalitions,

and see how they are related to the well-known concept of core.

After recalling some background of Boolean games in Section 2, we study in Section

3 the properties of effectivity functions associated with Boolean games. In Section 4

we study in detail the notion of efficient coalitions. We give an exact characterization

of sets of coalitions that can be obtained as the set of efficient coalitions associated

with a Boolean game, and we relate coalition efficiency to the notion of core. Related

work and further issues are discussed in Section 5.

2 n-player Boolean games

For any finite set V = {a,b, . . .} of propositional variables, LV denotes the propo-

sitional language built up from V , the Boolean constants > and ⊥, and the usual

connectives. Formulas of LV are denoted by ϕ,ψ etc. A literal is a variable x of V

or the negation of a literal. A term is a consistent conjunction of literals. A clause

is a disjunction of literals. If ϕ ∈ LV , then Var(ϕ) (resp. Lit(α)) denotes the set of

propositional variables (resp. literals) appearing in ϕ.

2V is the set of the interpretations for V , with the usual convention that for M ∈

2V and x ∈ V , M gives the value true to x if x ∈ M and false otherwise. |= de-

notes the consequence relation of classical propositional logic. Let V ′ ⊆ V . A V ′-

interpretation is a truth assignement to each variable of V ′, that is, an element of 2V ′
.

V ′-interpretations are denoted by listing all variables of V ′, with a ¯ symbol when

the variable is set to false: for instance, let V ′ = {a,b,d}, then the V ′-interpretation

M = {a,d} assigning a and d to true and b to false is denoted by abd. If Var(ϕ)⊆X ,

then ModX(ϕ) represents the set of X-interpretations satisfying ϕ.

If {V1, . . . ,Vp} is a partition of V and {M1, . . . ,Mp} are partial interpretations, where

Mi ∈ 2Vi , (M1, . . . ,Mp) denotes the interpretation M1 ∪ . . .∪Mp.

Given a set of propositional variables V , a Boolean game on V is an n-player game2,

2In the original proposal [10], Boolean games are two-players zero-sum games. However the model
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where the actions available to each player consist in assigning a truth value to each

variable in a given subset of V . The preferences of each player i are represented by

a propositional formula ϕi formed using the variables in V .

Definition 1. An n-player Boolean game is a 5-tuple (N,V,π,Γ,Φ), where

• N = {1,2, . . . ,n} is a set of players (also called agents);

• V is a set of propositional variables;

• π : V → N is a control assignment function;

• Γ = {γ1, . . . ,γn} is a set of constraints, where each γi is a satisfiable proposi-

tional formula of Lπ(i);

• Φ = {ϕ1, . . . ,ϕn} is a set of goals, where each ϕi is a satisfiable formula of LV .

A 4-tuple (N,V,π,Γ), with N,V,π,Γ defined as above, is called a pre-Boolean game.

The control assignment function π maps each variable to the player who controls it.

For ease of notation, the set of all the variables controlled by a player i is written

πi such as πi = {x ∈ V |π(x) = i}. Each variable is controlled by one and only one

agent, that is, {π1, . . . ,πn} forms a partition of V .

For each i, γi is a constraint restricting the possible strategy profiles for player i.

Definition 2. Let G = (N,V,π,Γ,Φ) be a Boolean game. A strategy3 for player

i in G is a πi-interpretation satisfying γi. The set of strategies for player i in G is

Si = {si ∈ 2πi | si |= γi}. A strategy profile s for G is a n-tuple s = (s1,s2, . . . ,sn)

where for all i, si ∈ Si. S = S1 × . . .×Sn is the set of all strategy profiles.

Note that since {π1, . . . ,πn} forms a partition of V , a strategy profile s is an inter-

pretation for V , i.e., s ∈ 2V . The following notations are usual in game theory. Let

s = (s1, . . . ,sn) be a strategy profile. For any nonempty set of players I ⊆ N, the pro-

jection of s on I is defined by sI = (si)i∈I and s−I = sN\I . If I = {i}, we denote the

projection of s on {i} by si instead of s{i}; similarly, we note s−i instead of s−{i}. πI

denotes the set of the variables controlled by I, and π−I = πN\I . The set of strategies

for I ⊆ N is SI = ×i∈ISi, and the set of goals for I ⊆ N is ΦI =
V

i∈I ϕi.

can easily be generalized to n players and non necessarily zero-sum games [7].
3In this paper, only pure strategies are considered.
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If s and s′ are two strategy profiles, (s−I ,s′I) denotes the strategy profile obtained

from s by replacing si with s′i for all i ∈ I.

The goal ϕi of player i is a compact representation of a dichotomous preference

relation, or equivalently, of a binary utility function ui : S →{0,1} defined by ui(s) =

0 if s |=¬ϕi and ui(s) = 1 if s |= ϕi. s is at least as good as s′ for i, denoted by s �i s′,

if ui(s) ≥ ui(s′), or equivalently, if s |= ¬ϕi implies s′ |= ¬ϕi; s is strictly better than

s′ for i, denoted by s �i s′, if ui(s) > ui(s′), or, equivalently, s |= ϕi and s′ |= ¬ϕi.

Note that this choice of binary utilites clearly implies a loss of generality. How-

ever, some interesting problems, as in Example 2, have preferences that are naturally

dichotomous, and Boolean games allow to represent these problems in a compact

way. Furthermore, Boolean games can easily be extended so as to allow for non-

dichotomous preferences, represented in some compact language for preference rep-

resentation (see [5]).

3 Coalitions and effectivity functions in Boolean games

Effectivity functions have been developed in social choice to model the ability of

coalitions [11, 1, 14]. As usual, a coalition C is any subset of N. N is called the

grand coalition. Given a set of alternatives S from which a set of agents N have to

choose, an effectivity function Eff : 2N → 22S
associates a set of subsets of S with

each coalition. X ∈ Eff(C) is interpreted as “coalition C is effective for X”.

Definition 3. A coalitional effectivity function is a function Eff: 2N → 22S
which

is monotonic: for every coalition C ⊆ N, X ∈ Eff(C) implies Y ∈ Eff(C) whenever

X ⊆ Y ⊆ S.

The function Eff associates to every group of players the set of outcomes for which

the group is effective. We usually interpret X ∈ Eff(C) as “the players in C have a

joint strategy for bringing about an outcome in X”.

In [14], the meaning of “effective” is precised in the framework of strategic games

by defining “α-effectivity”: a coalition C ⊆ N is α-effective for X ⊆ S if and only

if players in C have a joint strategy to achieve an outcome in X no matter what

strategies the other players choose.

As Boolean games are a specific case of strategic games, we would like to define α-
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effectivity functions in this framework. One of the features of Boolean games is the

definition of individual strategies as truth assignments of a given set of propositional

variables. We might wonder how restrictive this specificity is. In this section we

study Boolean games from the point of view of effectivity functions. Clearly, the

definition of Si as Modπi(γi) induces some constraints on the power of players. Our

aim is to give an exact characterization of α-effectivity functions induced by Boolean

games. Since in Boolean games the power of an agent i is her goal ϕi, it suffices to

consider pre-Boolean games only when dealing with effectivity functions. A pre-

Boolean game G induces an α-effectivity function EffG as follows:

Definition 4. Let G = (N,V,π,Γ) be a pre-Boolean game. The coalitional α-effecti-

vity function induced by G is the function EffG : 2N → 22S
defined by: for any X ⊆ S

and any C ⊆ N, X ∈ EffG(C) if there exists sC ∈ SC such that for any s−C ∈ S−C,

(sC,s−C) ∈ X . 4

This definition is a particular case of the α-effectivity function induced by a strategic

game (see [14], chapter 2). Therefore, these functions satisfy the following proper-

ties (cf. [14], Theorem 2.27): (i) ∀C ⊆ N, ∅ 6∈ Eff(C); (ii) ∀C ⊆ N, S ∈ Eff(C); (iii)

for all X ⊆ S, if X̄ 6∈ Eff(∅) then X ∈ Eff(N); (iv) Eff is superadditive, that is, if for

all C,C′ ⊆ N and X ,Y ⊆ S, X ∈ Eff(C) and Y ∈ Eff(C′), then X ∩Y ∈ Eff(C∪C′). An

effectivity function satisfying these four properties is called strongly playable. Note

that strong playability implies regularity and coalition-monotonicity ([14], Lemma

2.26).

However, pre-Boolean games are a specific case of strategic game forms, there-

fore we would like to have an exact characterization of those effectivity functions

that correspond to a pre-Boolean game. We first have to define two additional

properties. Define At(C) as the minimal sets in Eff(C), that is, At(C) = {X ∈

Eff(C)| there is no Y ∈ Eff(C) such that Y ⊆ X}.

Atomicity: Eff satisfies atomicity if for every C ⊆ N, At(C) forms a partition of S.

4Note that effectivity functions induced by pre-Boolean games may be equivalently expressed as map-

pings Eff : 2N → 2LV from coalitions to sets of logical formulas: ϕ ∈ Eff(I) if ModπI (ϕ) ∈ Eff(I). This

definition obviously implies syntax-independence, that is, if ϕ ≡ ψ then ϕ ∈ Eff(I) iff ψ ∈ Eff(I).
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Decomposability: Eff satisfies decomposability if for every I,J ⊆ N and for every

X ⊆ S, X ∈ Eff(I ∪ J) if and only if there exist Y ∈ Eff(I) and Z ∈ Eff(J) such

that X = Y ∩Z.

Note that decomposability is a strong property that implies superadditivity.

Proposition 1. A coalitional effectivity function Eff satisfies (1) strong playability,

(2) atomicity, (3) decomposability and (4) Eff(N) = 2S \∅ if and only if there exists

a pre-Boolean game G = (N,V,π,Γ) and an injective function µ : S → 2V such that

for every C ⊆ N: EffG(C) = {µ(X)|X ∈ Eff(C)}.

Sketch of proof: 5 The (⇐) direction does not present any difficulty: we can easily

prove than EffG satisfies strong playability (from Theorem 2.27 in [14]), atomicity,

decomposability and EffG(N) = 2S \∅. As µ is a bijection between S and µ(S), these

properties transfer to Eff.

For the (⇒) direction, we first show than for every s ∈ S, there exists a unique

(Z1, . . . ,Zn) such that for every i, Zi ∈ At(i) and Z1 ∩ . . .∩Zn = {s}. Then, we build

G from Eff as follows:

• for every i, number At(i): let ri be a bijective mapping from At(i) to {0,1, . . . ,

|At(i)|−1}. Then create pi = dlog2 |At(i)|e propositional variables x1
i , . . . ,x

pi
i .

Finally, let V = {x j
i |i ∈ N,1 ≤ j ≤ pi};

• for each i: πi = {x1
i , . . . ,x

pi
i };

• for each i and each j ≤ pi, let εi, j be the jth digit in the binary representation

of pi. Note that εi,pi = 1 by definition of pi. If x is a propositional variable

then we use the following notation: 0.x = ¬x and 1.x = x. Then define γi =
V

j∈{2,...,pi},εi, j=0

(

V

1≤k≤ j−1 εi, j .xk
i →¬x j

i

)

• finally, for each s ∈ S, let µ(s) ∈ 2V defined by: x j
i ∈ µ(s) if and only if the jth

digit of the binary representation of ri(Zi(s)) is 1.

For every i ∈ N and every Z ∈ At(i), let k = ri(Z) and si(Z) the strategy of player

in i in G corresponding to the binary representation of k using {xi1, . . . ,xpi
i }, xi1

being the most significant bit. For instance, if pi = 3 and ri(Zi) = 6 then si(Z) =

(xi1,xi2,¬xi3).

5A complete version of this proof can be found in [6].
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Note: To follow the proof, it may be helpful to see how this construction works on an

example. Let N = {1,2,3}, S = {1,2,3,4,5,6,7,8,9,A,B,C}, At(1) = {1234,5678,

9ABC}, At(2) = {13579B,2468AC}, At(3) = {12569C,3478AB} (parentheses for

subsets of S are omitted – 1234 means {1,2,3,4} and so on). By decomposabil-

ity,we have At(12) = {13,24,57,68,9B,AC}, At(13) = {12,34,56,78,9C,AB}, and

At(23) = {159,37B,26C,48A}. |At(1)|= 3, therefore p1 = 2. |At(2)|= |At(3)|= 2,

therefore p2 = p3 = 1. Thus, V = {x11,x12,x21,x31}. Let At(1) = {Z0,Z1,Z2},

that is, r1(1234) = 0, r1(5678) = 1 and r1(9ABC) = 2. Likewise, r2(13579B) = 0,

r2(2468AC) = 1, r3(12569C) = 0 and r3(3478AB) = 1. Consider s = 6. We have

s = 5678∩2468AC∩12569C, therefore sG = µ(s) = (¬x11,x12,x21,¬x31). The con-

straints are γ1 = (x11 →¬x12), γ2 = γ3 = >.

Then, we show that for every C, EffG(C) = µ(Eff(C)). The proof, though rather long,

does not present any particular difficulty. See [6]. �

4 Efficient coalitions

4.1 Definitions and characterization

We now consider full Boolean games and define efficient coalitions. Informally, a

coalition is efficient in a Boolean game if and only if it has the ability to jointly

satisfy the goals of all members of the coalition:

Definition 5. Let G = (N,V,π,Γ,Φ) be a Boolean game. A coalition C ⊆ N is

efficient if and only if ∃sC ∈ SC such that ∀s−C, sC |=
V

i∈C ϕi. The set of all efficient

coalitions of a game G is denoted by EC(G).

Example 1. Let G = (N,V,Γ,π,Φ) where V = {a,b,c}, N = {1,2,3}, γi = > for

every i, π1 = {a}, π2 = {b}, π3 = {c}, ϕ1 = (¬a∧ b), ϕ2 = (¬a∨¬c) and ϕ3 =

(¬b∧¬c).

Observe first that ϕ1∧ϕ3 is inconsistent, therefore no coalition containing {1,3} can

be efficient. {1} is not efficient, because ϕ1 cannot be made true only by fixing the

value of a; similarly, {2} and {3} are not efficient either. {1,2} is efficient, because

the joint strategy s{1,2} = ab is such that s{1,2} |= ϕ1∧ϕ2. {2,3} is efficient, because

s{2,3} = bc |= ϕ2 ∧ ϕ3. Obviously, ∅ is efficient6, because ϕ∅ =
V

i∈∅
ϕi ≡ > is

6One may argue this makes little sense to say that the empty coalition is efficient. Anyway, the defi-
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always satisfied. Therefore, EC(G) = {∅,{1,2},{2,3}}.

From this simple example we see already that EC is neither downward closed nor

upward closed, that is, if C is efficient, then a subset or a superset of C may not be

efficient. We also see that EC is not closed under union or intersection: {1,2} and

{2,3} are efficient, but neither {1,2}∩{2,3} nor {1,2}∪{2,3} is.

Example 2 (kidney exchange, after [2]). Consider n pairs of individuals, each con-

sisting of a recipient Ri in urgent need of a kidney transplant, and a donor Di who is

ready to give one of her kidneys to save Ri. As Di’s donor kidney is not necessarily

compatible with Ri, a strategy for saving more people consists in considering the

graph 〈{1, . . . ,n},E〉 containing a node i ∈ 1, . . . ,n for each pair (Di,Ri) and con-

taining the edge (i, j) whenever Di’s kidney is compatible with R j. A solution is any

set of nodes that can be partitioned into disjoint cycles in the graph: in a solution, a

donor Di gives a kidney if and only if Ri is given one. An optimal solution (saving

a maximum number of lifes) is a solution with a maximum number of nodes. The

problem can be seen as the following Boolean game G:

• N = {1, . . . ,n};

• V = {gi j|i, j ∈ {1, . . . ,n}}; gi j being true means that Di gives a kidney to R j.

• πi = {gi j;1 ≤ j ≤ n};

• for every i, γi =
V

j 6=k¬(gi j ∧gik) expresses that a donor cannot give more than

one kidney.

• for every i, ϕi =
W

( j,i)∈E g ji expresses that the goal of i is to be given a kidney

that is compatible with Ri.

For example, take n = 5 and E = {(1,1),(1,2),(2,3),(2,4),(2,5),(3,1),(4,2),(5,4)}.

Then G = (N,V,Γ,π,Φ), with

• N = {1,2,3,4,5}

• V = {gi j | 1 ≤ i, j ≤ 5};

• ∀i, γi =
V

j 6=k ¬(gi j ∧gik)

• π1 = {g11,g12,g13,g14,g15}, and similarly for π2, etc.
nition of an efficient coalition could be changed so as to exclude ∅, further notions and results would be

unchanged.
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• ϕ1 = g11∨g31; ϕ2 = g12 ∨g42; ϕ3 = g23; ϕ4 = g24 ∨g54; ϕ5 = g25.

The corresponding graph is depicted below.

1 2

3 4

5

Clearly enough, efficient coalitions correspond to solutions. In our example, the

efficient coalitions are ∅, {1}, {2,4}, {1,2,4}, {1,2,3}, {2,4,5} and {1,2,4,5}.

We have seen that the set of efficient coalitions associated with a Boolean game may

not be downward closed nor upward closed, nor closed under union or non-empty

intersection. We find that it is possible to characterize the efficient coalitions of a

Boolean game.

Proposition 2. Let N = {1, . . . ,n} be a set of agents and SC ∈ 22N
a set of coalitions.

There exists a Boolean game G over N such that the set of efficient coalitions for G

is SC (i.e. EC(G) = SC ) if and only if SC satisfies these two properties:

(1) ∅ ∈ SC .

(2) for all I,J ∈ SC such that I ∩ J = ∅, I∪ J ∈ SC .

Thus, a set of coalitions corresponds to the set of efficient coalitions for some Boolean

game if and only if (a) it contains the empty set and (b) it is closed by union of dis-

joint coalitions.

Sketch of proof: 7 The (⇒) direction is proven easily; intuitively, when two disjoint

coalitions I and J are efficient, each one has a strategy guaranteeing its goals to be

satisfied, and the joint strategies of I and J guarantee that the goals of all agents

in I ∪ J are satisfied. As seen in Example 1, this is no longer true when I and J

intersect. The (⇐) direction of the proof is more involved and needs the following

Boolean game G to be constructed for each set of coalitions SC satisfying (1) and

(2):
7A complete version of this proof can be found in [6].
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• V = {connect(i, j)|i, j ∈ N} (all possible connections between players);

• ∀i, γi = >;

• πi = {connect(i, j)| j ∈ N} (all connections from player i);

• ϕi =
W

I∈SC ,i∈I FI ,

where FI =
(

V

j,k∈I connect( j,k)
)

V

(

V

j∈I,k 6∈I ¬connect( j,k)
)

(player i wants

all the players of her coalition to be connected with each other and discon-

nected from the players outside the coalition).

We want to show that ECG = SC (where ECG is the set of efficient coalitions for G).

We first show that SC ⊆ECG. Let I ∈ SC . If every agent i∈ I plays
(

V

j∈I connect(i, j)
)

V

(

V

k 6∈I ¬connect(i,k)
)

, then ϕi is satisfied for every i ∈ I. Hence, I is an efficient

coalition for G and SC is included in EC(G).

In order to prove that ECG ⊆ SC , we define a covering of a coalition I by disjoint

subsets of SC as a tuple ~C = 〈Ci|i ∈ I〉 of coalitions such that: (a) for every k ∈ I,

Ck ∈ SC ; (b) for all C j,Ck ∈ ~C, either C j = Ck or C j ∩Ck = ∅; (c) for every i ∈ I,

i ∈Ci. Let Cov(SC , I) be the set of all covering of I by disjoint subsets of SC .

For instance, if SC = {∅,1,24,123,124} then Cov(SC ,12) = {〈1,24〉, 〈123,123〉,

〈124,124〉}8, Cov(SC ,124) = {〈1,1,24〉, 〈1,24,24〉, 〈124,124,124〉},Cov(SC ,123)

= {〈123,123,123〉} and Cov(SC ,234) = Cov(SC ,1234) = ∅.

The proof goes along the following steps:

L1 For any collection Col = {Ci, i = 1, . . . ,q} ⊆ 22N
,

V

1≤i≤q FCi is satisfiable if and

only if for any i, j ∈ {1, . . . ,q}, either Ci = C j or Ci ∩C j = ∅.

L2 From L1, we deduce that ∀I 6= ∅, ΦI is equivalent to
W

~C∈Cov(SC ,I)

V

i∈I FCi .

L3 From property (2) (assumption of Proposition 2) and L2, we can prove that if

I ⊆ 2N , then ΦI is satisfiable if and only if there exists J ∈ SC such that I ⊆ J.

Let I be an efficient coalition such that I 6∈ SC (which implies I 6= ∅, because by

assumption ∅ ∈ SC ).

• If I = N then there is no J ∈ SC such that I ⊆ J (because I 6∈ SC ), and then L3

implies that ΦI is unsatisfiable, therefore I cannot be efficient for G.
8There are two players in I = {1,2}, therefore each ~C in Cov(SC ,12) contains 2 coalitions, one for

each player, satisfying (a), (b) and (c).
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• Assume now that I 6= N and define the following Ī-strategy SĪ (Ī = N \ I):

for every i ∈ Ī, si = {¬connect(i, j)| j ∈ I} (plus whatever on the variables

connect(i, j) such that j 6∈ I). Let ~C = 〈Ci, i ∈ I〉 ∈Cov(SC , I).

We first claim that there is a i∗ ∈ I such that Ci∗ is not contained in I. Indeed,

suppose that for every i ∈ I, Ci ⊆ I. Then, because i ∈ Ci holds for every i,

we have
S

i∈I Ci = I. Now, Ci ∈ SC for all i, and any two distinct Ci,C j are

disjoint, therefore, by property (2) we get I ∈ SC , which by assumption is

false.

Now, let k ∈Ci∗ \ I (such a k exists because Ci∗ is not contained in I). Now, the

satisfaction of FCi requires connect(k, i∗) to be true, because both i and k are in

Ci. Therefore sk |=¬FCi , and a fortiori sĪ |=¬FCi , which entails sĪ |=¬
V

i∈I FCi .

This being true for any ~C ∈Cov(SC , I), we have sĪ |=
V

~C∈Cov(SC ,I)¬
V

i∈I FCi .

that is, sĪ |= ¬
W

~C∈Cov(SC ,I)

V

i∈I FCi . Together with L2, this entails sĪ |= ¬ΦI .

Hence, I does not control ΦI and I cannot be efficient for G.
�

The notion of efficient coalition is the same as the notion of successful coalition in

qualitative coalitional games (QCG) introduced in [16], even if, as we discuss in

Section 5, QCG and Boolean games are quite different.

4.2 Efficient coalitions and the core

We now relate the notion of efficient coalition to the usual notion of core of a coali-

tional game. In coalitional games with ordinal preferences, the core is usually de-

fined as follows (see e.g. [4, 13, 12]): a strategy profile s is in the core of a coalitional

game if and only if there exists no coalition C with a joint strategy sC that guarantees

that all members of C are better off than with s. Here we consider also a stronger no-

tion of core: a strategy profile s is in the strong core of a coalitional game if and only

if there exists no coalition C with a joint strategy sC that guarantees that all members

of C are at least as satisfied as with s, and at least one member of C is strictly better

off than with s.

Definition 6. Let G be a Boolean game.

The (weak) core of G, denoted by WCore(G), is the set of strategy profiles s =
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(s1, . . . ,sn) such that there exists no C ⊂ N and no sC ∈ SC such that for every i ∈ C

and every s−C ∈ S−C, (sC,s−C) �i s.

The strong core of a Boolean game G, denoted by SCore(G), is the set of strategy

profiles s = (s1, . . . ,sn) such that there exists no C ⊂ N and no sC ∈ SC such that for

every i ∈ C and every s−C ∈ S−C, (sC,s−C) �i s and there is an i ∈ C such that for

every s−C ∈ S−C, (sC,s−C) �i s.

This concept of weak core is equivalent9 to the notion of strong Nash equilibrium

introduced by [3], where coalitions form in order to correlate the strategies of their

members. This notion involves, at least implicitly, the assumption that cooperation

necessarily requires that players be able to sign “binding agreements”: players have

to follow the strategies they have agreed upon, even if some of them, in turn, might

profit by deviating. However, if players of a coalition C agreed for a strategy sC, at

least one player i ∈C is satisfied by this strategy: we have ∃i ∈C such that s |= ϕi.

The relationship between the (weak) core of a Boolean game and its set of efficient

coalitions is expressed by the following simple result. The proofs of following results

can be found in [6]:

Proposition 3. Let G = (N,V,Γ,π,Φ) be a Boolean game. s ∈ WCore(G) if and

only if s satisfies at least one member of every efficient coalition, that is, for every

C ∈ EC(G), s |=
W

i∈C ϕi.

In particular, when no coalition of a Boolean game G is efficient, then all strategy

profiles are in WCore(G). Moreover, the weak core of a Boolean game cannot be

empty:

Proposition 4. For any Boolean game G, WCore(G) 6= ∅.

The strong core of a Boolean game is harder to characterize in terms of efficient

coalitions. We only have the following implication.

Proposition 5. Let G = (N,V,Γ,π,Φ) be a Boolean game, and s be a strategy pro-

file. If s ∈ SCore(G) then for every C ∈ EC(G) and every i ∈C, s |= ϕi.

9This equivalence is easily shown: it is just a rewriting of the definition given in [3].
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Thus, a strategy in the strong core of G satisfies the goal of every member of every

efficient coalition. The following counterexample shows that the converse does not

hold.

Example 3. Let G = (N,V,Γ,π,Φ) be a Boolean game. We have: V = {a,b,c,d,e, f},

N = {1,2,3,4,5,6}, γi = > for every i, π1 = {a}, π2 = {b}, π3 = {c}, π4 = {d},

π5 = {e}, π6 = { f}, ϕ1 = b∨d, ϕ2 = a∨c, ϕ3 =¬b∨d, ϕ4 = e, ϕ5 = ¬a∧¬b∧¬c

and ϕ6 = ¬a∧¬c∧¬d.

This game has two efficient coalitions: {1,2} and {2,3}.

Let s = abcde f . We have s |= ϕ1 ∧ϕ2 ∧ϕ3 ∧¬ϕ4 ∧¬ϕ5 ∧¬ϕ6. So, ∀C ∈ EC(G),

∀i ∈C, s |= ϕi.

However, s 6∈ SCore(G): ∃C′ = {1,2,3,4,5}⊂ N such that ∃sC = abcde |= ϕ1∧ϕ2∧

ϕ3∧ϕ4∧¬ϕ5. So, ∀s−C, (sC,s−C)�1 s, (sC,s−C)�2 s, (sC,s−C)�3 s, (sC,s−C)�5 s,

and (sC,s−C) �4 s. s 6∈ SCore(G).

Note that the strong core of a Boolean game can be empty: in Example 1, the set

of efficient coalitions is {∅,{1,2},{2,3}}, therefore there is no s ∈ S such that for

all C ∈ EC(G), for all i ∈ C, s |= ϕi, therefore, SCore(G) = ∅. However, we can

show than the non-emptyness of the strong core is equivalent to the following simple

condition on efficient coalitions.

Proposition 6. Let G = (N,V,Γ,π,Φ) be a Boolean game. We have the following:

Score(G) 6= /0 if and only if
S

{C ⊆ N|C ∈ EC(G)} ∈ EC(G), that is, if and only if

the union of all efficient coalitions is efficient.

5 Conclusion

We have shown that Boolean games can be used as a compact representation setting

for coalitional games where players have dichotomous preferences. This specificity

lead us to define an interesting notion of efficient coalitions. We have given an exact

characterization of sets of coalitions that correspond to the set of efficient coalitions

for a Boolean game, and we have given several results concerning the computation

of efficient coalitions.

Note that some of our notions and results do not explicitly rely on the use of propo-

sitional logic. For instance, efficient coalitions can be defined in a more general
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setting where goals are simply expressed as nonempty sets of states. However, many

notions (in particular, the control assignment function π) become much less clear

when abstracting from the propositional representation.

Clearly, a limitation of our results is that they apply to dichotomous preferences only.

However, as illustrated on Example 2, some problems are naturally expressed with

dichotomous goals. Moreover, it is always worth starting by studying simple cases,

especially when they already raise complex notions10.

As Boolean games, qualitative coalitional games (QCG), introduced in [16], are

games in which agents are not assigned utility values over outcomes, but are satisfied

if their goals are achieved. A first difference between QCG and Boolean games is

that there is no control assignment function in QCG. A second one is that each agent

in QCG can have a set of goals, and is satisfied if at least one of her goals is satisfied,

whereas each agent in Boolean games has a unique goal. However, QCG’s character-

istic function, which associates to each coalition C the sets of goals that members of

C can achieve, corresponds in Boolean games to the set W (C) = {X ⊆ {ϕ1, . . . ,ϕn}

such that ∃sC ∈ SC : sC |= ϕi}
11.

Coalition logic [14] allows to express, for any coalition C and any formula ϕ, the

ability of C to ensure that ϕ hold (which is written [C]ϕ). In Boolean games, the

power of agents, expressed by the control assignment function π, is still in the meta-

language. Expressing π within coalition logic would however be possible, probably

using ideas from [15]. The next step would then consist in introducing goals into

coalition logic. This is something we plan to do in the near future.
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