Variable forgetting in preference relations over propositional domains
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Abstract

Representing (and reasoning about) preference
relations over combinatorial domains is compu-
tationally expensive. We argue that for many
problems involving such preferences, it is rele-
vant to simplify them by projecting them on a
subset of variables. We investigate several pos-
sible definitions, focusing without loss of gen-
erality on propositional (binary) variables. We
then define the notion of independence of a
preference relation from a set of propositional
variables.

1 Introduction

Decision-making problems are concerned with manag-
ing agents’ preferences. Crucial tasks include modelling,
elicitation, aggregation (especially when a common de-
cision has to be made among several agents) and op-
timization. The computational difficulty of these tasks
depends on the size and the structure of the space of
alternatives. When the latter is small, preferences can
be represented explicitly, by simply ranking alternatives,
and the above tasks can be implemented in an easy way.
However, in many real-world applications, domains have
a combinatorial structure, i.e., an alternative consists of
a value of a given domain for each one of a given set
of variables. In that case, managing agents’ preferences
can be an enormous computational burden. This has led
some researchers to work on compact preference repre-
sentation languages.

For some problems it might be relevant to process
preference relations (already elicited, and represented in
some compact form), so as to simplify it and make it
more compact, even if this results in a loss of informa-
tion. Especially, it may be helpful to project a preference
relation on a subset of the variables. This way of sum-
marizing a preference relation is relevant in particular
when some variables are more important than others, or
when some variables should be assigned prior to others.
Consider for instance a group decision making scenario.
Rather than aggregating the whole preference relations
before finding out an optimal assignment of variables,
which generally is computationally intractable, it may
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be a good idea to focus on “primary” variables first,
project the preference relation on those variables, ag-
gregate them, decide on the values to be assigned to
those variables, and only then consider secondary vari-
ables. Such a decomposition of the problem makes it
much more tractable (furthermore, it can be argued that
human decision makers would probably decompose the
problem as well in such a way, which suggests it is cog-
nitively relevant, even if it does not prove anything re-
garding the best way to automatize it).

Projection operations have not been considered much
as far as preference relations are concerned, but there
is a huge amount of work about projecting probability
distributions represented in compact languages such as
Bayesian networks (projection being then referred to as
marginalization), and more generally projecting valua-
tion functions [Shenoy, 1989; Kohlas & Shenoy, 2000, as
well as projecting sets of constraints (as in Constraint
Satisfaction Problems), and formulae of propositional
logic such as the forgetting operation considered in [Lin
& Reiter, 1994]. In this paper we aim at defining simi-
lar projection operations for ordinal preference relations,
namely, preorders on a set of alternatives. For the sake
of simplicity, we focus on combinatorial domains formed
from binary variables. Section 2 introduces some nat-
ural definitions and study their properties. Section 3
makes precise a connection between some notions of pro-
jection and the notion of forgetting from propositional
logic. The starting point of Section 4 is the study of con-
ditions under which projecting a preference relation can
be done without loss of information, which will lead to
several notions of independence of a preference relation
from a set of variables.  Section 5 points out related
work and further issues. Due to space limitations, most
proofs are omitted.

2 Projection of a preference relation
over a set of variables

2.1 Preference relations

Let V be a finite set of propositional variables. For any
(possibly improper) subset X of V', an X-alternative is
an element of 2%, that is, an assignment of a binary truth
value to each one of the variables in X. X-alternatives



are denoted by Z, Z' etc. If X and Y are dlS_]Olnt subsets
of V then the concatenation of & € 2X and ¢ € 2V is the
X U Y-alternative, denoted by Zy, assigning values to
variables of X (resp. Y') as & (resp. %) does.

A V-preference relation R, sometimes denoted as > g,
is a preorder, that is, a reflexive and transitive relation,
over 2¥V. The strict preference >g associated with R
is the strict preorder defined by ¢ >g ¢’ if and only if
R(¢,7") and not R("’ ¥). The indifference relation ~g
assomated with R is the equivalence relation defined by
¥ ~g U' if and only if R(7, "’) and R("’ ¥). If neither
R(¥,7") nor R(¢',7) then ¥ and ¢’ are incomparable
w.r.t. R, denoted by Qgr(7,7"). If R is connected (that
is, Qr = 0), then it is a complete preference relation.

As for notation, R* denotes the transitive closure of a
relation R over 2V.

For any V-preference relation R and any partition
{X,Y,Z} of V, X is preferentially independent from
Y glven Z w.r.t. R if and only if for all Z,2' € 2%,
all 7,7 € 2Y and all 7 € 2%, R(ZyZ,% yé’) implies
R("""’ F'y'Z). If Z = ( then we say that X is pref-
erentially independent from V' \ X w.r.t. R.

2.2 Lower and upper projections

Informally, the projection of a V-preference relation R on
X C V is a preference relation over 2% obtained from R
so as to be as close as possible from the original relation
R.

Definition 1 (lower and upper projections) Let R
be a V-preference relation and X CV. LetY =V \ X;

. Rix, called the lower projection of R on X,
is the binary relation over X defined as follows:
RYX(&,2") holds if and only if R(Z§,']) holds for
all 7 €2Y;

° R¢UX, called the upper projection of R on X, is the
transitive closure of the binary relation R' over X
such that R'(Z, "’) holds if and only if R(ZY,Z'Y)
holds for some ij € 2Y

Some first properties, where R and R' are V-preference
relations and X,Y C V, are the following ones:

Proposition 1

1. fo and RLUX are X -preference relations;

2. if R is complete then R‘(LJX is complete;
3. if RC R' then R} C (R")}* and R C (RE;
4. (RNR)YS =R n(R)E* and
(RORYG € R 0 ()Y
5. (RURNMES = (RF U (R)F)* and
(R U R')J'X ) (RiX (R/)VLX)*.
6. (RLX)‘LY (RLY)J’X and (R‘LX)LY (Riy)u(

Of course, R} C RU
naturally is when RtX and RLUX are the same.

and a question that comes

Proposition 2 For any V-preference relation R and
any X CV, RIJ’JX = R;L]X if and only if X is prefer-
entially independent from V \ X w.r.t. R.

Note that, when R is complete, R%]X is obviously com-

plete as well but RfX may fail to be complete.

2.3 Optimistic and pessimistic projections
The following definitions exhibit some extra specific no-
tions of a projection.

Definition 2 (optimistic/pessimistic projections)
Let R be a V-preference relation and X C V. Let
Y=V\X;

. ngfmngopt, the strong optimistic projection of R on
X, is defined by: RStrongOpt( Z') if and only if Iy
vy, R(Zy,2'5");

. R%/V)i:akopt: the weak optimistic projection of R on
X, is defined by: RWeakOpt(" &) if and only if Vi’
3 R(Zy, &)

. ngﬁon gPess) the strong pessimistic projection of R
on X, is defined by: RStmngPess( Z') if and only
if 35" vy, R(Z§,2'§");

. R%,V)iakpess, the weak pessimistic projection of R on
g{ z’;{ Eli@ngcf bl% Ry kpess (@& ") if and only if Vif
Y

It is easily checked that these four relations are tran-
sitive. The optimistic projections focus on finding some
possibility to have Z dominating #' whatever the con-
text for #'. The pessimistic projections focus on finding
some possibility to have £’ dominated by # whatever the
context for .

When R is complete, Rg?;(mgopt and Rt‘iakOpt coin-

cide, as well as R‘gfmng Pess and R%)VXeak Pess» and all four
are complete. In this case, ngﬁongopt (#,2") (and equiv-

alently RWeakOpt(—‘ Z')) iff the best alternatives extend-
ing & are at least as good as the best alternatives ex-

tending #', whereas RStmn gPess(&, ') (and equivalently

- =

R%akpess(a; ")) if and only if the worst alternatives
extending ¥ are at least as good as the worst alterna-
tives extending

vz '. These criteria are reminiscent of those used in quali-
tative decision theory (see e.g. [Brafman & Tennenholtz,
1997; Dubois & Prade, 1995] — with the slightly differ-
ent interpretation that X-alternatives represent possible
decisions and elements of (V' \ X)-alternatives represent
possible states of the world.

Proposition 3 We have the following inclusions.

1X X 1X

® R C RStrongOpt C RWeakOpt g RU )
LX - piX X

b RL RStrongPess g RWeakPess RU .



2.4 Examples

To begin with, here is an illustration involving the above
ideas. Consider a company which is about to move. Pre-
sumably, there are a few options to choose from. The
Head of the Public Relation Department may prefer the
Headquarters to be a new building located downtown
rather in some suburb, which he still prefers to an old
building downtown, and the least he cares for is an old
building in some suburb. The Head of the Accounting
Department may wish first a new building downtown,
second, an old building downtown, third, an old build-
ing in a suburb, all that preferred to a new building in
a suburb. The Head of the Legal Department may pre-
fer the Headquarters to be located dowtown, whereas
new or old are incomparable in his view (whatever the
location).

All this can be formalized using two variables, one for
location (z for downtown, so that Z stands for suburb)
and one for generation (y for new, so that § stands for
old). As regards the Head of the Legal Department, his
preferences R can be depicted by the following Hasse
diagram of R (arrows point from a more preferred alter-
native towards a less preferred one):!

Ty Ty
Xy
Yy Ty

We now give many more examples.

Example 1
zy Ty
R: | +
Ty Ty

All projections on x coincide and are equal to the pref-
erence relation T > T.

All projections on y coincide and are equal to the pref-
erence relation in which y and § are incomparable.

Example 2

Ty — Iy
R:
Ty <+ TY

All projections on x coincide and are equal to the pref-
erence relation where x and T are incomparable.

1y} Hy} Hy}
R as well as RstgongOpt and RStlrlongPess are equal

to the preference relation in which y and y are incompa-
rable, while R%]{y} as well as R%/éﬁk@pt and R%zikPess
are equal to the preference relation y ~ .

!For the sake of notation, when we specify a preference
relation explicitly, we omit pairs coming from reflexivity and
transitivity. For instance, the relation denoted by z > Z is,
more rigorously, the relation {(z,Z), (z,z), (Z,Z)}, while the
relation denoted by z ~ Z is, more rigorously, the relation

{(z,2), (z,2), (2, 2), (z,2)}.

Example 3
Ty
J
R Iy
YR
Ty Ty
Ri{w} is the preference relation in which x and T are

incomparable; Ré{w} is the preference relation x ~ T;

{z}
RStrongOp

lation x > Z; R

. and R%iikom are equal to the preference re-
Hez}

SirongPess 15 the preference relation in

which x and T are incomparable, while Rt:}fgk Pess 15 the

preference relation in which x ~ T.
Things are symmetric for the projections on y.

Example 4

zy
VRN
R: zy Ty
N
Ty
All projections on x (resp. y) are equal to the prefer-
ence relation © > T (resp. y > 7 ).

Example 5
Ty
i)
zy
R: |
zy
{
Ty

All projections on x are equal to the preference relation
T>2Z.

Ri{y} is the preference relation in which y and y are
incomparable; Rb{y} is the preference relation y ~ g; the
optimistic projections on y (which coincide because R is
complete) are equal to the preference relation y > y; the
pessimistic projections on y (which coincide, again be-
cause R is complete) are equal to the preference relation
y>y.

Observe that R is a formal representation of the pref-
erences expressed by the Head of the Accounting Depart-
ment. That all projections on x (the location variable)
amount to x > T indeed illustrates that the Head of the
Accounting Department favors the Headquarters being
located downtown: His preference old vs. new is only
next to location, and depends on what the location is
(see the fact that the various projections on y do not
coincide). The lower projection on y shows that the
Head of the Accounting Department does not incondi-
tionnally prefer old to new (or vice-versa). The upper
projection on y shows that the preferences of the Head of
the Accounting Department include a situation such that
he prefers new to old (downtown) and a situation such
that he prefers old to new (suburb).



Example 6
Ty ~ Y
R: 4
Ty ~ 2y
All projections on x are equal to the preference relation
x > Z. All projections on y are equal to the preference
relation y ~ 4.

3 Connection to propositional logic

Ly is the propositional language built up from V, to-
gether with the usual connectives and the Boolean con-
stants T and L. Formulas of Ly are denoted by Greek
letters ¢, ¥, 0, etc. Var(yp) denotes the set of proposi-
tional variables occurring in ¢.

We make use of the next two notions from [Lin, 2001]
where ¢ € Ly and X C V:

o the strongest necessary condition of ¢ on X is the
strongest formula 9 of Ly such that Var(y) C X

and ¢ = 1);

o the weakest sufficient condition of ¢ on X is the
weakest formula ¢ of Ly such that Var(y) C X
and ¢ E ¢.

The strongest necessary condition (resp., weakest suf-
ficient condition) of ¢ on X is denoted by I(V \ X).p
(resp., V(V \ X).p). Actually, 3(V \ X).¢ is usually
known as the forgetting of V' \ X in ¢.

A V-preference relation is bipartite if and only if there
exists G C 2V such that for all 7, @' € 2V, then R(7, ")
holds if and only if 7 € G or @' € 2V \ G; the character-
istic formula 0 of a bipartite V-preference relation R is
the propositional formula — unique up to logical equiv-
alence — whose set of models is exactly G (in symbols,
Mod(0r) = G).

So, a bipartite preference relation R can be repre-
sented by a propositional formula. Then, it is worth-
while investigating how can some notions of a projection
over bipartite preference relations be similarly captured
by propositional formulas. The connection is most sig-
nificant when considering optimistic and pessimistic pro-
jections (note that if R is bipartite, it is complete and
then strong and weak notions coincide.)

Proposition 4 Let R be a bipartite preference relation
whose characteristic formula is 0g. Let X C V and
Y =V \X. Then

. Rtvxeakopt = ngﬁongopt is the bipartite relation
whose characteristic formula is (V' \ X).0r.
U RtVXeakPess = Rf.;fmngpess is the bipartite relation

whose characteristic formula is V(V \ X).0g.

Moreover, if Og is logically equivalent to a formula of Lx
then

. R%]X = Ri&[i(eakOpt = ngfmngopt is the bipartite re-

lation whose characteristic formula is 3(V \ X).0g.

X _ plX _ piX . . .
* RL - RWeakPess - RStrongPess is the bzpartzte

relation whose characteristic formula is V(V\X).0R.

As already mentioned, the deepest result here is with
optimistic and pessimistic projections. The basic reason
is that the way optimistic and pessimistic projections are
defined requires all V'\ X -alternatives extending the same
context to behave alike (w.r.t. R) hence R can be parti-
tioned along the language (actually, just the variables in
V'\ X). Since lower and upper projections have no such
definition, the above constraint on 6r as being logically
independent of V'\ X provides the necessary link between
R and its potential partitions along the language.

4 Independence of a preference relation
from a set of variables

This section requires a couple of notions, as follows.

If X CV and @ € 2" then the X-conjugate of 7, de-
noted by switch(¥, X), is the alternative obtained from ¢
by switching the truth value of each z € X (and leaving
the other variables unchanged). When X is a single-
ton consisting of a single variable z, we drop the curly
brackets, writing switch(¥,z) as the z-conjugate of 7.

Let switch(R,X) be the relation obtained from
R by exchanging each alternative ¥ with its X-
conjugate, that is, switch(R,X)(7,7") if and only if
R(switch(V, X), switch(7', X)).

4.1 Definitions and properties

The introduction motivates the need to simplify prefer-
ence relations so that applying one is possible just by
handling part of it. Clearly, a projection provides such
an abridged version of a preference relation. The ques-
tion is what conditions, if any, allows us to substitute a
projection for the original preference without losing rel-
evant information? A general answer is that projection
over V '\ X is presumably harmless when X can in some
sense be dispensed with, i.e. R is independent of X.

Definition 3 Let R be a V-preference relation and let
XCVandY =V\X.

I-independence R is I-independent of X if and only
if for all 7,Z' € 2% and all j € 2Y, T§ ~5 T'7.
Q-independence R is Q-independent of X if and only
if for all £,7' € 2% and oll 7 € 2¥, 7 and T'§ are

incomparable w.r.t. R.

G-independence R is G-independent of X if and only
if switch(R,X) = R.

We might think of a stronger definition of G-
independence, where invariance of R by any permuta-
tion on 2% is required instead of invariance of R by per-
mutations of single variables. Let us first introduce the
following definition:

e let 0 be a permutation of 2X; then o(R) is the
V-preference relation obtained from R by letting
o(R)(¥,7") hold if and only if R(c(¥),0(7")) holds.

Fortunately, this notion, which may appear stronger

at first glance, is equivalent to the one we gave above:

Proposition 5 R is G-independent from X if and only
if o(R) = R holds for every permutation o of 2°X.



Interestingly, all three notions above satisfy the prop-
erty of decomposability.

Proposition 6 For any of the three notions of indepen-
dence (I, Q and G), R is independent from X if and only
if R is independent for every x in X.

There is at least one interesting notion of indepen-
dence that fails decomposability, though. It comes from
preferential independence:

Definition 4 Let R be a V-preference relation and let
XCVandY =V \X.

P-independence R is P-independent of X if and only
if Y is preferentially independent of X w.r.t. R.

Intuitively, P-independence w.r.t. x means that if you
want to compare two alternatives then you do not have
to worry about x as long as both alternatives share the
same value for z: The outcome would be the same for an-
other value of z. Back to the company illustration, if the
preference relation is independent from the variable “logo
of the company”, then you can compare “old&downtown”
against “new&suburban” just by fixing “logo of the com-
pany” to whatever value and then directly compare
“old&downtowné&logo” against ‘“new&suburban&logo”
because the outcome would be exactly the same as
when comparing “old&downtowné&otherlogo” against
“new&suburban&otherlogo”.

Two further definitions may be thought of, namely:

union independence R is U-independent of X if and
only if R is I-independent of X or @)-independent
of X.

weak independence R is W-independent of X if and
only if for all & #' € 2X and all § € 2Y, & and &'
are either indifferent or incomparable w.r.t. R.

Proposition 7 Let R be a V -preference relation and let
z € V. We have the following implications:

Ind;(R,z) = Indg(R,z) = Indw(R,);
Ind;(R,z) = Indy(R,z) = Indw (R, );
Indg(R,z) = Indy(R,x);

Indg(R,z) = Indp(R, {z}).

Note that Indg and Indy (and Indg) are incompara-
ble, which can be seen on the following two counterex-
amples:

e R = {(zg,zy), (Ty,Z§)}. Then switch(R,z) =
{(zy,zy), (Zy,Zy)}, therefore we do not have
Indg (R, x), whereas we have Indg(R, z) and a for-
tiori Indy(R,z). Therefore Indg(R,z) does not
imply Indg(R, x) and likewise, Indy (R, z) does not
imply Indg(R, x).

e R = {(zy,z7),(zy,zy)}. Then switch(R,z) = R,
however neither Indg(R,z) nor Ind;(R,z) holds,
therefore Indy(R,z) does not hold. Therefore
Indg(R,x) does not imply Indy (R, z).

Note also that:

Table 1: Relationships between notions of independence.
Arrows point from the more demanding notion to the less demanding.
independence independence as

as indifference

e pN -

independence as

incomparability

independence as
invariance under indifference or

permutation

e pY e

weak

incomparability

preferential

independence independence

e With R = {(z7,zy)}, we have switch(R,z) =
{(zy;zy)}. Hence, we do not have Indg(R,z),
whereas we have Indp(R,{z}). That is,

Indp(R,{z}) does not imply Indg(R, z).

e Indg(R,z) does imply Indp(R,{z}) (but this is
only because z is a single variable, otherwise
Indg (R, X) may fail to imply Indp(R,X) when X
is not a singleton set).

4.2 Examples
Example 1 (continued)

Ty Ty
R: | !
Ty Yy

R is Q-independent of y and G-independent of y but
not I-independent of y (it is obviously not independent
from x for any notion of independence considered).

Example 2 (continued)

Ty — Y
R:
TYy <+ Ty
R is Q-independent of y but neither G-independent nor
I-independent of y.

Example 3 (continued)

Ty
4
R: Ty
YR
Ty xy
R is independent neither of x nor of y, whatever the
notion of independence under consideration. Idem for
the preference relations of Examples 4 and 5.

Example 6 (continued)



R is I-independent and G-independent of y, but not
Q-independent of y. (It obviously fails to be indepen-
dent of x, whatever the notion of independence under
consideration.)

4.3 Independence and projection

Proposition 8 Let X C V. For any X -preference rela-
tion Rx there is a unique V -preference relation R such
that (a) Ind;r(R,V\X) and (b) R%X coincides with Rx .

However, there is no such result as regards Q-
independence and G-independence. Here are two coun-
terexamples.

e First, consider R; to be the reflexive-transitive
closure of {(zy,Zy)} and Ry to be the reflexive-
transitive closure of {(zy,Zy)}. Both R; and R»
are -independent of Y = V' \ X where X = {z}.
Also, the empty set is the lower projection of R;
on X. Similarly, the empty set is the lower projec-
tion of Ry on X. Furthermore, R; and Ry have the
same upper projection on X, that is the reflexive-
transitive closure of {(z,Z)}.

e Second, consider R; to be the reflexive-transitive
closure of {(zy, zy), (z7,Z7), (zy,7y), (z7,Ty)} and
Ry to be the reflexive-transitive closure of
{(zy, Zy), (7, Zy), (Ty,zy)}. Both R; and Ry are
G-independent of Y. R; and R, have the same
lower projection on X, that is {(z,Z)}*, which is
also their upper projection on X.

Proposition 9 If R is Pref-independent of V'\ X then
each of R‘[L]X and RiX coincides with the restriction of R
to 2X.

5 Conclusion and perspectives

This paper is meant to pave the way towards simplify-
ing and decomposing preference relations over combina-
torial structures, by investigating and comparing various
notions of projection and independence. It is still a pre-
liminary work and raises many questions.

One of the most salient issues that we did not inves-
tigate is about computing the various notions of projec-
tion (as well as checking the various notions of indepen-
dence) when the initial preference relation is represented
in a compact representation language such as CP-nets
[Boutilier et al., 2004] or a language based on proposi-
tional logic (see e.g. [Lang, 2004] for a survey). The
problem is then the following: given a compact struc-
ture (e.g., a CP-net) representing a preference relation
R in a compact way, compute another input of the same
language (e.g. another CP-net) that represents the pro-
jection of R on a given subset of variables X w.r.t. one
of the various definitions given in this paper. Clearly, we
are looking for algorithms that would perform this com-
putation directly (without generating R explicitly, nor
even its projection on X). This looks harder than we
initially thought and is certainly a promising issue for

further research. As to independence, it would be worth
investigating the computational complexity of checking,
for a given notion of independence and a given represen-
tation language, whether a given compactly represented
preference relation is independent from a given set of
variables (in the same vein as the work in [Lang, Liber-
atore, & Marquis, 2003] for independence and forgetting
in propositional logic).
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