How hard is it to control sequential elections via the agenda?

Vincent Conitzer
Department of Computer Science
Duke University
Durham, NC 27708, USA
conitzer@cs.duke.edu

Jérôme Lang
LAMSADE
Université Paris-Dauphine
75775 Paris Cedex 16, France
lang@lamsade.dauphine.fr

Lirong Xia
Department of Computer Science
Duke University
Durham, NC 27708, USA
lxia@cs.duke.edu

Abstract

Voting on multiple related issues is an important and difficult problem. The key difficulty is that the number of alternatives is exponential in the number of issues, and hence it is infeasible for the agents to rank all the alternatives. A simple approach is to vote on the issues one at a time, in sequence; however, a drawback is that the outcome may depend on the order in which the issues are voted upon and decided, which gives the chairperson some control over the outcome of the election because she can strategically determine the order. While this is undeniably a negative feature of sequential voting, in this paper we temper this judgment by showing that the chairperson’s control problem is, in most cases, computationally hard.

1 Introduction

In many real-life group decision making problems, the space of alternatives has a multiattribute (or combinatorial) structure. In one example, the members of an association have to elect a steering committee, composed of a president, a vice-president and a treasurer. In both cases, the space of alternatives has a combinatorial structure: there are multiple issues (aka. attributes of the alternatives) to decide on, and voters generally have preferential dependencies among these attributes. For instance, a voter might want a tennis court to be built only if no swimming pool is built.

In classical voting theory, voters submit their preferences as linear orders over the set of alternatives, and then a voting rule is applied to select one alternative to be the winner. However, when the set of alternatives has a multiattribute structure, the number of alternatives is exponential in the number of attributes, and therefore it is not realistic to ask voters to specify their preferences as explicit linear orders. We can consider the following three ways to address this:

1. Decompose the vote into a set of parallel, independent voting problems, one for each attribute. This may lead to catastrophic results as soon as some voters have preferential dependencies among attributes [Lacy and Niu, 2000].

2. Ask voters to report their preferences in some compact representation language, as in [Xia et al., 2008]. While this may be practical in some cases, in the general case we are confronted with two problems: the size of the input to be elicited from the voters (exponentially large in the worst case) and the generally very high computational complexity of computing the outcome of the election.

3. Have the voters vote on each of the attributes in sequence (the approach studied in this paper). That is, we decide the value of the attributes one after the other, using a local voting rule for each attribute. This solution has the nice features of being elicitation-friendly and computationally easy (provided the local rules are computationally easy to run). However, sequential voting has two severe drawbacks. First, voters may feel ill at ease voting when their preferences for the current attribute depend on values of other attributes that have not been decided yet. Second, the outcome of the process may depend on the order in which the attributes are voted on.

Some earlier work [Lang, 2007; Xia et al., 2007] avoids these two pitfalls of sequential voting by requiring that there exists some order over the attributes that is consistent with the preferences—that is, a voter’s preferences for an attribute never depend on the values of attributes later in the order. In this case, it is natural to vote over the attributes in this order, because then each voter will have a clear preference for each attribute when it is voted on. (While in principle the chairperson could still attempt to control the election by insisting on another order without this property, in practice this would presumably appear very suspect to the voters.) However, assuming the existence of such an order is very restrictive in general: the number of preferences (linear orders over the alternatives) satisfying the restriction is exponentially smaller than the number of possible preferences [Xia et al., 2008].

In this paper, we do not assume that there is such a natural order in which to vote. As mentioned above, this leads to several problems, which we now illustrate with an example.

Example 1: A joint decision has to be made about whether or not to build a new swimming pool (S) and a new tennis court (T). We suppose that the preferences of voters 1 to 10 are ST ≻ ST ≻ T, those of voters 11 to 20 are ST ≻ ST ≻ ST ≻ ST, and those of voters 21 to 30 are ST ≻ ST ≻ ST ≻ ST.

The first problem is that, regardless of the order in which
the issues are decided on, voters 1 to 20 feel ill at ease when asked to report their preference about the first issue. They prefer S to \tilde{S} if and only if T is chosen, so they would like to know about the tennis court before deciding on the swimming pool. However, deciding on the tennis court first leads to similar issues, because they prefer T to \tilde{T} if and only if \tilde{S} is chosen. Only voters 21 to 30 can safely vote for S over \tilde{S}.

The second problem is that in this type of situation, the outcome of the election can depend on the order in which the attributes are decided on. For example, suppose that the swimming pool is decided on first, and more than half of the first 10 voters vote (optimistically) for S; then, S will be chosen over \tilde{S}. Subsequently, given that they know that the swimming pool will be built, 20 voters will vote against the tennis court, so that the final outcome will be $ST\tilde{P}$. However, if the tennis court is decided on first, then optimistic voting would result in a final outcome of $ST\tilde{T}$. As a consequence, if the chairperson (chair) knows enough about the voters’ behavior, she will be able to predict the outcome for each order and thus she will be tempted to choose the order $S > T$ if she prefers $ST\tilde{T}$ to $ST\tilde{P}$, and $T > S$ otherwise.

The fact that the chair has, in some situations, the ability to influence the outcome of the election by choosing the agenda (that is, the order in which the issues are decided on) is a definite drawback of sequential voting. However, we might wonder how difficult it is for the chair to control the election in this way. There are various other ways in which a chair might control an election, and the computational complexity of some of those types of control has been considered in several places, starting with [Bartholdi et al., 1992] and later on in [Faliszewski et al., 2007; Hemaspaandra et al., 2007b; 2007a; Meir et al., 2008; Pini et al., 2008]. In the control problems considered in these papers, the chair may add or remove candidates or voters, or fix the competition tree when applying the “cup” rule. However, the control problem we study here is unique because of its multiattribute nature, and, in our opinion, also quite realistic. If we are able to prove that this control problem is computationally hard, this would be quite realistic. If we are able to prove that this control problem is computationally hard, this would be an argument in favor of sequential voting, because it mitigates the downside of agenda control.

Before we can study the complexity of the control problem, we first need to formulate it. As we saw in the above example, the behavior of a voter can generally not be determined from her preferences alone. We assume that the chair knows what every voter would do in every situation, where a situation consists of a list of decisions made on some of the issues, and another issue which is currently being voted on. In Section 2, we formulate the problem precisely and discuss possible ways of representing this knowledge in a compact way. In Section 3, we prove that in this setting, constructive control (deciding whether there exists an order that makes a given candidate win) is NP-complete, which answers our main question. In Section 4 we show that destructive control (deciding whether there exists an order that ensures a given candidate does not win) is also NP-complete. Lastly, we conclude in Section 5.

2 Formulating the problem

In the rest of this paper, there are a set of voters $\{1, \ldots, n\}$ and a set of binary issues $I = \{x_1, \ldots, x_p\}$. The notions and results introduced in this paper would easily extend to non-binary issues, but we focus on binary issues so that we do not have to discuss the choice of the local rule for each issue—for binary issues, the majority rule is the obvious choice.

The input of the problem should contain the following information (known by the chair): for every voter i, every issue x_j, and every possible tuple \bar{z} of values assigned to a subset of issues not including x_j, the behavior of the voter (vote for/against x_j). For instance, in Example 1, we assume that the chair knows what every voter would say, were she asked to vote for or against the swimming pool, in each of the following three situations: the swimming pool is the first issue to be decided; we have already decided to build a tennis court; we have already decided not to build a tennis court. Similarly, the chair is assumed to know the voter’s behavior when voting on the tennis court, in each of the three possible situations.

Formally, let $Z_i = \{\top, \bot, u\}^{I \setminus \{x_j\}}$ be the set of all possible situations when asking a voter about x_i. An element $s \in Z_i$, called an i-situation (or, for short, a situation), is denoted by listing all variables $x_j \in I \setminus \{x_i\}$ with their corresponding values: x_j (meaning that x_j has already been assigned to true (\top)) $\bar{x_j}$ (x_j has already been assigned to false (\bot)), or $u(x_j)$ (x_j has not been assigned a value yet). For instance, if $I = \{x_1, x_2, x_3, x_4\}$ then the 1-situation $\mathcal{Z}(x_2)x_4$ means that x_2 has been assigned to \bot, x_3 to \top, and x_4 has not been assigned yet. The situation where none of these issues has been assigned yet is denoted by \bot.

A voter behavior policy is a function $\pi : \{\{x_i, \bar{z}\} | \bar{z} \in Z_i\} \rightarrow \{\top, \bot\}$. $\pi(x_i, \bar{z}) = \top$ (resp., \bot) means that in the i-situation \bar{z}, when asked to vote for or against x_i, the voter votes for $x_i = \top$ (resp., $x_i = \bot$). In Example 1, those among voters 1 to 10 who behave optimistically would have the following behavior policy:

$$
\pi(S, \bot) = (\pi(S, u(T))) = \top \quad \pi(S, \bot) = \bot \quad \pi(T, \top) = \top \quad \pi(T, \bot) = \bot
$$

We may ask for a consistency condition, which we will describe shortly. First, we have to introduce the following notion: let x_i be an issue and consider two i-situations s, s' satisfying the following condition: there exists an issue x_j such that (a) s, s' coincide on all issues except j; (b) s assigns \top to x_j and (c) s' assigns \bot to x_j. Then, s, s' are said to be x_j-conjugate, and $s \lor s'$ denotes the i-situation that coincides with s (and s') for all issues other than x_j, and leaves x_j unassigned. Now, a voter behavior policy π is consistent if the following condition is met: for any issue x_i and any pair of x_j-conjugate i-situations s, s', if $\pi(s) = \pi(s')$ then $\pi(s \lor s') = \pi(s) = \pi(s')$. The intuition behind consistency is the following. Suppose we know that a voter will vote for the swimming pool both in the case where it has already been
decided that the tennis court will be built \((\pi(S, T) = \top)\), and in the case where it has already been decided that it will not be built \((\pi(S, T) = \bot)\). Then this voter should also vote for the swimming pool in the situation where nothing has been decided about the tennis court \((\pi(S, u(T)) = \top)\). While consistency is intuitively a desirable condition, psychological experiments show that it is sometimes violated by individuals [Tversky and Shafir, 1992].

Representing a behavior policy explicitly, by listing all elements of \(Z_i\) for every \(i\), would require exponential space (to be precise, exactly \(p \cdot 3^{p-1}\) values have to be specified) and is therefore infeasible for all but the smallest \(p\). In most cases, however, a voter’s behavior on an issue depends on only a small subset of the other issues—just as in CP-nets [Boutilier et al., 2004], a voter’s preference for an issue may depend on only a small subset of the other issues. We define a conditional behavior net (CB-net) over a set of binary issues \(I\) by a directed graph \(G\) over \(I\), and, for every \(x_i \in I\), a conditional behavior table (CBT) mapping every element of \(\{\top, \bot, u\}^{\text{par}(x_i)}\) (where \(\text{Par}_G(x_i)\) denotes the set of parents of \(x_i\) in \(G\)), to \(\top\) or \(\bot\). The main technical difference between a CB-net and a CP-net over propositional variables is that in a CB-net, the conditional table for \(x_i\) specifies a value even if some of the parents of \(x_i\) are unassigned. Here is an example of a CB-net (with \(I = \{x_1, x_2, x_3\}\)):

\[
\begin{align*}
\emptyset &: \top \\
\emptyset : x_2 &\quad x_1 u(x_2) : x_3 \\
\emptyset : x_2 &\quad x_1 u(x_2) : x_3
\end{align*}
\]

Every CB-net \(\Gamma\) induces a behavior policy \(\pi_\Gamma\), defined as follows: for every issue \(x_i\) and every \(\vec{z} \in Z_i\), \(\pi(x_i, z_i, \vec{z}, \vec{\pi}) = \top\) (resp., \(\bot\)) if \(\text{CBT}(x_i)\) contains an entry \(\vec{t}: x_i\) (resp., \(\vec{t} : \top\)) such that \(\vec{z} \equiv \vec{z}^i\).

The behavior policy associated with the example CB-net above is consistent; it would not be if, instead of \(x_1 u(x_2)\) : \(x_3\), we had \(x_1 u(x_2) : x_3\); for example, then we would have two \(x_2\)-conjugate situations, \(x_1 x_2 x_3\) and \(x_1 x_2 x_2\), such that the voter votes for \(x_3\) in both, and yet votes for \(x_3\) in situation \(x_1 u(x_2)\). Let \(\vec{z} = (z_1, \ldots, z_n)\), where \(z_i\) is the voter behavior policy for voter \(i\). Finally, let \(\vec{O}\) be an ordering on \(I\). The outcome associated with \(\vec{O}\) and \(\vec{\pi}\), denoted by \(\text{Seq}(\vec{O}, \vec{\pi})\), is defined as follows. Without loss of generality, assume \(O = x_1 > \ldots > x_p\). For the sake of simplicity, assume we have an odd number of voters, and that every local rule is the majority rule\(^4\). \(\text{Seq}(\vec{O}, \vec{\pi}) = (v_1, \ldots, v_p)\) where

- \(v_1 = x_1\) (resp., \(\bot\)) if for a majority of voters \(j \in \{1, \ldots, n\}\) we have \(\pi_j(x_1) = \top\) (resp., \(\bot\));

- for every \(2 \leq i \leq p\), \(v_i = x_i\) (resp., \(\overline{x_i}\)) if for a majority of voters \(j \in \{1, \ldots, n\}\) we have \(\pi_j(x_i) \neq \top\) (resp., \(\bot\)), where \(\overline{x_i} = (v_i, \ldots, v_{n-1}, v(x_{i+1}), \ldots, u(x_p))\).

We now define the control problems that we study. We distinguish between local control, where the chair tries to determine the outcome of a single issue, and global control, where the chair tries to determine the winning alternative (that is, the value of all issues). We also distinguish between constructive control, where the chair tries to ensure that a particular alternative or a particular value for an issue wins, and destructive control, where the chair tries to ensure that a particular alternative or a particular value for an issue does not win. Thus, a local control instance is defined by a CB-net for every voter, a distinguished issue \(x_i\), and a value \(v \in \{\top, \bot\}\). The chair can constructively (destructively) control the instance if there exists an ordering \(O\) such that \((\text{Seq}(O, \vec{\pi})) = v\) (such that \((\text{Seq}(O, \vec{\pi})) \neq v\)). A global control instance is defined by a CB-net for every voter, and a distinguished alternative \(\vec{z} \in \{\top, \bot\}\). The chair can constructively (destructively) control the instance if there exists an ordering \(O\) such that \((\text{Seq}(O, \vec{\pi})) = \vec{z}\) (such that \((\text{Seq}(O, \vec{\pi}) \neq \vec{z}\)).

In two of our reductions, we make use of the following result, which states that we can simulate any (consistent or not) weighted CB-net (that is, a CB-net with an integer weight on each entry) whose weights are all even with a collection of consistent CB-nets — thus the result we give below is a kind of McGarvey theorem [McGarvey, 1953] (which states that for every tournament, there is a profile of which the majority is the global control graph for CB-nets. If \(\pi\) is the behavior policy corresponding to CB-net \(\Gamma\), and \(\vec{z} \in \{\top, \bot, u\}^{\text{par}(x_i)}\) is a valuation for the parents of \(x_i\), then let \(\Gamma^i_{\vec{z}'} = (\pi(x_i, \vec{z}')\) where \(\vec{z}'\) is any valuation for all issues other than \(x_i\) that agrees with \(z_i\). That is, \(\Gamma^i_{\vec{z}'}\) is the CBT entry for \(x_i\) given parent valuations \(\vec{z}'\).

Proposition 1 For any CB-net \(\Gamma\) (with binary issues, consistent or not), in which any issue \(x_i\) and any valuation \(\vec{z}\) of the parents of \(x_i\) in the dependency graph of \(\Gamma\) is associated with an even weight \(w_{x_i}\) (which must be positive if \(\Gamma^i_{\vec{z}'} = \top\) and negative if \(\Gamma^i_{\vec{z}'} = \bot\)), there exists a collection of consistent CB-nets, \(\Gamma = (\Gamma_1, \ldots, \Gamma_K)\), where \(K\) is the maximum sum of the absolute values of the weights associated with an issue (summing over the parents’ valuations), such that

- for any \(j \leq K\), the dependency graph of \(\Gamma_j\) is the same as the dependency graph of \(\Gamma\);
- for any \(i \leq p\), any \(\vec{z} \in \{\top, \bot, u\}^{\text{par}(x_i)}\) such that \(w_{x_i} = 1\), \(\Gamma_j^{x_i}_{\vec{z}_j} = \top\).

That is, the weights in the weighted CB-net \(\Gamma\) correspond exactly to the weights of the majority relation for \(\Gamma_j\).

Proof of Proposition 1: For any \(i \leq p\), let \(W_i\) be the sum of the absolute values of the weights over all valuations of the parents of \(x_i\) in the dependency graph of \(\Gamma\). Because the ordering \(x_1, \ldots, x_p\) of the issues is arbitrary (the CB-net may be cyclic), we can without loss of generality assume that \(K = W_p\), that is, for any \(i \leq p\), \(W_i \geq W_i\). Let \(x_1, x_2, x_3\) be the parents of \(x_p\). We next show how to construct \(\text{CBT}(x_p)\) for each \(\Gamma_j\) in \(\Gamma\). For any \(1 \leq i \leq p - 1\), \(\text{CBT}(x_i)\) can be constructed similarly. We now prove a lemma

\(^4\)Recall that the issues are binary, hence the obvious choice of the majority rule, with some tie-breaking mechanism; the assumption that we have an odd number of voters allows us to ignore the tie-breaking mechanism. If issues were not binary, then we would have \(r_1, \ldots, r_p\) be local voting rules, one for each issue.

\(^5\)Alternatively, all the weights can be odd.
whose purpose is to construct a CBT such that the consistency condition does not cause us problems.

Lemma 1 Let \(x_1, \ldots, x_k \) be the parents of \(x_p \). There exists a CBT for \(x_p \) such that for any \(i \leq k \), any pair of \(x_i \)-conjugate \(p \)-situations \(s', s'' \), we have that \(x_p \) is assigned \(T \) in exactly one of \(\{ s', s'' \} \), and \(L \) in the other.

Proof of Lemma 1: The “parity CB-net,” which returns \(T \) when an even number of parents are set to \(T \), and \(L \) otherwise, satisfies this condition.

For any valuation \(s' \) of \(P \circ \mathcal{G}(x_p) \), let \(f_p(s') \) be the value that the CBT from Lemma 1 returns. Then for any valuation \(s \) of \(P \circ \mathcal{G}(x_p) \), we assume \(w_{s,p} > 0 \) (the case where \(w_{s,p} < 0 \) is similar). Let \(I(s) \) be the set of indices that, under \(s \), are assigned a value in \(\{ T, L \} \) (that is, not \(u \)). We define two CBTs for every valuation \(s \) of \(P \circ \mathcal{G}(x_p) \), namely, \(CBT_1(x_p) \) and \(CBT_2(x_p) \). Let \(CBT_1(s_p)(s') \) be \(T \) if \(I(s') \subseteq I(s) \), and let \(CBT_1(s_p)(s') \) be \(f_p(s') \) otherwise. \(CBT_2(s_p) \) is almost the opposite: let \(CBT_2(s_p)(s') \) be \(T \) if \(I(s') \not\subseteq I(s) \) and \(s' \neq s \), let it be \(T \) if \(s' = s \), and let it be \(f_p(s') \) otherwise. Now, we show (1) that these CBTs do not violate consistency, and (2) that, if we aggregate some combination of these CBTs, then we get \(\Gamma \)'s weighted CBT for \(x_p \).

(1): for any \(i \leq k \), any pair of \(i \)-conjugate valuations \(s_1, s_2 \) of \(P \circ \mathcal{G}(x_p) \), if \(I(s_1) \subseteq I(s_2) \), then consistency is maintained in both \(CBT_1(x_p) \) and \(CBT_2(x_p) \), because \(f_p(s_1) = f_p(s_2) = I(s_2) \), so consistency does not impose any constraint. If \(I(s_1) \not\subseteq I(s_2) \), and neither \(s_1 \) nor \(s_2 \) is equal to \(s_1 \), then \(I(s_1) \not\subseteq I(s_2) \). Because of this, \(CBT_1(x_p)(s_1) = CBT_2(x_p)(s_2) = CBT_1(x_p)(s_1 \cdot s_2) \) and \(CBT_2(x_p)(s_1) = CBT_2(x_p)(s_2) = CBT_2(x_p)(s_1 \cdot s_2) \), so consistency is also maintained in this case. Finally, if one of \(s_1 \) and \(s_2 \) is equal to \(s \), then, for \(CBT_1(x_p) \), the situation is the same as in the previous case; for \(CBT_2(x_p) \), we have \(CBT_2(x_p)(s_1) = CBT_2(x_p)(s_2) \), so consistency does not impose any constraint.

(2): we have \(CBT_1(x_p)(s) = CBT_2(x_p)(s) \cdot s' = CBT_2(x_p)(s') \). Thus, they cancel each other out except on \(s \), where they have a combined weight of 2 on \(s \). Hence, if we take \(w_{s,p} \) copies of each, we have a weight of \(w_{s,p} \) on \(s \) (and every other place). If we do this for every value \(s \) of \(x_p \)'s parents, then we obtain the weighted CBT of \(\Gamma \) for \(x_p \). The total number of CBTs that we create in this process is \(K \). We use the same approach for the issues other than \(x_p \), and each of them requires at most \(K \) CBTs. Moreover, we can take a CBT for each issue and combine them into a single CBT-net, so that the total number of CB nets we create is \(K \) (for the issues that require fewer than \(K \) CBTs, we can create some pairs of CBTs that cancel out exactly with each other).

Of course, in Proposition 1, all the weights \(w_{s,i} \) may have the same absolute value, i.e., \(w_{s,i} = 2 \) or \(w_{s,i} = -2 \), so that \(\Gamma \) is effectively an unweighted CBT-net. Hence, we can simulate a single inconsistent CBT-net by a collection of consistent CBT-nets. In this case, the number of consistent CBT-nets needed is at most \(2^{k+1} \), where \(k \) is the maximum in-degree of vertices in the dependency graph of \(\Gamma \). This number is polynomial when \(k \) is bounded, as it will be in our reductions.

3 Constructive control

We now investigate the complexity of constructive control. It turns out that both the local and global versions of constructive control are computationally hard.

Proposition 2 Local constructive control is NP-complete.

Proposition 3 Global constructive control is NP-complete.

In both cases, NP-hardness holds even if every issue is binary and the local rules are majority rules, and either of the following conditions holds: there is only one voter or all the CB-nets are consistent and have the same dependency graphs. While neither of these hardness results directly implies the other, we use a single reduction to prove both results.

Proof sketch of Propositions 2 and 3. In both cases, membership in NP is straightforward. As for hardness, we use a reduction from the restriction of HAMILTONIAN CYCLE to graphs where each node has degree at most 3; this restriction is still NP-complete [Garey et al., 1976]. Let \(G = (V, E) \) be an undirected graph, where \(V = \{0, \ldots, n\} \). We denote edges by \(ij \) (where \(i, j \in V \), \(i \neq j \)) rather than \(\{i, j\}; ij \) and \(ji \) represent the same edge. We first define the CB-nets used in our control problem. Rather than listing the individual CB-nets explicitly, we give the majority CB-net, which can correspond either to a single not-necessarily-consistent CB-net, or, by Proposition 1, to a collection of consistent CB-nets. In the construction we assume the degree of each vertex is 3 for simplicity; it is time to adapt the construction to the case where some vertices have degree less than 3.

1. there is an issue \(ij \) for every \(\{i, j\} \in E \) (with \(i < j \)); an done \((i) \) for every \(i = 0, \ldots, n \); and an issue done.

2. let \(0i \in E; 0j, 0k \) are the other two edges with 0 as extremity; and \(i, im \) are the other two edges with \(i \) as extremity. Then the parents of \(0i \) in the dependency graph are \(0j, 0k, il, im \) and done, and the table for issue \(0i \) is:

<table>
<thead>
<tr>
<th>0i</th>
<th>0j</th>
<th>0k</th>
<th>0m</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td></td>
<td></td>
<td>0i</td>
</tr>
<tr>
<td>0j</td>
<td>0k</td>
<td>0m</td>
<td>0i</td>
</tr>
</tbody>
</table>

 The \times \ notation refers to any possible status (\(T, L \) or unsigned) of the issues \(0j, 0k, il, im \), so, it is a shorthand for 16 conditional behaviors. “All other situations” is an abbreviation referring to all tuples not explicitly mentioned in the table. Using these abbreviations or not does not change anything regarding the polynomial size of the reduction, because each issue has at most three parents in the dependency graph.

3. let \(ij \in E \); \(i \neq 0, j \neq 0 \); let \(il, im \) be the other two edges with \(i \) as extremity, and \(jm, jq \) the other two edges with \(j \) as extremity. Then the parents of \(ij \) in the dependency graph are \(0i, 0j, 0k \) and the table for issue \(ij \) is:

<table>
<thead>
<tr>
<th>0i</th>
<th>0j</th>
<th>0k</th>
<th>0m</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td></td>
<td></td>
<td>0i</td>
</tr>
<tr>
<td>0j</td>
<td>0k</td>
<td>0m</td>
<td>0i</td>
</tr>
</tbody>
</table>

4. let \(0i, 0j, 0k \) be the three edges in \(G \) with 0 as extremity; then the parents of done(0i) in the dependency graph are \(0i, 0j, 0k \) and the table for done is:

<table>
<thead>
<tr>
<th>0i</th>
<th>0j</th>
<th>0k</th>
<th>0m</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td></td>
<td></td>
<td>0i</td>
</tr>
<tr>
<td>0j</td>
<td>0k</td>
<td>0m</td>
<td>0i</td>
</tr>
</tbody>
</table>

 all other situations: done(0i)
5. for $1 \leq i \leq n$, let i, j, k, l be the three edges in G with i as extremity; then, the parents of $\text{done}(i)$ in the dependency graph are ij, ik, il, and the table for $\text{done}(i)$ is

\[
\begin{array}{c|c|c|c}
ij & ik & il & done(i) \\
\hline
ij & \text{done}(i - 1) & done(i) & done(i) \\
ij & \text{done}(i) & \text{done}(i - 1) & done(i) \\
ij & \text{all other situations} & \text{done}(i) & done(i) \\
\end{array}
\]

6. the only parent of done is $\text{done}(n)$, and its table is

\[
\begin{array}{c|c|c|c}
\text{done}(n) & \text{done} & \text{all other situations} & \text{done} \\
\end{array}
\]

Finally, the goal of the chair depends on the version (local or global) of the constructive control problem. In the global version (Proposition 3), it is to get the outcome π' where every issue is assigned to \top. In the local version (Proposition 2), it is to get the issue done assigned to \top.

Note that this CB-net is not consistent. Take issue ij ($i, j \neq 0$). In situation $(ik, il, u(jm), u(jq))$, the decision is ij. In situation $(ik, il, u(jq), u(jq))$, it is \top too. But, in situation $(ik, u(il), u(jm), u(jq))$, the decision is ij. However, we note that an inconsistent CB-net can be obtained as the majority CB-net of a set of consistent CB-nets (Proposition 1).

The proof goes along the following lemmas.

Lemma 2 If there exists a Hamiltonian cycle, then there exists an order leading to π'.

Lemma 3 For any partial assignment π' of the issues, let $S(\pi')$ be the following subgraph of G: $ij \in S(\pi')$ if and only if ij has been assigned to \top under π'. Then, as long as done has not been assigned to \top, the following properties are true:

1. for every vertex i, $S(\pi')$ contains zero, one or two edges adjacent to i (never three);
2. if $S(\pi')$ contains no edge adjacent to 0, then $S(\pi')$ is empty;
3. if $S(\pi')$ contains one edge adjacent to 0, then there is exactly one $i \neq 0$ such that $S(\pi')$ contains one edge adjacent to i, and $S(\pi')$ is a single path going from 0 to i;
4. if $S(\pi')$ contains two edges adjacent to 0, then for every i, $S(\pi')$ contains zero or two edges adjacent to i, and $S(\pi')$ is a cycle including exactly the vertices i such that $S(\pi')$ contains two edges adjacent to i.

Lemma 4 $\text{done}(0)$ can be assigned to \top if and only if there are exactly two issues $0j, 0k$ that have been assigned to \top.

Lemma 5 For any $1 \leq i \leq n$, $\text{done}(i)$ can be assigned to \top if and only if $\text{done}(i - 1)$ has been assigned to \top, and there are exactly two issues ij, ik that have been assigned to \top.

Lemma 6 done can be assigned to \top if and only if there is a Hamiltonian cycle.

We only sketch the proofs of the lemmas. For Lemma 2, suppose w.l.o.g. that the Hamiltonian cycle is $(0, 1, 2, \ldots, n, 0)$. Consider the following order on issues: $01, 12, \ldots, n - 1, n, 0n, \text{done}(0), \text{done}(1), \ldots, \text{done}(n), \text{done}$, and then all remaining issues in any order afterwards. The answer given by the majority CB-net at each step is \top. The four points of Lemma 3 follow from the conditional behavior tables (points 3 and 4 are proven by induction on the number of issues assigned to \top). Lemmas 4 and 5 follow directly from the behavior tables for $\text{done}(i), i = 0, \ldots, n$. For Lemma 6, done is assigned to \top iff every $\text{done}(i)$ has been assigned to \top, which, by Lemma 5, implies that for every i, exactly two issues ij have been assigned to \top. Let π' be the current assignment.

Finally, we consider destructive control. For the local version, NP-completeness is a straightforward consequence of Proposition 2: being able to make sure that x_1 is assigned to \top is the same thing as being able to avoid that x_2 is assigned to \bot. This trivially gives us:

Proposition 5 Local destructive control is NP-complete.

However, we cannot use such an argument for the global version; it requires a separate reduction.6

Proposition 6 Global destructive control is NP-complete.

NP-hardness holds even if every issue is binary and the local rules are majority rules, and all the CB-nets are consistent.

Proof sketch. Membership in NP is straightforward. Hardness is by reduction from the NP-complete restriction of exact cover by 3-sets (X3C) where no element occurs in more than 3 subsets [Garey and Johnson, 1979]: given $X = \{v_1, \ldots, v_k\}, S = \{S_1, \ldots, S_t\}$, where for every $i \leq t, S_i \subseteq X$ and $|S_i| = 3$, and for all $j \leq q, \{S_j \in S : v_j \in S_i\} \leq 3$, decide whether there exists $S' \subseteq S$ such that $|S'| = \frac{3}{k}$, and $\bigcup_{S_i \in S'} S_i = X$.

6Conversely, Proposition 6 also does not seem to directly imply Proposition 3. In settings with a small number of alternatives, constructive control cannot be (significantly) easier than destructive control, because one approach for destructive control is simply to try constructive control on every other alternative. However, this argument does not work in multiattribute settings with exponentially many alternatives.
For any instance of this restricted version of X3C, we construct a global destructive control instance as follows. Let there be $t + 1$ issues, x, x_1, \ldots, x_i, and $2q + 1$ voters, $\pi_1, \ldots, \pi_{2q+1}$, such that: (1) for any $j \leq t$ and $i \leq q$, x_j is a parent of x_i in the dependency graph of π_i iff $v_i \in S_j$, and voter i votes for x to be \top iff exactly one of the parents of x_i has been assigned to \top; (2) for any $j \leq t$ and any $i \in \{1, \ldots, 2q+1\}$, voter i votes for x_j to be \top; (3) for any $i \in \{q + 1, \ldots, 2q\}$, voter i unconditionally votes for x to be \bot; (4) voter $2q + 1$ unconditionally votes for x to be \top.

Lastly, the chair wants to get an outcome different from $\neg x_1 \wedge \ldots \wedge \neg x_t$.

We first note that every x_i will unavoidably be assigned to \bot. Moreover, x will be assigned to \top if and only if every voter $i \leq q$ votes for x. Suppose there exists an exact 3-cover $\mathcal{S'}$. Without loss of generality, $\mathcal{S'} = \{S_1, \ldots, S_k\}$. Then, use the order $x_1 < \ldots < x_q < x < x_{q+1} < \ldots < x_t$. For each $i \leq q$, v_i is in exactly one element of $\mathcal{S'}$, therefore every voter $i \leq q$ will vote for x and x will be assigned to \bot.

Conversely, suppose the chair can avoid $\neg x_1 \wedge \ldots \wedge \neg x_t$, i.e., can ensure that x will be assigned to \top, which happens only if every voter $i \leq q$ votes for x. Without loss of generality, let the voting order be $x_1, \ldots, x_i, x, x_{i+1}, \ldots, x_t$. $S' = \{S_1, \ldots, S_t\}$ is an exact cover of \mathcal{S}, because the fact that voter i votes for x implies that v_i is exactly in one of the S_j.

Interestingly, destructive control becomes easy when all voters’ CB-nets have the same dependency graphs.

Proposition 7 Assume all CB-nets share the same directed graph G. Then global destructive control is in \mathcal{P}.

Proof sketch. Let $\vec{x} = (x_1, \ldots, x_n)$. The proof is based on the following fact: if all CB-nets share the same directed graph G, then there exists an order \mathcal{O} such that $\text{Seq}(O, \vec{x}) \neq \vec{x}$ iff there exists an issue x_i and a $K \subseteq \text{Par}(\mathcal{O})$ such that a majority of voters vote for $\neg x_i$ in the situation $\{x_j \mid x_j \in K \} \cup \{u(x_j) \mid x_j \in \text{Par}(i) \setminus K\}$. Since the size of the CB-nets is exponential in the maximum indegree of G, the number of subsets to check is polynomial in the size of the input, hence the result.

5 Conclusion

In this paper we have shown that although sequential voting is susceptible to control via the order in which the issues are decided on, this control problem is \mathcal{NP}-complete in most cases (for all the variants of this type of control – local or global, constructive or destructive), which is a positive argument for using sequential voting until all cases. We note that the sparser the constructive or destructive), which is a positive argument for

Of course, these results are worst-case results, and it would be nice to have results about the frequency of easy control, along the same lines as some recent results in the case of manipulation. We can also consider various generalizations of the sequential voting framework, including allowing some issues to be decided in parallel, or allowing for the chair to have some uncertainty about voters’ preferences.