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Abstract. In the seminal paper [6], Gerd Brewka argued that ranking a set of
default rules without prerequisites, and selecting extensions according to a lexi-
cographic refinement of the inclusion ordering proves to be a natural, simple and
efficient way of dealing with the multiple extension (or “subtheories”) problem.
This natural idea has been reused, discussed, revisited, reinvented, adapted many
times in the AI community and beyond. Preferred subtheories do not only have an
interest in default reasoning, but also in reasoning about time, reasoning by anal-
ogy, reasoning with compactly represented preferences, judgment aggregation,
and voting. They have several variants (but arguably not so many). In this short
paper I will say as much as I can about preferred subtheories in sixteen pages.

1 Prioritized Default Theories and Preferred Subtheories

Preferred subtheories were introduced in [6] as a way of representing and exploiting
priorities between default rules. Their starting point was the THEORIST system [28] for
default reasoning. In Poole’s system – equivalent to the restriction of Reiter’s default
logic to normal defaults without prerequisites – a default theory is a set of facts F
plus a set of hypotheses Δ (both composed of logical formulas) and an extension is
the set of logical consequences of a set-inclusion maximal subset D of Δ such that
D ∪ F is consistent. In spite of the (apparently drastic) restriction to normal defaults
without prerequisites, this system is able to deal adequately with many of the standard
default reasoning examples from the literature, but not all, because of the impossibility
of expressing priorities between defaults. Let me reuse this example from [6], suggested
to Gerd Brewka by Ulrich Junker.

“Usually one has to go to a meeting.
This rule does not apply if somebody is sick, unless he only has a cold.
The rule is also not applicable if somebody is on vacation.”

As shown by [6] (Section 3), given that the person is sick, the natural writing of this
example in Poole’s system generates two extensions: one where she has to attend the
meeting and one where she does not. In order to avoid this, one would need to

“(...) look down in the hierarchy of exceptions and block defaults lower in the
hierarchy. (...) the number of defaults may increase heavily in cases where more
exceptions and exceptions of exceptions are involved”
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which is arguably unpleasant and inefficient. The core of the problem is the impos-
sibility to express that a default has a priority over an other default – in this case, when
an agent only has a cold and is on vacation, the rule that someone on vacation does not
have to attend should have priority over the rule that someone who has only a cold has
to attend. This inability to represent priorities in Poole’s system was Brewka’s motiva-
tion for generalizing it by introducing explicit priorities among defaults. By convention,
degree 1 corresponds to the highest priority defaults.

Definition 0. A ranked default theory T is a tuple (T1, . . . , Tn) where each Ti is a set
of classical first-order (possibly open) formulas. Without loss of generality, we assume
that all formulas appearing in T are different.1

The meeting example is expressed as

T1 = { cold → sick, vacation → ¬r1, cold → ¬r2,
r2 ∧ sick → ¬r1, r1 → meeting }

T2 = {r2}
T3 = {r1}
while the classical Tweety story is expressed as

T1 = {bird(tweety), ∀x.penguin(x) → bird(x)}
T2 = {penguin(x) → ¬flies(x)}
T3 = {bird(x) → flies(x)}
Now, it remains to define the preferred subtheories of a ranked default theory. This

beautiful yet simple notion has several equivalent characterizations, each of which can
be used as a definition. Below we give no less than six definitions; two others will come
in Section 2.

We first define a subtheory of T as a tuple S = (S1, . . . , Sn) with Si ⊆ Ti for each
i, and such that ∪iSi is consistent. By abuse of language, we also consider S as a subset
of T , that is, we sometimes note δ ∈ S for (δ ∈ Si for some i). The first definition we
give is Brewka’s original definition [6]. In all definitions, T = (T1, . . . , Tn) is a ranked
default theory and S = (S1, . . . , Sn) is a subtheory of T .

Definition 1 (preferred subtheories, first definition). S is a preferred subtheory of T
iff for all k = 1, . . . , n, S1 ∪ . . . ∪ Sk is a maximal consistent subset of T1 ∪ . . . ∪ Tk.

To paraphrase the definition in the author’s terms:

“(...) to obtain a preferred subtheory of T we have to start with any maximal
consistent subset of T1, add as many formulas from T2 as consistently can be
added (in any possible way), and continue this process for T3, . . . , Tn.”

This explanation does not in fact correspond to Definition 1, but to the following
equivalent, more constructive definition with a clear algorithmic flavour, which is also

1 This is without loss of generality, because if a formula appears several times, all its occurrences
except one can be rewritten into syntactically different, equivalent formulas. We could have
chosen to allow some formulas to appear several times, but then each Ti should be defined as
a multiset rather than a set, and this would be slightly more complicated.
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the definition used for prioritized removal in prioritized base revision [25]. Given two
sets of formulas F and G, we say that G′ ⊆ G is maximal F -consistent if G′ ∪ F is
consistent and for all G′′ such that G′ ⊂ G′′ ⊆ G, G′′ ∪ F is inconsistent.

Definition 2 (preferred subtheories, second definition). S is a preferred subtheory of
T iff for all i = 1, . . . , n, Si is a maximal (S1 ∪ . . . Si−1)-consistent subset of Ti.

In the meeting example, if we add the facts F = {cold, vacation} to T1, then
meeting is not derived from the preferred subtheory F ∪ T1; but if we add only
F ′ = {cold}, then the preferred subtheory is F ′ ∪ T1 ∪ {r1}, and meeting is derived,
and if we don’t add any fact, then the preferred subtheory is T1 ∪ {r1, r2}, and again,
meeting is derived. In the Tweety example, the only preferred subtheory is T1∪T2 and
allows to derive ¬flies(Tweety).

Here is another example with more than one preferred subtheory: T = T1 ∪ T2 ∪ T3

with T1 = {a∨b, a → c}, T2 = {¬a,¬b}, T3 = {¬c}. T has two preferred subtheories:
T1 ∪ {¬a,¬c} and T1 ∪ {¬b}.

Two dual notions of provability from a default theory can be defined: given a default
theory T , formula α is strongly provable from T if for every preferred subtheory S of
T we have S |= α, and weakly provable from T if for some preferred subtheory S
of T we have S |= α. These notions come back to Rescher [29] and have been used
and discussed many times afterwards, under different names such as credulous and
skeptical inferences, in various areas such as nonmonotonic reasoning, belief revision,
inconsistency-tolerant reasoning, argumentation, and beyond (see, e.g., [9,4]). In this
short paper we focus on subtheories and won’t discuss inference again.

The third definition is the basis of Brewka’s second generalization of Poole’s system
[6], introduced for priority orders between defaults that are strict partial orders (see
Section 2.1). It says that a preferred subtheory can be obtained by consistently adding
formulas in any possible order that respects the priority relation. Given two defaults δ, δ′

of T , let r(δ) be the integer i such that δ ∈ Ti.2 A ranking of T is a bijective mapping
σ from {1, . . . , |T |} to T ; for all i ≤ |T | we note σ(i) = δi. We say that σ respects T
iff for all δi, δj ∈ T , r(δ) < r(δ′) implies i < j.

Definition 3 (preferred subtheories, third definition). S is a preferred subtheory of
T if there is a ranking σ of T respecting T , such that S = Sσ , where Sσ is defined
inductively by:

Σ0 = ∅
for i = 1, . . . , n do

if Σi−1 ∪ {δi} is consistent then
Σi = Σi−1 ∪ {δi}

else
Σi = Σi−1

end if
end for
return Sσ = Σ

2 Recall that we assumed that Ti ∩ Tj = ∅ for i �= j.
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The next definition is based on the “discrimin” order (the terminology comes from
[16]); it appears under different forms in [21] (there the definition works also for par-
tially ranked default theories), [11] (under the name “democratic”), and [19] (in the
context of soft constraint satisfaction problems).

Definition 4 (preferred subtheories, fourth definition). Let S and S′ be two subtheo-
ries of T . Define MinIndex(S\S′) = min{j|Sj \S′

j �= ∅}. We say that S is discrimin-
preferred to S′ with respect to T , denoted by S discrimin

T S′, if MinIndex(S \S′) <
MinIndex(S′ \ S). Finally, S is a preferred subtheory of T if there is no consistent
subtheory S′ of T such that S′ discrimin

T S.

The next definition we give is from [17,3].

Definition 5 (preferred subtheories, fifth definition). Let S and S′ be two subtheo-
ries of T . We say that S is preferred to S′ with respect to T , denoted by S T S′, if and
only if there is some k ≤ n such that

– for all i ≤ k, Si = S′
i;

– Sk ⊃ S′
k.

Finally, S is a preferred subtheory of T if there is no subtheory S′ of T such that
S′ T S.

The last definition is semantical, as it is based on a preference relation over inter-
pretations. Let PS be the set of propositional symbols on which the formulas of T are
defined. Given an interpretation I ∈ 2PS , and a default theory, we define Sat(Ti, I) =
{δ ∈ Ti | I |= δ} and Sat(T, I) = (Sat(T1, I), . . . , Sat(Tn, I)). Note that Sat(T, I)
is a subtheory of T .

Definition 6 (preferred subtheories, sixth definition). Given two interpretations I,
I ′ ∈ 2PS , we say that I is preferred to I ′ with respect to T , denoted by I T I ′, if and
only if there is some k ≤ n such that

– for all i ≤ k, Sat(Tk, I) = Sat(Tk, I
′).

– Sat(Ti, I) ⊃ Sat(Ti, I
′).

Finally, I is a preferred model with respect to T iff there is no I ′ such that I ′ T I ,
and S is a preferred subtheory of T if there exists a preferred model I with respect to T
such that Sat(T, I) = S.

Proposition 1. Definitions 1, 2, 3, 4, 5 and 6 are equivalent.

This result is more or less a “folklore” result3, in the sense that most equivalences
are already known without there being an well-identified reference for them. Still,
some equivalences have been proven in [3,16] (and probably elsewhere, I apologize

3 Ulrich Junker made me notice that “folklore” may be understood by some people in a pejo-
rative way (e.g., for unproven claims). It should be clear that the meaning I give here to this
word is the same as there:
http://en.wikipedia.org/wiki/Mathematical_folklore

http://en.wikipedia.org/wiki/Mathematical_folklore
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for missed references). I however give a proof (in Appendix), not only for the sake
of completeness, but also because I cannot see a place where all these definitions are
assembled and proven equivalent.

While the notion of preferred subtheory is based on set inclusion, there is a natural
variant, defined in [3], based on cardinality. Our definition is a variant of the second
definition of a preferred subtheory. If X and Y are two sets of formulas, a maxcard
X-consistent subset of Y is a X-consistent subset Z of Y such that for all Z ′ ⊆ Y , Z ′

is X-consistent implies |Z ′| ≤ |Z|.
Definition 7 (cardinality-preferred subtheories, first definition). S is a C-preferred
subtheory of T iff for all k = 1, . . . , n, Si is a maxcard (S1∪. . . Si−1)-consistent subset
of Ti.

Again we have equivalent definitions, but less than for preferred subtheories. The
second definition has been proposed by [17,3] under the name “lexicographic preferred
subbases” and in [24] under the name “lexicographic closure”.

Definition 8 (cardinality-preferred subtheories, second definition). S is a C-
preferred subtheory of T if there is no subtheory S′ of T such that S′ C

T S, where
S′ C

T S if for some k ≤ n we have

– for all i ≤ k, |Si| = |S′
i|;

– |Sk| > |S′
k|.

Definition 9 (cardinality-preferred subtheories, third definition). Define I ′ C
T I if

and only if there is some k ≤ n such that

– for all i ≤ k, |Sat(Ti, I)| = |Sat(Ti, I
′)|.

– |Sat(Tk, I)| > |Sat(Tk, I
′)|.

Then S is a C-preferred subtheory of T if S = Sat(T, I) for some C-preferred model I
with respect to T , where I is C-preferred w.r.t. T if there is no I ′ such that I ′ C

T I .

Proposition 2. Definitions 7, 8 and 9 are equivalent.

This is again a “folklore” result. We omit the proof, which is similar to the proof of
Proposition 1.

While Definitions 3 and 4 do not seem to be adaptable to cardinality-preferred sub-
theories, Definition 1 can, but interestingly, leads to a more conservative notion, based
on first-order stochastic dominance:

Definition 10 (SD-preferred subtheories, first definition). S is an SD-preferred sub-
theory of T iff for all k = 1, . . . , n, S1 ∪ . . . ∪ Sk is a maxcard consistent subset of
T1 ∪ . . . ∪ Tk.

Again is is possible to give two equivalent definitions (which we omit).
Let PST (T ) be the set of preferred subtheories of T , CPST (T ) be the set of C-

preferred subtheories of T , and SDPST (T ) be the set of SD-preferred subtheories of
T . Then we have these straightforward facts:
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1. PST (T ) ⊇ CPST (T ) �= ∅.
2. if SDPST (T ) �= ∅ then CPST (T ) = SDPST (T ).

Sometimes the set of SD-preferred subtheories is empty. Let T = ({a∧b}, {¬a,¬b}).
T has a single C-preferred subtheory, namely S = ({a ∧ b}, ∅). However S is not a
SD-preferred subtheory of T , because {a∧b} is not a maxcard subset of {a∧b,¬a,¬b}.

2 What For? Where Do Priorities Come From?

One key question is, where do these priorities come from, what do they correspond to?
As we will see below, there is not a single but a lot of different interpretations of prior-
ities, in various domains of knowledge representation, reasoning, and decision making,
which in turn correspond to various understandings of preferred subtheories. I will re-
view here several such interpretations – no less then five, and I’m sure I forget some.
Two of these interpretations will allow us to derive new equivalent characterizations of
preferred subtheories, in case the reader would think we don’t have enough with the six
already stated.

2.1 Default Reasoning

The interpretation that Brewka had in mind in [6] was default reasoning. Priorities there
correspond to a precedence order bearing on the application of default rules, and allow-
ing to choose between multiple extensions. The examples he uses (two of which are
quoted in Section 1) are of that kind: the rule that penguins do not fly has precedence
over the rule that birds fly, in the sense that when both are “candidate for application”,
the first one should be applied first (which, here, implies that the second one will not be
applied). While [6] deals with normal defaults without prerequisites, also called super-
normal defaults, he goes further in [7] and extends the framework to normal defaults.

Brewka argues that there are two kinds of priorities: explicit and implicit priorities,
that I’d prefer to call exogeneous and endogeneous. Quoting from [7]:

A number of different techniques for handling priorities of defaults have been
developed. Two main types of approaches can be distinguished:
1. approaches which handle explicit priority information that has to be spec-

ified by the user and is not part of the logical language (...)
2. approaches which handle implicit priority information based on the speci-

ficity of defaults (...).
(...) For real world applications it seems unrealistic to assume that all relevant
priorities can be specified by the user explicitly. On the other hand, specificity
as the single preference criterion is (...) insufficient in many cases.

As a consequence, he argues that both types of priorities should be handled together
in an homogeneous way.

Deriving priorities from specificity relations between default rules originates in the
work on conditionals by [1] and was given more attention in a number of papers start-
ing from Pearl’s System Z [27]. This systematic construction of priorities from the
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expression of defaults is beautiful and elegant, but insufficient when the defaults are not
ordered into a single specificity hierarchy: for instance, if Δ contains δ1 = birds fly, δ2
= birds that can be seen in Antarctica don’t fly, δ3 = birds that can be seen in Antarctica
because they escaped from a ship fly, δ4 = birds that can be seen in Antarctica because
they escaped from a ship but had their wings broken during the trip don’t fly, δ5 = lions
eat meat, δ6 = vegetarian lions don’t eat meat, then System-Z will produce the following
ranking: δ4 ∼ δ6 > δ3 ∼ δ5 > δ2 > δ1. While it does make sense to order δ4, δ3, δ2
and δ1 this way, and similarly, to rank δ6 over δ5, does it make sense to give δ5 and δ3
the same rank, and a fortiori, that δ5 should have priority over δ2? Of course not: either
the order between {δ1, δ2, δ3, δ4} and {δ5, δ6} should be given exogeneously (by some
expert in zoology, for instance), or there should be no order between them. For this, a
generalization of preferred subtheories to partially ordered defaults is proposed in [6]. It
is a generalization of Definition 3: instead of starting from a complete weak order over
defaults, we start from a partial order > between defaults and we say that a bijective
mapping σ from {1, . . . , |T |} to T respects (T,>) iff for all δ, δ′ ∈ T , δ > δ′ implies
σ−1(δ) < σ−1(δ′). The rest of the definition is unchanged.

2.2 Goal-Based Preference Representation

So far we considered a ranked base as being composed of beliefs; these beliefs may
take the form of facts with some degree of reliability, facts that persist through time
with some degree of certainty (see further), rules with possible exceptions, actions with
normal and exceptional effects, and so on, but in all cases they deal with an agent’s
doxastic and epistemic state (her beliefs, her knowledge). Now, ranked bases can also be
used with a totally different meaning, so as to express the preferential state of an agent,
that is, her preferences, goals, desires. The difference between beliefs and preferences
is paramount to decision theory – in standard decision theory, beliefs are expressed by
probability distributions over states of the world whereas preferences are expressed by
utility values over possible consequences of the acts.

Because of this, in this subsection we change the terminology – and notation. A
ranked goal base, or prioritized goal base, is defined exactly as a stratified belief base:
it is a tuple (G1, . . . , Gn) where each Gi is a set of classical formulas, representing the
agent’s goals of priority degree i – with the convention that lower indexes correspond
to more important goals.

Prioritized goals bases prove to be a very efficient way of representing succinctly
preferences over combinatorial domains of solutions to a decision problem. Let me
quote [8]:

“By a solution we mean an assignment of a certain value d to each variable
v in given set of variables V such that d is taken from the finite domain of
v. (...) [In] the Boolean case where the values for each variable are true or
false (...), solutions (...) correspond to interpretations in the sense of classical
propositional logic. (...)
We are (...) looking for ways of specifying preferences among such models in
a concise yet flexible way. (...)
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The number of models is exponential in the number of variables. For this reason
it is, in general, impossible for a user to describe her preferences by enumer-
ating all pairs of the preference relation among models. This is where logic
comes into play.”

Using prioritized bases for succinct preference representation has been discussed in
a few papers that all appeared around the same time: [8] defines a general rank-based
preference representation language (see further); [22] focuses on the complexity of the
computational tasks; and [12] on the expressivity and the succinctness of these lan-
guages. Note that here we are no longer interested in preferred subtheories themselves,
but in the preference relation between solutions: again quoting [8],

“Traditionally, logic is used for proving theorems. Here, we are not so much
interested in logical consequence, we are interested in whether a model satisfies
a formula or not.”

Thus, the definition that makes most sense here is the sixth one, which we rewrite
here into: I G I ′ if and only if there is some k ≤ n such that Sat(Gk, I) ⊃
Sat(Gk, I

′) and for all i ≤ k, Sat(Gi, I) = Sat(Gi, I
′). Moreover, I ∼G I ′ if and

only if Sat(Gi, I) = Sat(Gi, I
′) for all i ≤ n, and I �G I ′ if I G I ′ or I ∼G I ′.

The two cardinality-based notions are now rewritten as follows:

– I ′ C
T I if and only if there is some k ≤ n such that |Sat(Gk, I)| > |Sat(Gk, I

′)|
and for all i ≤ k, |Sat(Gi, I)| = |Sat(Gi, I

′)|. Moreover, I ∼C
G I ′ if and only if

for all i ≤ n, |Sat(Gi, I)| = |Sat(Gi, I
′)|; and I �C

G I ′ if I C
G I ′ or I ∼C

G I ′.
– I ′ �SD

G I if and only if for all k ≤ n, |Sat(G1 ∪ . . . ∪Gk, I)| ≥ |Sat(G1 ∪ . . . ∪
Gk, I

′)|.
The following implications are parts of the “folklore”: I ′ �SD

G I implies I ′ �C
G I ,

and I ′ �G I implies I ′ �C
G I . Note also that �C

G is a complete weak order, whereas
�G and �SD

G are partial orders.
These three ways of deriving a preference relation from a prioritized goal base can

be characterized utility-theoretically. Given a goal base G = (G1, . . . , Gn) with Gi =
{gji , j = 1, . . . ,mi}, we say that (uj

i |i = 1, . . . , n; j = 1, . . . ,mi), where each uj
i is a

strictly positive real number, is a utility vector for G.
Given a utility vector u for G, and an interpretation I , define

uG(I) =
∑{

uj
i | i ≤ n; j ≤ mi; I |= gji

}
,

that is, each goal induces a fiwed reward if it is satisfied by I , and 0 if not.
We now consider three restrictions on utility vectors. A utility vector u for G is

– uniform if for all i ≤ n and all j, j′ ≤ mi, we have uj
i = uj′

i .
– faithful if for all i < k ≤ n, j ≤ mi, l ≤ mk, we have uj

i > ul
k.

– big-stepped if for all i ≤ n and all j ≤ mi, we have uj
i >

∑n
k=i+1

∑mk

l=1 u
l
k.

Note that any big-stepped vector is faithful.4 The next result gives one more charac-
terization of preferred subtheories and its two variants.

4 The terminology “big-stepped” comes from [15].
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Proposition 3. Let G be a goal base and I, I ′ two interpretations.

1. I G I ′ if and only if uG(I) > uG(I
′) holds for all big-stepped vectors u for G.

2. I C
G I ′ if and only if uG(I) > uG(I

′) holds for all uniform and big-stepped
vectors u for G.

3. I SD
G I ′if and only if uG(I) > uG(I

′) holds for all uniform and faithful vectors
u for G.

Point 1 leads to a seventh definition of a preferred subtheory:

Definition 11 (preferred subtheories, seventh definition). S is a preferred subtheory
of T if and only if S = Sat(T, I) for some interpretation I such that for all big-stepped
vectors u for T , there is no I ′ such that uT (I

′) > uT (I).

Once these different semantics for defining a preference relation from a prioritized
goal base are defined, they can be combined: [8] defines a language allowing to express
Boolean combinations of prioritized goals bases, possibly with different semantics.

Since prioritized goal bases can be used for representing compactly preferences over
combinatorial domains, they can be used efficiently in several domains where prefer-
ence play a role and where domains are typically of this kind, such as planning [20],
game theory [5] or voting [22].

2.3 Reliability

We now come back to the primary interpretation of ranked bases as belief bases. Perhaps
the most obvious interpretation of a ranked belief base is that each formula is a piece of
information that has been provided by some unreliable source. This is also the interpre-
tation at work in prioritized merging [14], where preferred subtheories and C-preferred
subtheories are used for defining prioritized merging operators. Let B = (B1, . . . , Bn)
where Bi = {bji | j = 1, . . . ,mi}. For every formula bji in Bi we define a source σj

i

with reliability degree pji ∈ (12 , 1) for all i, j (sources have a bias towards reliability,
and no source is perfectly reliable). The reliability of a source is the likelihood that it
tells the truth about pji , that is pji = Prob(σj

i : bji | bji ) = Prob(σj
i : ¬bji | ¬bji ), where

σj
i : ϕ is the event “σj

i says ϕ”. Let σ : B be the conjunction of all events σj
i : bji : infor-

mally, B is observed if all sources give the formulas that are contained in B. Now, let
S = (S1, . . . , Sn) be a consistent subbase of B. The likelihood of observing B given
that the “true” subbase of B (the one composed of the fomulas of T that are true in the
actual world) is S is

Prob(σ : B | S) =
∏

(i,j):bji∈S

pji
∏

(i,j):bji /∈S

(1− pji )

Now we have
logProb(s : B|S) = ∑

(i,j):bji∈S log pji +
∑

(i,j):bji /∈S log(1− pji )

=
∑

(i,j)|i≤n,j≤mi
log(1− pji ) +

∑
(i,j):bji∈S log

(
pj
i

1−pj
i

)

= α+
∑

(i,j):bji∈S log
(

pj
i

1−pj
i

)

where α is a constant, independent of S. Define p as: S p S′ if and only if Prob(σ :
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B | S) ≥ Prob(σ : B | S′). Now, let uj
i = log

(
pj
i

1−pj
i

)
. We have that S p S′

if and only if
∑

(i,j):bji∈S uj
i >

∑
(i,j):bji∈S′ u

j
i ; furthermore, if S = Sat(T, I) and

S′ = Sat(T, I ′), then S p S′ if and only if u(IS) > u(IS′). This correspondence
allows to translate the conditions of Proposition 3 in probabilistic terms. Say that p is

– uniform if for all i ≤ n and all j, j′ ≤ mi, we have pji = pj
′

i .
– faithful if for all i < k ≤ n, j ≤ mi, l ≤ mk, we have pji > plk.

– big-stepped if for all i ≤ n and all j ≤ mi, we have pj
i

1−pj
i

>
∏n

k=i+1

∏mk

l=1
pl
k

1−pl
k

.

Corollary 1. Let B be a goal base and S, S′ two subbases of B.

1. S B S′ if and only if S p S′ holds for all big-stepped vectors p for B.
2. S C

B S′ if and only if S p S′ holds for all uniform, big-stepped vectors p for B.
3. S SD

B S′if and only if S p S′ holds for all uniform, faithful vectors p for B.

Point 1 leads to an eighth definition of a preferred subtheory:

Definition 12 (preferred subtheories, eighth definition). S is a preferred subtheory
of T if there is no consistent subtheory S′ of T such that S p S′ holds for all big-
stepped vector p for B.

2.4 Time, Space, Analogy

A context where prioritized defaults oocur in a natural way is that of time-stamped data
bases: there, priorities correpond to recency, and a fact observed at time t − 1 is more
likely to have persisted until t than a fact observed at time t− 2.

Example 1
now : a ∨ b
now − 1 : a → c
now − 2 : ¬a,¬b
now − 3 : ¬c

If we focus on what holds now, then this scenario gives us the ranked default theory
(T1 = {a ∨ b}, T2 = {a → c}, T3 = {¬a,¬b}, T4 = {¬c}) – with two preferred
subtheories {a∨b, a → c,¬a,¬c} and {a∨b, a → c,¬b}.. However, default persistence
does not only work forward but also backward: if a ∨ b holds now, by default it holds
also at now − 1, etc. If we focus on what holds at now − 3, we get the ranked default
theory (T1 = {¬c}, T2 = {¬a,¬b}, T3 = {a → c}, T4 = {a ∨ b}) with one preferred
subtheory T1 ∪ T2 ∪ T3. If we focus on what holds at now − 1, this becomes more
complicated: should we have the ranked default theory (T1 = {a → c}, T2 = {a ∨
b,¬a,¬b}, T3 = {¬c}), that is, should the information at now and the information
at now − 2 count equally, or should we rather have a partially ordered default theory
a → c > a∨ b, a → c > ¬a,¬b > ¬c}, and apply the second generalization of [6]? (In
both cases we get three preferred subtheories {a → c, a∨b,¬a,¬c}, {a → c, a∨b,¬b}
and {a → c,¬a,¬b,¬c}.
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Other natural examples involve reasoning about spatial observations, about case-
labelled facts (reasoning by analogy, case-based reasoning), about ontologies. A more
general framework where priorities come from distances between ‘labels’ (such as time
points, points in space, cases, classes) and where observations are labelled, is described
in [2].

2.5 Judgment Aggregation and Voting

Given a set of formulas A = {α1,¬α1, . . . , αm,¬αm} closed under negation (called
the agenda), a judgment set is a consistent subset of A containing, for all i, either αi or
¬αi, and a profile is a collection of n individual judgment sets. An (irresolute) judgment
aggregation rule maps a profile into a set of collective judgment sets. As common in
social choice, there is a tension between respecting majority and requiring consistency
of the collective judgment sets.

An interesting family of judgment aggregation rules is composed of rules that are
based on the support of a profile, that is, the vector containing, for each element of the
agenda, the number of individual judgment sets that contain it. For instance, if A =
{p,¬p, q,¬q, p ∧ q,¬(p ∧ q)}, and P = 〈J1, J2, J3, J4, J5, J6, J7〉 where J1 = J2 =
J3 = {p, q, p∧ q}, J4 = J5 = {¬p, q,¬(p∧ q)} and J6 = J7 = {p,¬q,¬(p∧ q)}, the
support vector associated with P is sP = 〈5, 2, 5, 2, 3, 4〉. Now, define the prioritized
base T (P ) where priorities correspond to strength of support: in our example, T1(P ) =
{p, q} (support 5), T2(P ) = {¬(p ∧ q)} (support 4), T3(P ) = {p ∧ q} (support 3),
and T4(P ) = {¬p,¬q} (support 2). Given a profile P , Nehring et al. [26] define a
supermajority efficient judgment set as (reformulated in my terms) a SD-undominated
subtheory of T (P ), and define the so-called leximin judgment aggregation rule as the set
of C-preferred subtheories of T (P ), while Lang et al. [23] define the so-called ranked
agenda rule as the set of preferred subtheories of T (P ). See also [18] for a discussion
on these rules.

These connections between judgment aggregation rules and preferred theories and
their variants carry on to voting rules, which is not surprising given that preference
aggregation can be see as a specific case of judgment aggregation. The ranked pairs
voting rule [30] thus corresponds to the ranked agenda rule, when the agenda consists
of propositions of the form xPy (“x is preferred to y”), where x and y range over a
set of candidates, together with the transitivity constraint bearing on judgment sets. In
other terms, this means that the ranked pairs voting rule can be seen as a specific ap-
plication of preferred subtheories. This is is probably the first time that this connection
between this well-known voting rule (and the corresponding judgment aggregation rule)
is mentioned; interestingly, the ranked pairs rule and preferred subtheories have been
invented roughly at the same time, in two research areas that were (at the time) totally
disconnected from each other. Let me end up with an example.

Example 2. Let the set of candidates be C = {a, b, c, d} and the 38-voter profile P
consisting of 5 votes abdc (with the usual convention that abdc is a shorthand for a 
b  d  c), 7 votes cdab, 8 votes bcad, 7 votes dabc, 4 votes dcab, 3 votes cbda, 2 votes
bacd, 1 vote dbca and 1 vote acdb. The pairwise majority matrix is
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a b c d
a − 24 15 16
b 14 − 23 18
c 23 15 − 21
d 22 20 17 −

and the corresponding prioritized base is T (P ) = (T1(P ), T2(P ), . . . , T11(P ))), where
T1(P ) = Trans is the transitivity constraint, T2(P ) = {aPb}, T3(P ) = {bPc, cPa},
T4(P ) = {dPa}, T5(P ) = {cPd}, T6(P ) = {dPb}) etc. The preferred subtheories
of T (P ) are {Trans, aPb, bPc, dPa, dPb, aPc, dPc}, corresponding to the collective
ranking dabc and to the winner d, and {Trans, aPb, cPa, dPa, cPd, dPb, cPb}, cor-
responding to the collective ranking cdab and to the winner c.

Note that taking C-preferred subtheories instead of preferred subtheories leads to a
refinement of the ranked pairs rules (in our example, the sole winner for this rule is c).

3 Conclusion

We have seen that preferred subtheories and their extensions and variants have had a
tremendous impact in the Artificial Intelligence literature and beyond, and are tightly
connected to notions that have been developed independently in social choice. If I had
more pages, I could talk for instance about the computation of preferred subtheories
and inferences therefrom (e.g., [10,13]. A further question is, is logic really useful when
defining preferred subtheories? We have seen at least one example (voting) where logic
isn’t necessary at all. After all, all we use from logic is the notion of consistency. When
defining the ranked pairs voting rule, a weighted graph plays the role of the ranked base,
and acyclicity plays the role of consistency. How can we define an abstract (logic-free)
notion of preferred subtheory and what about other applications and/or connections?

Acknowledgements. Thanks to Richard Booth and Ulrich Junker for helpful com-
ments on a previous version of this paper.
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Appendix

Proof of Proposition 1

Proof. Throughout the proof, we say that S is a i-PST of T (where 1 ≤ i ≤ 6) if S is a
preferred subtheory of T according to Definition i. Let S be a subtheory of T .

– 1 ⇒ 2: Assume that S is not a 2-PST of T ; then for some i there is S′
i ⊃ Si such

that S′
i is S1 ∪ . . . ∪ Si−1-consistent. Since S1 ∪ . . . ∪ Si−1 ∪ S′

i is consistent and
S1∪ . . .∪Si−1∪Si ⊂ S1∪ . . .∪Si−1∪S′

i, S1∪ . . .∪Si is not a maximal consistent
subset of T1 ∪ . . . ∪ Ti, henceforth, not a 1-PST of T .

– 2 ⇒ 1: Assume that S is not a 1-PST of T ; then for some i, S1 ∪ . . . ∪ Si is not a
maximal consistent subset of T1 ∪ . . . ∪ Ti. Let S′

1 ∪ . . . S′
i ⊃ S1 ∪ . . . ∪ Si be a

maximal consistent subset of T1 ∪ . . . ∪ Ti and let j = min{i, Si �= S′
i}. Then S′

j

is a S1 ∪ . . . ∪ Sj−1 consistent subset of Tj , which implies that Sj is not, and that
S is not a 2-PST of T .

– 4 ⇒ 2: Assume that S is not a a 2-PST of T ; then for some i there is S′
i ⊃ Si

such that S′
i is S1 ∪ . . . ∪ Si−1-consistent. Let S′ = S1 ∪ . . . ∪ Si−1 ∪ S′

i. S
′ is a

subtheory of T and we have MinIndex(S′ \ S) = i and MinIndex(S \ S′) > i,
therefore S is not a a 4-PST of T .

– 5 ⇒ 4: Assume that S is not a 4-PST of T ; then for some S′ we have MinIndex
(S′ \S) ≤ MinIndex(S \S′). Since MinIndex(S′ \S) = MinIndex(S \S′) is
not possible, we must have MinIndex(S′ \ S) = k < MinIndex(S \ S′). Now,
for all j < k we have Sj = S′

j and S′
k ⊃ Sk, therefore S is not a 5-PST of T .

– 2 ⇒ 3: assume S is a 2-PST of T . Let us construct σ this way: σ considers first
formulas of S1 (in any order), followed by formulas in T1 \ S1 (in any order), then
S2 then T2 \S2, etc. until Tn \Sn. We show by induction on i that after considering
all formulas of Ti, we have Σt(i) = S1 ∪ . . . ∪ Si, where t(i) = |T1 ∪ . . . ∪ Ti|.
This is true for i = 1, because S1 is maximal consistent. Assume it is true for i, i.e.,
Σt(i) = S1∪ . . .∪Si. Because S is a 2-PST of T , Si+1 is (S1∪ . . .∪Si)-consistent,
therefore, all formulas of Si+1 are added, and because it is maximal (S1∪ . . .∪Si)-
consistent, none of the formulas of Ti+1 \ Si+1 are added. Therefore, at the end of

http://ideas.repec.org/p/pra//46721.html
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step t(i) Σt(i+1) = S1 ∪ . . . ∪ Si+1. Applying the induction hypothesis to i = n
leads to Sσ = Σt(n) = S: S is a 3-PST of T .

– 3 ⇒ 6: Let S be a 3-PST of T and let σ such that Sσ = S. Note that S is necessarily
maximal consistent: if there was δ ∈ T \ S such that S ∪ {δ} is consistent, then δ
would have been added to Σ when considered; therefore, there exists I such that
Sat(T, I) = S. Assume S is not a 6-PST of T : then there is I ′ T I , that is, for
some k, we have that for all i < k, Sat(Ti, I) = Sat(Ti, I

′), and Sat(Tk, I) ⊂
Sat(Tk, I

′). But then, when the defaults of Tk are considered for addition to Σ, all
formulas of Sat(Tk, I

′) \ Sat(Tk, I) should have been added, which contradicts
Sσ = S.

– 6 ⇒ 5: Assume that S is a 6-PST of T : there is an I such that Sat(T, I) = S.
Assume that S is not a 5-PST of T : then there is an S′ such that S′ T S. Because
S′ ⊂ S′′ ⊆ T implies S′ T S, there is a maximal consistent subset S′′ of T
such that S′′ T S. Let S′′ = Sat(T, I ′′): then I ′′ T I , which contradicts the
assumption that S is a 6-PST of T .

Proof of Proposition 4

Proof. 1. Assume I G I ′ and let k such that Sat(Gj , I) = Sat(Gj , I
′) for all

j < k, and Sat(Gk, I) ⊃ Sat(Gk, I
′). Let u be a big-stepped vector for G.

Let Ai =
∑{uj

i | j ≤ ni; gji ∈ Sat(Gi, I) \ Sat(Gi, I
′)} − ∑{uj

i | j ≤
ni; g

j
i ∈ Sat(Gi, I

′)\Sat(Gi, I)}. We have uG(I)−uG(I
′) =

∑
i≤n Ai. Because

Sat(Gj , I) = Sat(Gj , I
′) for all j < k, we have (1) Ai = 0 for all i < k. Because

Sat(Gk, I) ⊃ Sat(Gk, I
′), there exists some glk ∈ Sat(Gk, I) ⊃ Sat(Gk, I

′).
Because u is big-stepped, we have ul

k >
∑n

p=k+1

∑mp

q=1 u
q
p, which implies (2)

ul
k >

∑n
p=k+1 |Ap|. Now, (1) and (2) imply uG(I)−uG(I

′) = Ak+
∑

i>k Ai > 0,
that is, u(I) > u(I ′).
Conversely, assume I �G I ′. If I ∼G I ′, then clearly u(I) = u(I ′). If not, then
there is a k such that Sat(Gj , I) = Sat(Gj , I

′) for all j < k, and Sat(Gk, I
′) \

Sat(Gk, I) �= ∅. Let glk ∈ Sat(Gk, I
′) \ Sat(Gk, I). Define u as follows: ul

k =

|Bk|; for all l′ �= l, ul′
k = 1; and the other values uj

i are defined in any way such
that u is big-stepped (since we have put constraints on values concerning level k,
this is obviously possible to do so). Let Ai be defined as above. Since u is big-
stepped, we have, for all l′ �= l, ul′

k = 1 >
∑n

p=k+1

∑mp

q=1 u
l
k, which implies

−1 <
∑n

p=k+1 Ak < 1. Finally, Ak ≤ −|Bk|+
∑

j≤mk,j �=l u
j
i ≤ −1, and u(I)−

u(I ′) =
∑

i≤n Ai = Ak +
∑

i>k Ai < 0, that is, u(I) < u(I ′).
2. Assume I C

G I ′ and let k such that |Sat(Gj , I)| = |Sat(Gj , I
′)| for all j < k,

and |Sat(Gk, I)| > |Sat(Gk, I
′)|. Let u be a uniform, big-stepped vector for G,

and let uj
i = ui for all j ≤ mi. Define Ai, for all i ≤ n, as above. Then (1) for

all i < k, Ai = (2|Sat(Gi, I)| − mi).ui − (2|Sat(Gi, I
′)| − mi).ui = 0, (2)

Ak = 2|Sat(Gk, I)| − mk).uk − (2|Sat(Gk, I
′)| −mk).uk = 2(Sat(Gk, I)| −

|Sat(Gk, I
′)| > 2uk and because u is big-stepped, (3) uk >

∑n
p=k+1 |Ap|. (1),

(2) and (3) imply uG(I)− uG(I
′) > 0, that is, u(I) > u(I ′).

Conversely, assume I �C
G I ′. If I ∼C

G I ′, then clearly u(I) = u(I ′). If not, then,
because C

G is total, we have I ′ C
G I , which using the first part of the proof,

implies that for all uniform, big-stepped u for G, we have u(I) < u(I ′).
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3. Assume I SD
G I ′. Then for all i ≤ n,

∑
j≤i |Sat(Gj , I)| ≥

∑
j≤i |Sat(Gj , I),

and for some k, (1)
∑

j≤k |Sat(Gj , I)| >
∑

j≤k |Sat(Gj , I). Let u be uniform
and faithful. Let αi = |Sat(Gi, I)| and βi = |Sat(Gi, I

′)|. Let V (resp. W ) be
the multiset containing αi (resp. βi) occurrences of ui for all i, and reorder V and
W non-increasingly, that is, V = {v(1), . . . , v(p)} and W = {w(1), . . . , w(q)} with
v(1) ≥ . . . ≥ v(p) and w(1) ≥ . . . ≥ w(q). I SD

G I ′ and the faithfulness of u imply
p ≥ q and for all i, v(i) ≥ w(i). Finally, together with (1) they imply that there is a
j such that v(i) > w(i). Now, u(I)− u(I ′) =

∑q
i=1(v(i) −w(i)) +

∑p
i=q+1 v(i) is

a sum of positive terms, with at least one strictly positive term, therefore, u(I) >
u(I ′).
Conversely, assume I �SD

G I ′. If I ∼SD
G I ′, then I ∼C

G I ′ and u(I) = u(I ′). If not,
then there is some k such that

∑
j≤k |Sat(Gj , I)| <

∑
j≤k |Sat(Gj , I). Define the

uniform, faithful vector u as ui = i + (k − i)ε for all i ≤ k and ui = (i − k).ε
for all i > k, where ε < 1

k|G| . Then u(I ′) − u(I) > 1 −∑
i<k |Gi|(k − 1)ε > 0,

therefore, u(I) < u(I ′).
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