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Université de Toulouse
31062 Toulouse Cedex, France
Jerome.Mengin@irit.fr

Abstract
We address the problem of learning preference rela-
tions on multi-attribute (or combinatorial) domains.
We do so by making a very simple hypothesis about
the dependence structure between attributes that
the preference relation enjoys, namely separability
(no preferential dependencies between attributes).
Given a set of examples consisting of comparisons
between alternatives, we want to output a separable
CP-net, consisting of local preferences on each of
the attributes, that fits the examples. We consider
three forms of compatibility between a CP-net and
a set of examples, and for each of them we give use-
ful characterizations as well as complexity results.

1 Introduction
In many applications, especially electronic commerce, it is
important to learn the preferences of a user on a set of alter-
natives that has a combinatorial (or multiattribute) structure:
each alternative is a tuple of values for each of a given number
of variables (or attributes). For instance, suppose we observe
a user making choices about airplane tickets: (a) she prefers
a KLM night flight landing at Heathrow to an Aeroflot day
flight landing at Gatwick, (b) she prefers an Aeroflot night
flight landing at Heathrow to a KLM day flight landing at
Heathrow and (c) she prefers a KLM day flight landing at
Heathrow to a KLM night flight landing at Heathrow. An in-
tuitively correct explanation (among others) is that she prefers
Aeroflot to KLM (unconditionally), day flights to night flights
(unconditionally), and Heathrow to Gatwick, again uncondi-
tionally. This explanation enjoys the key property that the
user’s preference relation is separable: the preference over
the values of each attribute is independent from the values
of other attributes. Such an explanation allows for predict-
ing that she will prefer an Aeroflot day flight landing at
Heathrow to anything else, and an Aeroflot day flight landing
at Heathrow to an Aeroflot day flight landing at Gatwick (but
is not able to predict whether she will prefer an Aeroflot day
flight landing at Gatwick or an Aeroflot night flight landing
at Heathrow).

Now, if we observe later that she prefers an Aeroflot night
flight landing at Gatwick to an Aeroflot day flight landing at
Gatwick, the previous explanation fails, and more generally,

so does any explanation where separability holds. A possible
explanation (among others) could be that she prefers Aeroflot
to KLM, Heathrow to Gatwick, day flights to night flights
when flying on KLM and vice versa when flying on Aeroflot.

This raises several interesting questions: how can we de-
cide whether it is possible that the user’s preference relation
is separable? If so, what are her local preference relations on
every variable? If not, can we find the separable preference
relation “maximally compatible” with the set of examples?
How expensive are these computations? This paper aims at
answering these questions (but it does not intend to find non-
separable preference relations fitting a set of examples).

In this paper we focus on passive learning: the system
has as input a set of preferences between alternatives, that
the user has already stated (not necessarily without her being
asked to), and one wants to reason about her preferences so
as to predict choices she will make on new alternatives. This
clearly differs from preference elicitation (see for instance
[Chen and Pu, 2004; Braziunas and Boutilier, 2006] for sur-
veys) where the system interacts with the user by asking her
specific requests, or suggesting new alternatives to lead her to
express a preference on the value of some attribute [Viappiani
et al., 2006], until she has found her target object or left the
system.

Preferences over combinatorial domains have been investi-
gated in detail in multiattribute decision theory (starting with
Keeney and Raiffa 1976) and in Artificial Intelligence. Mul-
tiattribute decision theory has focused on modelling prefer-
ences, while AI has focused on designing languages for rep-
resenting preferences as succinctly as possible and algorithms
for finding optimal alternatives that are as fast as possible.

Classes of models and languages can be partitioned first
according to whether they represent ordinal preferences (con-
sisting in ranking the alternatives), and numerical preferences
(e.g., utility functions). Here we focus on ordinal preferences.
They have the advantage of often being easier to obtain from
users.

Whereas there has been quite a lot of recent work on
learning ranking functions and pairwise preferences over
noncombinatorial sets of alternatives (see for instance Co-
hen et al. 1999, Hüllermeier et al. 1999), and whereas
learning or eliciting utility functions over multiattribute do-
mains has been considered in some places (Ha and Had-
dawy 1997 or Gonzales and Perny 2004, among others) there



have been fewer attempts at learning preferences from ordi-
nal comparisons, notably: (a) learning lexicographic prefer-
ences [Schmitt and Martignon, 2006; Dombi et al., 2007;
Yaman et al., 2008]; (b) a few works on learning CP-nets
[Athienitou and Dimopoulos, 2007; Koriche and Zanuttini,
2009], (c) more general ceteris paribus preferences [Sachdev,
2007] or (d) utility functions learned from ordinal compar-
isons between logical formulas [Domshlak and Joachims,
2007]. These approaches are discussed in Section 6.

In both (a) and (b), the preference relation on the multiat-
tribute domain is built from “local” preference relations on
the attribute domains; these local orderings are then com-
bined either in a lexicographic manner for (a), or, for (b), as-
suming that the local comparisons are lifted to comparisons
of vectors of values when all other attributes have the same
value (ceteris paribus). CP-nets allow dependencies between
variables, and then providing local preferences on the values
of one attribute depending on the values of other attributes.

In order to learn general CP-nets, given a set of examples,
one would have to identify the dependency structure and the
conditional preference tables. One could then search for the
simplest CP-net compatible with the examples, or for the best
trade-off between simplicity and compatibility with the ex-
amples. However, in this paper we focus on a simpler prob-
lem, namely, learning the simplest class of CP-nets: separa-
ble CP-nets (whose associated dependency graph is empty).
There are several reasons for that. First, separable prefer-
ences are a very important class of preference relations on
multi-attribute domains, as e.g. in economics or social choice
(see for instance [Bradley et al., 2005]), so that learning sep-
arable preferences deserves a study on its own. Second, as
we will see, learning separable preferences is computation-
ally hard – more than one would think at first sight, since
reasoning with separable CP-nets can be done in linear time.
Third, designing methods for learning non-separable prefer-
ences, as we said, is a challenging and important issue to be
investigated, but it is also a very involved question that surely
cannot be answered in a single paper. Focusing first on sep-
arable preferences is a nontrivial and necessary step towards
learning more complex preferences. Lastly, it is well-known
that a simpler structure can have better generalization proper-
ties than a more complex one that may fit the examples better.

In Section 2, we give some background on preferences on
combinatorial domains and (separable) CP-nets. We then fo-
cus successively on three forms of compatibility between a
CP-net and a set of examples: weak compatibility in Section
3, strong compatibility in Section 4 and implicative compat-
ibility at the end of Section 3. We show that while it can be
checked in polynomial time whether there exists a SCP-net
implying a set of examples, determining whether there exists
a SCP-net weakly (resp. strongly) compatible with a set of
examples is NP-complete. Related work is discussed in Sec-
tion 6 and a concluding discussion is given in Section 7.

2 The problem
We want to learn an ordering on objects, or alterna-
tives, defined by their values for attributes of a set V =
{X1, . . . , Xn}. Each attribute Xi has a finite domain Di. We

denote by D = D1 × . . .×Dn the set of all possible alterna-
tives. If ~x ∈ D, then (~x)i denotes the value of ~x for the i-th
attribute Xi. An attribute Xi is binary if Di has two elements,
which by convention we note xi and xi. A (strict) preference
relation � is a strict order on D, i.e., an irreflexive and tran-
sitive (theferore asymmetric) binary relation. If moreover �
is connected then � is a linear preference relation (or linear
order for short). Note that if we see a transitive relation � as
a graph over D (where there is an edge from ~x to ~y if x � y),
then � is irreflexive if and only if the graph is acyclic.

Suppose now that we have a finite set of examples E , where
each example is a pair of distinct alternatives (~x, ~y) (also de-
noted, equivalently, by ~x � ~y) such that ~x is preferred to ~y.
In a recommender system for instance, these examples may
have been recorded in the course of a user interaction with
the system. Ideally, we would like to learn how to order ev-
ery unordered pair of distinct alternatives {~x, ~y}. Therefore,
ideally, our target is a linear preference relation1.

In this paper, we focus on learning separable ceteris
paribus preference structures (SCP structures for short).
SCP-structures are particular cases of conditional preference
networks, or CP-nets [Boutilier et al., 2004], obtained when
the dependency graph between attributes is empty, therefore
when every attribute is preferentially independent of all other
attributes (CP-nets allow more generally the preference of an
attribute to depend on the values of other attributes). A SCP
structure on V is a collection N of linear orders �i, one on
each Di. A swap is a pair of alternatives {~x, ~y} that differ
in the value of one attribute only. From a SCP structure N
we induce a preference relation�N as follows. First, a linear
order on D is said to satisfy N if for every attribute Xi and
every ~z, ~z′ such that ~z and ~z′ coincide on all attributes except
Xi, ~z � ~z′ if and only if (~z)i �i (~z′)i. Then,�N is the inter-
section of all preference relations satisfyingN . Note that�N
is a partial order on D. Any linear order� that satisfies a SCP
structure is separable. Separability means that attributes are
mutually preferentially independent. Note that if N is a SCP
structure, then �N is irreflexive, and thus can be extended to
a linear order on D [Boutilier et al. 2004, Th. 1].

In most of the paper, for the ease of presentation we assume
all attributed are binary, although our results apply to non
binary attributes as well (as shown at the end of section 3). In
this case, for any pair (~x, ~y) of alternatives, let Diff (~x, ~y) =
{xi | (~x)i = xi and (~y)i = xi} ∪ {xi | (~x)i = xi and (~y)i =
xi}; we can then use the following characterisation of �N (a
corollary of a Theorems 7 and 8 by Boutilier et al., 2004):

Lemma 1 Let N be a SCP structure over binary variables,
and ~y 6= ~x. Then ~x �N ~y if and only if N contains xi �
xi for every xi ∈ Diff (~x, ~y) and xi � xi for every xi ∈
Diff (~x, ~y).

Example 1 Consider three binary attributes A, B and C,
with respective domains {a, a}, {b, b} and {c, c}, and let
N = {a � a, b � b, c � c}. We have abc �N abc, while abc

1Our methodology and results would easily carry over to the
problem of learning nonstrict preference relations (where indiffer-
ence is allowed). We stick here to strict preference relation because
the presentation is simpler.



and abc are incomparable w.r.t. �N .

We said earlier that the target of our learning process
should ideally be a linear order over D, but we have just seen
that a SCP structureN does not in general correspond to such
an order, since the preference relation�N induced fromN is
generally not complete. Actually, �N can be seen as the set
of all its completions, that is, a SCP structure expresses a set
of linear preference relations.

If an example (~x, ~y) is a swap, then either ~x �N ~y or ~y �N
~x, and clearly we would like N to be in agreement with the
example, that is, for instance, such that ~x �N ~y. But if (~x, ~y)
is not a swap, there may be completions � and �′ of �N
such that ~x � ~y and ~y �′ ~x. So we should start by discussing
the possible ways of measuring to which extent a given SCP
structure generalizes from a given set of examples.

Athienitou and Dimopoulos (2007) propose algorithms to
learn CP-nets whose associated partial order contains all the
examples – we say that it implies the examples. We argue here
that this requirement may be too strong. To see this, consider
the following example:

Example 2 We have two binary attributes X1 and X2 (with
domains {x1, x1} and {x2, x2}), and the set of examples E =
{x1x2 � x1x2, x1x2 � x1x2, x1x2 � x1x2}.

What do we expect to learn from the above set of exam-
ples E? The transitive closure of E is the complete preference
relation x1x2 � x1x2 � x1x2 � x1x2. This preference rela-
tion is separable (the agent unconditionally prefers x1 to x1

and x2 to x2). The fact that x1x2 is preferred to x1x2 simply
means that when asked to choose between X1 and X2, the
agent prefers to give up X2 (think of X1 meaning “getting
rich” and X2 meaning “beautiful weather tomorrow”). Intu-
itively, since E is separable, we expect to output a structure
N that contains x1 � x1 and x2 � x2. However, no SCP
structure implies E (in fact, no CP-net implies E , whatever
the dependencies). The structure N induces a partial pref-
erence relation in which x1x2 and x1x2 are incomparable.
More generally, no ceteris paribus structures can “explain”
that x1 � x1 is “more important” than x2 � x2 (i.e., with no
intermediate alternative). Therefore, if we look for a structure
implying all the examples, we will simply output “failure”.
On the other hand, if we look for a SCP structure that is sim-
ply consistent with the examples, i.e. that does not imply the
contrary of the examples, we will output N .

The explanation is that when an agent expresses a CP-net,
the preference relation induced by this CP-net is not meant to
be the whole agent’s preference relation, but a subset (or a
lower approximation) of it. In other terms, when an agent ex-
presses the CP-net N , she simply expresses that she prefers
x1 to x1 ceteris paribus (i.e., for a fixed value of X2) and sim-
ilarly for the preference x2 � x2; the fact that x1x2 and x1x2

are incomparable in N surely does not mean that the user re-
ally sees them incomparable, but, more technically, that CP-
nets are not expressive enough for representing the missing
preference x1x2 � x1x2

2.

2If we want to do this, we have to resort to a more expressive
language such as TCP-nets [Brafman et al., 2006] or conditional
preference theories [Wilson, 2004].

Therefore, rather than looking for a CP-net that implies the
examples, we should rather look for a CP-net whose prefer-
ence relation is consistent with the examples. A first way of
understanding consistency is to require that the learned CP-
net N is such that the examples are consistent with at least
one preference relation extending N . In some contexts it
may even be too strong to require that one of the completions
of �N contains all the examples, in particular if they come
from multiple users (given that we want to learn the generic
preferences of a group of users), or a single user in different
contexts:

Example 3 Suppose that we learn that all users in a group
unconditionally prefer x1 to x1 and x2 to x2, whereas their
preferences between x1x2 and x1x2 may differ (think as x1

and x2 as, respectively, “being invited to a fine dinner” and
“receiving a $50 award”): then E ⊇ {x1x2 � x1x2, x1x2 �
x1x2}. E is clearly inconsistent, so there cannot be any
preference structure whose ordering can be completed into
a linear preference relation that contains E . However, if
N = {x1 � x1, x2 � x2}, then each example in E is (in-
dividually) contained in at least one completion of �N .

We now define three notions of compatibility of a SCP
structure with a set of examples. (Note that these definitions
also work for general CP-nets.)

Definition 1 Let N be a SCP structure over V . An example
(~x, ~y) is implied by N if ~x � ~y for every completion � of
�N ; it is consistent with N if there is a completion � of
�N such that ~x � ~y. Furthermore, we will say that a set of
examples E is:
• implied by N if every example of E is implied by N ;
• globally (or strongly) compatible with N if there is a

completion� of�N such that for all (~x, ~y) ∈ E , ~x � ~y;
• weakly compatible with N if every example (~x, ~y) ∈ E

is individually consistent with N .
Lastly, we will say that E is implicatively / strongly / weakly
separable if it is implied by / strongly compatible / weakly
compatible with at least one SCP structure.

Clearly, strong compatibility implies weak compatibility,
and if E is implied by N , it is strongly compatible with N .

3 Weak compatibility
We start by showing how searching for a SCP structure
weakly compatible with a set of examples can be rewritten
as a propositional satisfiability problem. In the case of binary
attributes, consider the following translation from sets of ex-
amples to sets of clauses, the models of which correspond to
SCP structures that are weakly consistent with the examples.

With each example ~x � ~y we associate the clause C~x�~y

that contains xi iff xi∈Diff (~x, ~y) and ¬xi iff xi∈Diff (~x, ~y).
For instance, if ~x = x1x2x3x4 and ~y = x1x2x3x4 then
Diff (~x, ~y) = {x1, x2, x4} and C~x�~y = x1 ∨ ¬x2 ∨ x4. This
clause expresses that x1 is preferred to x1, or x2 is preferred
to x2, or x4 is preferred to x4. (The explanation for this is that
if a SCP structure N contains {x1 � x1, x2 � x2, x4 � x4},
then by Lemma 1 we have ~y �N ~x, therefore N is not con-
sistent with ~x � ~y.)



If E is a set of examples then ΦE = {Ce | e ∈ E}.
We now define the following one-to-one correspondence be-
tween truth assignments over {x1, . . . , xn} and SCP struc-
tures over V . If M is such a truth assignment, let NM con-
tain the preference xi � xi for every i such that M |= xi

and the preference xi � xi for every i such that M |= ¬xi.
For instance, if M(x1) = >, M(x2) = ⊥, M(x3) = ⊥
and M(x4) = > then NM contains the preference tables
{x1 � x1, x2 � x2, x3 � x3, x4 � x4}.
Proposition 1 Let M be an interpretation. A set of examples
E is weakly consistent with NM if and only if M |= ΦE .

Proof : We show that NM 6|= ~y � ~x if and only if M |=
C~x�~y . Without loss of generality, let ~x = x1 . . . xn and ~y =
x1 . . . xixi+1 . . . xn. Then M 6|= C~x�~y if and only if NM

contains x1 � x1, . . . , xi � xi, which from Lemma 1 is
equivalent to NM |= ~y � ~x. �

Corollary 1 E is weakly separable if and only if ΦE is satis-
fiable.

As a consequence, weak separability comes down to a sat-
isfiability test.

Example 4 Consider three binary attributes A, B,C, and
the set of examples

E = {abc � abc, abc � abc, abc � abc, abc � abc}

ΦE has a unique model, corresponding to the SCP structure
N = {a � a, b � b, c � c}. Therefore, N is the unique SCP
structure weakly compatible with N , which implies that E is
weakly separable.

Proposition 2 Deciding whether a set of examples over bi-
nary attributes is weakly separable is NP-complete.

Proof : Membership follows directly from Corollary 1. For
hardness, we use a reduction from 3SAT: let Φ be a set
of non tautological, 3-clauses. For every C = l1 ∨ l2 ∨ l3
in Φ we create an example eC = (~x � ~y) with ~x =
ε1.x1ε2.x2 . . . εn.xn and ~y = ε′1.x1ε

′
2.x2 . . . ε′n.xn, where,

for every i, εi.xi = ε′i.xi = xi, except that if lj = ¬xi

for some j, then εi.xi = ¬xi; and if lj = xi for some j,
then ε′i.xi = ¬xi. Now, let EΦ = {eC | C ∈ Φ}. For
example, if Φ = {x1 ∨ ¬x2 ∨ x3,¬x1 ∨ x2 ∨ x4, x2 ∨
x3 ∨ x4} then EΦ = {x1x2x3x4 � x1x2x3x4, x1x2x3x4 �
x1x2x3x4, x1x2x3x4 � x1x2x3x4}. We easily check that
ΦEΦ = Φ, and therefore that Φ is satisfiable if and only if EΦ
is weakly separable. �

The generalization to non-binary domains is not difficult.
Instead of having one propositional symbol per attribute, we
have one propositional symbol for every pair of values of ev-
ery attribute. For instance, if we have an attribute X whose
domain is {d1, d2, d3} then we have the three propositional
symbols d1�d2, d1�d3 and d2�d3 (d2�d1 being equiva-
lent to ¬(d1�d2), etc.). For instance, if Y is a binary at-
tribute, the clause corresponding to the example d1y � d2y
is (d1 � d2)∨¬y. The main difference with the binary case is
the transitivity requirement. Let Trans =

∧
Xi∈V TransXi

be the propositional formula expressing transitivity – for in-
stance, for D1 = {d1, d2, d3}we have TransX1 = (d1�d2∧

d2�d3 → d1�d3) ∧ .... Note that Trans is polynomially
long. The one-to-one correspondence between interpretations
and SCP structures now works only for interpretations satis-
fying Trans: M |= ΦE ∧Trans if and only ifNM is weakly
consistent with NM . As a consequence, E is weakly separa-
ble if and only if ΦE ∧ Trans is satisfiable.

This translation shows that weak consistency for non-
binary attributes is in NP, hence it is NP-complete.

Now, as soon as E becomes large with respect to the num-
ber of attributes n, the chances that E is weakly consistent
become low. In this case, we may want to determine a SCP
structure that is weakly compatible with as many examples of
E as possible. Applying Corollary 1 to subsets of E , we get
that this problem amounts to solving a MAXSAT problem. The
SCP structure that best fits a set of examples (in the sense of
weak compatibility) corresponds to the interpretation maxi-
mizing the number of clauses from ΦE satisfied. This extends
to nonbinary variables, with the difference that the clauses in
Trans are protected.

As a consequence of Propositions 1, we can reuse algo-
rithms for MAXSAT for computing an SCP structure that best
fits a set of examples, as well as polynomial approximation
schemes. Using the same kind of translation, we can easily
prove that if all variables are binary and all examples in E
differ at most on two variables, then deciding whether E is
consistent can be done in polynomial time (however, the cor-
responding optimization problem remains NP-hard).

4 Strong compatibility
Characterizing strong compatibility is less easy. The differ-
ence between weak and strong compatibility is that while in
weak compatibility we look for a SCP structure which is con-
sistent with each individual example in E , in strong compat-
ibility we look for a SCP structure which is consistent with
the whole set of examples E .
Example 4, continued E is not strongly compatible withN ,
because E ∪ �N has the following cycle:

abc �N abc �E abc �N abc �E abc
Since E is not strongly compatible with any other SCP struc-
ture than N (because N is the unique SCP structure weakly
compatible with N ), E is not strongly separable3.

Note that all alternatives of the cycle on the example above
appear in E . More generally, if we denote by D(E) the set
of alternatives of D that appear in E , we have the following
characterisation of strong compatibility:

Proposition 3 E is strongly compatible with N if and only if
the restriction of �N ∪ E to D(E) is acyclic.

Proof : By definition, if E is strongly compatible with N
then �N can be completed into a linear order containing E ,
therefore �N ∪ E is acyclic, and so is its restriction to D(E).
For the converse, assume that E is not strongly compatible
with N : �N ∪ E cannot be extended to a linear order, this
means that it is not irreflexive, so it contains a cycle Γ. Since
SCP structures are consistent, Γ must contain at least one

3Note that E is both weakly consistent and does not contain any
cycles as it was the case for Example 3, yet is not strongly consistent.



edge of E . We can transform Γ into a cycle Γ′ whose vertices
are all in D(E): simply replace, as long as it is possible, any
sequence of vertices in Γ of the form x �N y �N z by the
vertex x �N z (which holds because �N is transitive). Now,
every edge in Γ′ is either in E or adjacent to two edges in E
(recall it cannot be reduced to a single reflexive edge of �N
because �N is irreflexive), so its extremities are in D(E). So
Γ′ is a cycle of the restriction of �N ∪ E to D(E). �

Since the restriction of �N ∪ E to D(E) has at most 2.|E|
vertices, checking if it possesses a cycle can be done in poly-
nomial time, so checking whether E is strongly compatible
with N is in P. Thus, since the size of a SCP-structure is lin-
ear in the number of variables, checking whether E is strongly
separable is in NP.

Proposition 4 Checking whether E is strongly separable is
NP-complete.

Proof : Hardness comes from the following reduction from
WEAK SEPARABILITY. Let E = {~x1 � ~y1, . . . , ~xm � ~ym}
be a set of examples, built on a set of propositional symbols
X . We map E to the following set of examples E ′, built on the
set of attributes X ∪ {P1, . . . , Pm}. For every ei = ~xi � ~yi

in E we create the example
e′i : ~xip1 . . . pi−1pipi+1 . . . pm � ~yip1 . . . pi−1pipi+1 . . . pm.

We claim that E ′ = {e′i | ei ∈ E} is strongly separable if
and only if E is weakly separable. Assume E is weakly sepa-
rable: there exists a SCP structure N consistent with each ei

in E . Let N ′ = N ∪ {p1 � p1, . . . , pn � pn}. For every
i, because N is consistent with ~xi � ~yi, there exists a linear
order�i extending�N and containing ~xi � ~yi. Let� be the
preference relation defined by ~x~p � ~y~p′ if and only if one of
the following conditions hold:

(a) ~p is lexicographically larger than ~p′ (denoted by ~p >lex

~p′), that is, there exists an i ≤ m such that ~p contains
pi, ~p′ contains pi, and for all j < i, ~p contains pj if and
only if ~p′ contains pj .

(b) ~p= ~p′=p1 . . . pi−1pipi+1 . . . pm for some i, and ~x �i ~y;

(c) ~p = ~p′, ~p is not of the form p1 . . . pi−1pipi+1 . . . pm for
some i, and ~x �∗ ~y, where�∗ is any preference relation
extending �N .

It can be checked that � is a complete preference relation
� extending�N ′ , and containing E ′, which implies that E ′ is
strongly consistent withN ′, and that E ′ is strongly separable.

Conversely, assume E ′ is strongly separable. Let N ′ be
strongly consistent with E ′, and � extending �N ′ and con-
taining E ′. For every i ≤ m, define �i as follows: ~x �i ~y
iff ~xp1 . . . pi−1pipi+1 . . . pm � ~yp1 . . . pi−1pipi+1 . . . pm.
Then, for every i: �i is a complete strict order on 2X ; �i

extends �N ; and �i contains ~xi � ~yi, because � contains
~xip1 . . . pi−1pipi+1 . . . pm � ~yip1 . . . pi−1pipi+1 . . . pm.
Therefore, for every i we have found an extension �i of �N
containing ~xi � ~yi, which implies that E is weakly compati-
ble with N , and that E is weakly separable. �

Note that although weak and strong separability have the
same complexity, weak consistency enjoys the nice property

that there is a simple solution-preserving translation into SAT
(the models of ΦE correspond bijectively to the CP-nets that
are weakly consistent with E), which allows weak consis-
tency to be computed in practice using algorithms for SAT.
In order to compute a SCP structure strongly consistent with
E , we can generate structures N weakly consistent with E ,
and test for acyclicity of �N ∪ E using graph algorithms.

5 Implicative compatibility
It is easy to characterize whether there exists a SCP struc-
ture that implies E . In the case of binary variables, with
each example ~x � ~y we associate the conjunction of literals
Γ~x�~y = ¬C~y�~x. Let ΓE =

∧
{Γe | e ∈ E}. Using Lemma

1, we can prove that M |= ΓE if and only if NM implies E .
Searching for a model of a conjunction of literals can be done
in polynomial time, thus the problem of checking if a set of
examples is implicatively separable is in P.

Although implicative separability is easier than strong or
weak separability, as argued before, we believe that implica-
tive separability is much too strong.

6 Related work
There is an active stream of research on preference learning,
which focuses on many facets of preference learning, such as
label ranking [Hüllermeier et al., 2008] or learning to rank
objects [Cohen et al., 1999], but so far the focus is laid on
preferences on simple, noncombinatorial domains4.

Learning numerical utility functions on combinatorial do-
mains has been addressed in e.g. [Ha and Haddawy, 1997;
Gonzales and Perny, 2004]. Recently, Domshlak and
Joachims [2007] proposed a method to learn a utility function
from general preference statements between logical formu-
las. As for learning ordinal preferences on multiattribute do-
mains, an approach that follows a methodology close to ours
(but for a very different class of preference structures) is the
work on learning lexicographic preferences on multiattribute
domains [Schmitt and Martignon, 2006; Dombi et al., 2007;
Yaman et al., 2008]. A significant difference is that they
learn the full preference relation, while we learn only the lo-
cal preference relations. Of course, learning the full prefer-
ence relation gives a richer information, but this comes with a
price, namely, the hypothesis they make (lexicographic pref-
erences) is highly restrictive. Lexicographic preferences are
a very specific, special form of preferences that is not often
met in practice. Note that every lexicographic preference is
separable, but the set of separable preferences is much larger.
Interestingly, the complexity results are similar.

Koriche and Zanuttini [2009] show that it is possible to ef-
ficiently elicitate acyclic CP-nets using simple queries of the
form ~x �? ~y where ~x and ~y differ in the value of one vari-
able only. Passive learning of CP-nets has been considered by
Athienitou and Dimopoulos [2007]. As argued above, their

4Note that multiattribute domains are sometimes considered, but
with a very different role: for instance, in label ranking one learns
a preference relation on a simple domain, given some information
under the form of a vector or attribute values (for instance, predict a
user’s ranking on a set of candidates at an election given his/her sex,
age and profession).



focus on implicative compatibility limits the applicability of
the approach. Sachdev [2007] proposes to learn a preference
theory, in the sense of Doyle et al. [1991], consistent with a
set of examples. He assumes that one is given (or has access
to) the complete set of examples corresponding to an existing
preference theory that one is trying to induce, which practi-
cally limits its applicability.

7 Conclusion and further work
Our contribution is twofold: we have seen that finding a sep-
arable ceteris paribus preference relation (or equivalently,
finding a separable CP-net) compatible with a set of exam-
ples is not straighforward to define, due to the fact that, unlike
lexicographicity, separability does not permit to lift the local
preference relation into a complete preference relation on the
multiattribute domain. We have proposed and discussed three
different forms of compatibility between a separable CP-net
and a set of examples. For each of these, we have identified
its complexity and given characterizations that can be used
for computing a separable CP-net that fits best a set of exam-
ples. Although implicative separability is easier than strong
or weak separability, as argued before, implicative separabil-
ity is far less interesting than the other two notions.

Now, our definitions of implicative, strong and weak com-
patibility would work for any CP-net. So far our characteriza-
tions and complexity results for each of these three forms of
consistency concern only the case of separable preferences,
where the dependency graph has no edge. A long-term chal-
lenge would consist in investigating methods for learning
CP-nets with any structure, focusing first on simple struc-
tures (e.g., hypertrees). A first step would consist in learn-
ing CP-nets with a fixed graph: given a set of examples E
and a dependency graph G, output the CP-net maximizing
G-compatibility (w.r.t. any of the three forms) with E . Unfor-
tunately, this is not simple. Our translation of examples into
propositional clauses can be extended, using, for each binary
attribute, one propositional variable for every combination of
values of its parents. For instance, if A has no parent and is
the only parent of B, we use three propositional variables: a,
(a :b) and (a :b), where, for instance, (a :b) assigned to true
corresponds to the entry a : b� b in the preference table for
B. Weak compatibility can then be encoded using, for each
example ~x�~y, one clause for each sequence of swaps from
~y to ~x, expressing that at least one step of this sequence is
blocked. This ensures that ~y�N~x does not hold. But there can
be exponentially many such clauses, even in the case where
the number of parents in the dependency graph is bounded,
which considerable limits the applicability of this translation.
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