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Abstract

We consider the following problem: There is a set of
items (e.g., movies) and a group of agents (e.g., passen-
gers on a plane); each agent has some intrinsic utility for
each of the items. Our goal is to pick a set of K items
that maximize the total derived utility of all the agents
(i.e., in our example we are to pick K movies that we
put on the plane’s entertainment system). However, the
actual utility that an agent derives from a given item
is only a fraction of its intrinsic one, and this fraction
depends on how the agent ranks the item among the cho-
sen, available, ones. We provide a formal specification
of the model and provide concrete examples and settings
where it is applicable. We show that the problem is hard
in general, but we show a number of tractability results
for its natural special cases.

1 Introduction
A number of real-world problems consist of selecting a set
of items for a group of agents to jointly use. Such activities
include, e.g., picking the movies to put on a plane’s enter-
tainment system, deciding which journals a university library
should subscribe to, deciding what common facilities to build,
or even choosing a parliament. Let us consider some common
features of these examples.

First, there is a set of items1 and a set of agents; each
agent has some intrinsic utility for each of the items (e.g.,
this utility can be the level of appreciation for a movie, the
average number of articles one reads from a given issue of a
journal, expected benefit from building a particular facility,
the feeling—measured in some way—of being represented
by a particular politician).

Second, typically it is not possible to provide all the items
to the agents and we can only pick some K of them, say (a
plane’s entertainment system fits only a handful of movies,
the library has a limited budget, only several sites for the
facilities are available, the parliament has a fixed size).

Third, the intrinsic utilities for items extend to the sets
of items in such a way that the utility derived by an agent
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1We use the term ‘item’ in the most neutral possible way. Items
may be candidates running for an election, or movies, or possible
facilities, and so on.

from a given item may depend on the rank of this item (from
the agent’s point of view) among the selected ones. Extreme
examples include the case where each agent derives utility
from his or her most preferred item only (e.g., an agent will
watch his or her favorite movie only, will read/use the favorite
journal/favorite facility only, will feel represented by the most
appropriate politician only), from his or her least preferred
item only (say, the agent worries that the family will force
her to watch the worst available movie), or derives 1/K of
the utility from each of the available items (e.g., the agent
chooses the item—say, a movie—at random). However, in
practice one should expect much more complicated schemes
(e.g., an agent watches the top movie certainly, the second one
probably, the third one perhaps, etc.; or, an agent is interested
in having at least some T interesting journals in the library;
an agent feels represented by some top T members of the
parliament, etc.).

The goal of this paper is to formally define a model that
captures all the above-described scenarios, to provide a set of
examples where the model is applicable, and to provide an
initial set of computational results for it in terms of efficient
algorithms (exact or approximate) and computational hard-
ness results (NP-hardness and inapproximability results).

Our work builds upon, generalizes, and extends quite a
number of previously studied settings. We provide a deeper
overview of this research throughout the paper. Here we
mention the direct connection to the study of Chamberlin–
Courant’s multiwinner voting rule (see the original discus-
sion of Chamberlin and Courant (1983) and, e.g., the pa-
pers of Procaccia et al. (2008), Betzler et al. (2013), Yu et
al. (2013) and Skowron et al. (2013) for examples of compu-
tational results), to the study of budgeted social choice (Lu
and Boutilier 2011; Oren and Lucier 2014), to the study of
multiwinner approval voting rules (see, e.g., the overview
of Kilgour (2010) and the papers of LeGrand et al. (2007)
and Aziz et al. (2014)), and to several other settings, in-
cluding, e.g., the Santa Claus problem (Bansal and Sviri-
denko 2006) and the problem of designing optimal picking
sequences (Brams and Taylor 2000; Bouveret and Lang 2011;
Kalinowski et al. 2012).

2 The Model
In this section we give a formal description of our model.
However, before we move on to the mathematical details,
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let us explain and justify some high-level assumptions and
choices that we have made.

First, we assume that the agents have separable prefer-
ences. This means that the intrinsic utility of an object does
not depend on what other objects are selected. This is very dif-
ferent from, for example, the case of combinatorial auctions.
However, in our model the impact of an object on the global
utility of an agent does depend on its rank (according to that
agent) among the selected items. This distinction between
the intrinsic value of an item and its value distorted by its
rank are also considered in several other research fields, espe-
cially decision theory (“rank-dependent utility theory”) and
multicriteria decision making, from which we borrow one
of the main ingredients of our approach, ordered weighted
average (OWA) operators (Yager 1988) (see the following
formal model; the reader might want to consult the work of
Kacprzyk et al. (2011) as well). OWAs were used recently
in social choice in the context of rank-dependent scoring
rules (Goldsmith et al. 2014): There the impact of the score
obtained by a candidate from a vote depends on its rank in
the list of scores it obtained from all votes.

Second, we assume that the agents’ intrinsic utilities are
provided explicitly in the input as numerical values, and that
these values are comparable between agents (if one agent
has twice as high a utility for some item than the other one,
it means that this agent likes this item twice as much). Yet,
we make no further assumptions about the nature of agents’
utilities: they do not need to be normalized, they do not need
to come from any particular range of values, etc. However,
we consider several natural special cases of utility values
(including approval-based utilities and Borda-based utilities;
see the formal definitions later in this section).

Third, we take the utilitarian view and measure the social
welfare of the agents as the sum of their perceived utilities.
One could study other variants, such as the egalitarian variant,
where the social welfare is measures as the utility of the worst-
off agent. We leave this as future research (our preliminary
attempts indicated that the egalitarian setting is even harder,
computationally, than the utilitarian one).

The Formal Setting. Let N = [n] be a set of n agents and
let A = {a1, . . . , am} be a set of m items. The goal is to
pick a size-K set W of items that, in some sense, is most
satisfying for the agents. To this end, (1) for each agent i ∈ N
and for each item aj ∈ A, we have an intrinsic utility ui,aj ,
ui,aj ≥ 0, that agent i derives from aj ; (2) the utility that each
agent derives from a set of K items is an ordered weighted
average (Yager 1988) of this agent’s intrinsic utilities for
these items.

A weighted ordered average (OWA) over K numbers is a
function defined through a vector α(K) = 〈α1, . . . , αK〉 of
K (nonnegative) numbers2 as follows: Let ~x = 〈x1, . . . , xK〉
be a vector of K numbers and let ~x↓ = 〈x↓1, . . . , x

↓
K〉 be

the nonincreasing rearrangement of ~x, that is, x↓i = xσ(i),

2The standard definition of OWAs assumes normalization, that
is,

∑K
i=1 αi = 1. We do not make this assumption here, for the sake

of convenience; note that whether OWA vectors are normalized or
not is irrelevant to all notions and results of this paper.

where σ is any permutation of {1, . . . ,K} such that xσ(1) ≥
xσ(2) ≥ . . . ≥ xσ(K). Then we set:

OWAα(K)(~x) =
∑K
i=1 αix

↓
i

To make the notation lighter, we write α(K)(x1, . . . , xK),
instead of OWAα(K)(x1, . . . , xK).

We provide a more detailed discussion of the OWA oper-
ators useful in our context later; we mention that they can
be used, e.g., to express the arithmetic average (through the
size-K vector ( 1

K , . . . ,
1
K )), the maximum and minimum

operators (through vectors (1, 0, . . . , 0), and (0, . . . , 0, 1), re-
spectively) and the median operator (through the vector of
all zeros, with a single one in the middle position).

We formalize our problem of computing “the most satisfy-
ing set of K items” as follows (also, see Example 1 below).
Definition 1. In the OWA-WINNER problem we are given
a set N = [n] of agents, a set A = {a1, . . . , am} of items,
a collection of agent’s utilities (ui,aj )i∈[n],aj∈A, a positive
integer K (K ≤ m), and a K-number OWA α(K). The task
is to compute a subset W = {w1, . . . , wK} of A such that
uα

(K)

ut (W ) =
∑n
i=1 α

(K)(ui,w1
, . . . , ui,wK

) is maximal.

For a family (α(K))∞K=1 of OWAs, we write α-OWA-
WINNER to denote the variant of the problem where, for a
given solution size K, we use OWA α(K). From now on we
will not mention the size of the OWA vector explicitly and it
will always be clear from context. We implicitly assume that
OWAs in our families are polynomial-time computable.

Classes of Intrinsic Utilities. We often focus on variants
of OWA-WINNER where agents’ utilities are restricted.
Definition 2. We say that the agents have approval-based
utilities, if each agent’s utilities come from the set {0, 1}.
Definition 3. Consider a setting with m items and let umax

denote the highest utility that some agent gives to an item.
Let β and γ be two numbers in [0, 1]. We say that the agents
have (β, γ)-non-finicky utilities if every agent has utility at
least βumax for at least γm items.

Non-finicky utilities capture settings where each agent
has relatively high utility for relatively many items. One of
the most natural examples of non-finicky utilities are Borda-
based utilities. Under Borda-based utilities, we assume that
each agent ranks the items from the most desired one to the
least desired one. Agent’s utility of item a is the number of
items that the agent prefers to a (so, if there are m items
then an agent has utility m − 1 for its most preferred item,
utility m− 2 for the second most preferred item, and so on).
The order in which an agent ranks the items is the agent’s
preference order. Borda-based utilities are quite natural and,
for example, were used in the original Chamberlin–Courant’s
rule and in several works on fair division (see, e.g., a paper
of Brams and King (2005)).
Observation 1. For every x, 0 ≤ x ≤ 1, Borda-based utili-
ties are (x, 1− x)-non-finicky.

There are other natural cases of non-finicky utilities. Con-
sider agents that have approval-based utilities, where each
agent approves at least a γ fraction of the items. These agents
have (1, γ)-non-finicky utilities.
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Example 1. Consider six agents with the following
Borda-based utilities over the items from the set A =
{a1, a2, a3, a4, a5, a6}, expressed as preference orders:

3 agents : a1 � a2 � a3 � a5 � a6 � a4
2 agents : a6 � a1 � a4 � a3 � a5 � a2
1 agent : a5 � a4 � a2 � a3 � a6 � a1

We want to select K = 3 items and we use OWA α =
(2, 1, 0). What is the score of {a1, a2, a6}? The first three
agents get utility 2 × 5 + 4 = 14 each, the next two get
2 × 5 + 4 = 14 each, and the last one gets 2 × 3 + 1 = 7.
So, the score of {a1, a2, a6} is 42 + 28 + 7 = 77. Indeed,
this is the optimal set; the next best ones are {a1, a2, a4},
{a1, a2, a5} and {a1, a5, a6}, all with score 75. The rule
defined by the OWA α′ = (1, 1, 1), known as 3-Borda, would
choose {a1, a2, a3} and Chamberlin–Courant’s rule (in our
terms, the rule defined by the OWA α′′ = (1, 0, 0)) would
choose {a1, a5, a6}.
A Dictionary of Useful OWA Families. Below we give a
catalog of particularly interesting families of OWA operators
(we take K to be the dimension of the vectors to which we
apply a given OWA).

k-median OWA. For each k ∈ {1, . . . ,K}, k-med(K) is
the OWA defined by the vector (0, . . . , 0, 1, 0, . . . , 0), with
the “1” on the k’th position; k-med(K)(~x) is the k-th
largest number among those in ~x.

k-best OWA. For each k ∈ {1, . . . ,K}, k-best(K) OWA
is the OWA defined by the vector (1, . . . , 1, 0, . . . , 0) with
k “1”s. That is, k-best(K)(~x) is the sum of the top k values
in ~x (with appropriate scaling, this means an arithmetic
average of the top k numbers). K-best(K)

K is the sum of all
the numbers in ~x (after scaling, their arithmetic average).

Arithmetic progression OWA. These OWAs are defined
through vectors of the form aprog[a]

(K)
= 〈a + (K −

1)b, a+ (K − 2)b, . . . , a〉, where a ≥ 0 and b > 0.
Geometric progression OWA. These OWAs are de-
fined through vectors of the form gprog[p](K) =
〈pK−1, pK−2, . . . , 1〉, where p > 1.

Hurwicz OWA. For each λ, 0 ≤ λ ≤ 1, Hurwicz OWA is
defined through vector (λ, 0, . . . , 0, 1− λ).
Other OWAs can be tailored for particular applications. We

often, but not always, focus on OWAs defined through non-
increasing vectors (this is natural since higher-ranked items
should have more impact on the utility). Still, k-medians (ex-
cept for 1-median) and Hurwicz OWAs (except for λ = 1)
are natural OWAs that do not meet this criterion.

3 Applications of the Model
We believe that our model is very general. To substantiate
this claim, in this section we provide four, quite different,
scenarios where it is applicable.

Generalizing Voting Rules. Our research started as
an attempt to generalize the rule of Chamberlin and
Courant (1983) for electing sets of representatives. For this

rule, the voters (the agents) have Borda-based utilities over a
set of candidates and we wish to elect a K-member commit-
tee (e.g., a parliament), such that each voter is represented
by one member of the committee. If we select K candidates,
then a voter is “represented” by the selected candidate that she
ranks highest among the chosen ones. Thus, winner determi-
nation under Chamberlin–Courant’s voting rule boils down to
solving 1-best-OWA-WINNER for the case of Borda-based
utilities. On the other hand, solving K-best-OWA-WINNER
for Borda-based utilities is equivalent to finding winners
under K-Borda, the rule that picks K candidates with the
highest Borda scores (see the work of Elkind et al. (2014) for
a classification of multiwinner voting rules, including, e.g.,
K-Borda and Chamberlin–Courant’s rule).

Our model extends one more appealing voting rule, known
as Proportional Approval Voting (PAV; see the works of
Kilgour (2010), for a review, and of Aziz et al. (2014), for
computational results). Winner determination under PAV is
equivalent to solving α-OWA-WINNER for the OWA vector
α = 〈1, 12 ,

1
3 , . . . ,

1
m 〉, with approval-based utilities.

Malfunctioning Items or Unavailable Candidates. Con-
sider a setting where we pick the items off-line, but on-line
it may turn out that some of them are unavailable (for exam-
ple, we pick a set of journals the library subscribes to, but
when an agent goes to a library, a particular journal could
already be borrowed to someone else; see the work of Lu
and Boutilier (2010) for other examples of social choice with
possibly unavailable candidates). We assume that each item
is available with the same, given, probability p (i.i.d.). The
utility an agent gets from a set of selected items W is the ex-
pected value of the best available object. The probability that
the i’th item is available while the preceding i− 1 items are
not, is proportional to p(1− p)i−1. So, to model the problem
of selecting items in this case, we should use the geometric
progression OWA with initial value p and coefficient 1− p.

Uncertainty Regarding How Many Items a User Enjoys.
There may be some uncertainty about the number of items a
user would enjoy (e.g., on a plane, it is uncertain how many
movies a passenger would watch; one might fall asleep or
might only watch those movies that are good enough). We
give two possible models for the choice of the OWA vectors:

1. The probability that an agent enjoys i items, for 0 ≤ i ≤
K, is uniformly distributed, i.e., an agent would enjoy
exactly his or her first i items in W with probability 1

K+1 .
So, the agent enjoys the i’th item if she enjoys at least i
items, which occurs with probability K−i+1

K+1 ; we should
use OWA vector defined by αi = K − i+1 (we disregard
the normalizing constant), i.e., an arithmetic progression.

2. We assume that the values given by each user to each item
are distributed uniformly, i.i.d., on [0, 1] and that each user
uses only the items that have a value at least θ, where θ
is a fixed (user-independent) threshold. Therefore, a user
enjoys the item in W ranked in position i if she values
at least i items at least θ, which occurs with probability∑K
j=i

(
K
i

)
(1− θ)iθK−i, thus leading to the OWA vector

defined by αi =
∑K
j=i

(
K
i

)
(1− θ)iθK−i.
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Ignorance About Which Item Will Be Assigned to a User.
We now assume that a matching mechanism will be used
after selecting the K items. The matching mechanism is not
specified; it might also be randomized. If the agents have
a complete ignorance about the mechanism used, then it
makes sense to use known criteria for decision-making under
complete uncertainty:

1. The Wald criterion assumes that agents are extremely risk-
averse, and corresponds to α = K-med(K). The agents
consider their worst possible items.

2. The Hurwicz criterion is a linear combination between
the worst and the best outcomes, and corresponds to α =
(λ, 0, . . . , 0, 1− λ) for some fixed λ ∈ (0, 1).

If the agents know that they are guaranteed to get one
of their best i items, then the Wald and Hurwicz crite-
ria lead, respectively, to the OWAs α = i-med(K) and
α = (λ, 0, . . . , 0, 1 − λ, 0, . . . , 0), with 1 − λ in position
i. If the agents know that the mechanism gives them one
of their top i items, each with the same probability, then
we should use i-best OWA. More generally, the matching
mechanism may assign items to agents with a probability that
decreases when the rank increases.

4 Computational Results
We study the complexity and the approximability of our prob-
lem, focusing in its most natural special cases. Missing proofs
are available in our technical report (Skowron, Faliszewski,
and Lang 2014). Our results are summarized in Table 1.

Theorem 1. The complexity and (in)approximability of
OWA-WINNER is as stated in Table 1.

The text below focuses on those contributions that we
found either most essential or most interesting.

Nonincreasing OWAs. In general, OWA-WINNER is NP-
hard (this follows, e.g., from the work of Procaccia et
al. (2008) on Chamberlin–Courant’s rule). We show that
this holds for each nontrivial, nonincreasing OWA operator.

Theorem 2. Fix an OWA family α, such that for every K,
α(K) is nonincreasing and nonconstant; α-OWA-WINNER
is NP-hard for approval-based utilities.

This theorem has some quite interesting consequences. For
example, if K is the number of items that we are to pick, it
shows that (K − 1)-best-OWA-WINNER is NP-hard, even
though K-best-OWA-WINNER is in P (indeed, through a
fairly technical proof, these results hold even for Borda-based
utilities). Nonetheless, for nonincreasing OWAs a simple
greedy algorithm achieves (1− 1/e) approximation ratio.
This follows by applying the famous result of Nemhauser et
al. (1978) for nondecreasing submodular set functions to the
case of uαut (recall Definition 1). If A is some set and u is a
function u : 2A → R+, then we say that: (1) u is submodular
if for each W and W ′, W ⊆W ′ ⊆ A, and each a ∈ A \W ′
it holds that u(W ∪ a)− u(W ) ≥ u(W ′ ∪ a)− u(W ′), and
(2) u is nondecreasing if for each W ⊆ A and each a ∈ A it
holds that u(W ∪ {a}) ≥ u(W ).

Table 1: Our computational results for OWA-WINNER. For each
OWA family we provide four entries: In the first row (for a given
OWA family) we give its worst-case complexity and in the second
row we give our best approximation result. In the first column the
results are for approval-based utilities, and in the second one they
are for both Borda-based utilities and (1, γ)-non-finicky utilities
(NP-hardness results apply to Borda, approximation results apply to
both). The result marked with ♠ shows that an approximation result
for OWA-WINNER would give the same approximation guarantee
for the DENSEST-K-SUBGRAPH problem (Bhaskara et al. 2012;
Raghavendra and Steurer 2010); there is evidence suggesting this
problem is hard to approximate. The result marked with ♥ is derived
from inapproximability of the MAXIMUM EDGE BICLIQUE PROB-
LEM (Feige and Kogan 2004); under mild assumptions it shows
inapproximability up to any constant factor (and even certain factors
depending on n).

OWA family general utilities
Borda/

(1, γ)–non-finicky
utilities

k-median (k fixed) NP-hard NP-hard (Borda)
inapprox. result♠ PTAS

K-median NP-hard NP-hard (Borda)
inapprox. result♥ ?

k-best (k fixed) NP-hard NP-hard (Borda)
(1− 1

e
)-approx. PTAS

(K − 1)-best NP-hard NP-hard (Borda)
PTAS PTAS

K-best P P

arithmetic progres. NP-hard ?
(1− 1

e
)-approx. (1− 1

e
)-approx.

geometric progres. NP-hard ?
(1− 1

e
)-approx. PTAS

Hurwicz[λ]
NP-hard ?

λ(1− 1
e
)-approx. λ(1− ε)-approx.

for each ε > 0

Lemma 3. Let I be an instance of OWA-WINNER with a
nonincreasing OWA α. The function uαut is submodular and
nondecreasing.

Proof. Let I be an instance of OWA-WINNER with agent
set N = [n], item set A = {a1, . . . , am}, desired solution
size K, and OWA α = 〈α1, . . . , αK〉. For each agent i ∈ N
and each item aj ∈ A, ui,aj is a nonnegative utility that i
derives from aj .

Since all the utilities and all the entries of the OWA vector
are nonnegative, we note that uαut is nondecreasing. To show
submodularity, we decompose uαut as follows: uαut(W ) =

(
∑K−1
`=1 (α` − α`+1)u

`-best-OWA
ut (W )) + αKu

K-best-OWA
ut (W ).

For each W ⊆ A, i ∈ N and ` ∈ [m], let Top(W, i, `) be
the set of those ` items from W whose utility, from the point
of view of agent i, is highest (we break ties in an arbitrary
way). Since nonnegative linear combinations of submodular
functions are submodular, it suffices to prove that for each i ∈
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N and each ` ∈ [m], function u`i(W ) =
∑
w∈Top(W,i,`) ui,w

is submodular.
To show submodularity of u`i , consider two sets, W and

W ′, W ⊆W ′ ⊆ A, and some a ∈ A \W ′. We claim that:
u`
i(W ∪ {a})− u`

i(W ) ≥ u`
i(W

′ ∪ {a})− u`
i(W

′). (1)
Let uW and uW ′ denote the utilities that the i-th agent has

for the `-th best items from W and W ′, respectively (or 0 if a
given set has fewer than ` elements). Of course, uW ′ ≥ uW .
Let ua denote i-th agent’s utility for a. We consider two
cases. If ua ≤ uW , then both sides of (1) have value 0.
Otherwise u`i(W

′ ∪ {a}) − u`i(W ′) = max(ua − uW ′ , 0)
and u`i(W ∪ {a}) − u`i(W ) = ua − uW , which proves (1)
and completes the proof.

Algorithm 1. SelectK items greedily, each time choosing an
item that increases the utility of the agents most (maximizes
the function uαut).

The next result follows by applying the result of
Nemhauser et al. (1978) to function uαut and Algorithm 1.
Theorem 4. For a nonincreasing OWA α, Algorithm 1 is a
polynomial time (1− 1/e)-approximation algorithm for the
problem of finding the utilitarian set of K winners.

Algorithm 1 can be seen as a new multiwinner vot-
ing rule on its own. Indeed, many popular voting rules
are defined as iterative (greedy) algorithms; such rules
are not only polynomially solvable, but sometimes easier
to understand for the society than those defined declar-
atively. The view of approximation algorithms as voting
rules on their own was initiated by Caragiannis et al. (2012;
2010) and was continued for the case of multiwinner rules by
Skowron et al. (2013) and Elkind et al. (2014), where this last
paper focused on the properties of multiwinner rules. Here,
we give another interesting observation. Using Theorem 4,
we found out that Sequential Proportional Approval Voting,
developed by the Danish polymath Thorvald N. Thiele, and
used for a short period in Sweden during early 1900’s (see
the work of Brams and Kilgour (2010)) is simply a greedy
approximation algorithm for PAV (see the discussion in Sec-
tion 3). This observation gives another evidence that approxi-
mation algorithms for computationally hard voting rules, can,
indeed, be viewed as full-fledged voting rules.

Going back to Theorem 4, we should wonder if a (1− 1
e )-

approximation algorithm is a good result. Irrespective if one
views it as sufficient or not, this is the best possible approxi-
mation ratio a polynomial-time algorithm can have for OWA-
WINNER with a nonincreasing OWA and unrestricted utilities.
The reason is that 1-best-OWA-Winner with approval-based
utilities is, in essence, another name for the MAXCOVER
problem, and if P 6= NP, then (1− 1

e ) is the approximation
upper bound for MAXCOVER (Feige 1998). Better approx-
imation bounds are possible only for very particular OWA
vectors. For example, we show a polynomial-time approxima-
tion scheme (PTAS) for (K−1)-best-OWA-WINNER (where
K is the size of the set that we pick) that works irrespective
of the nature of agent utilities.

OWAs That Are Not Nonincreasing. The assumption of
the OWAs being nonincreasing is important. In the full ver-
sion of the paper (Skowron, Faliszewski, and Lang 2014) we

Algorithm 2: For nonincreasing OWAs where at most first
` entries are nonzero, for (β, γ)-non-finicky utilities.

Notation:
Φ← a map defining the number of free slots per agent.
Initially for each agent i we have Φ[i] = `.

x← γm;
W ← ∅;
for i← 1 to K do

a← argmaxa∈A\W ‖{j | Φ(j) > 0 ∧ ‖{b : uj,b >

uj,a}‖ < x}‖;
foreach j ∈ {j | Φ(j) > 0} do

if ‖{b : uj,b > uj,a}‖ < x} then
Φ[j]← Φ[j]− 1;

W ←W ∪ {a};
return W

provide evidence that without it, typically our problem can-
not be approximated up to any constant factor (under usual
complexity-theoretic assumptions). In particular, we show
that for such OWAs function uα

(K)

ut (W ) is not submodular.

Non-Finicky Utilities. One of the greatest sources of hard-
ness of OWA-WINNER, that we rely on in our proofs, is
that the agents may have very high utilities for some very
small subsets of items, and very low utilities for the remain-
ing ones (consider, e.g., approval-based utilities where each
agent approves of relatively few items). In such cases, intu-
itively, either we find a perfect solution or some of the agents
have to be very badly off. On the other hand, for Borda-based
utilities when some agent does not get his top items, it is
still possible to provide the agent with not-much-worse ones;
the utilities decrease linearly. Indeed, Skowron et al. (2013)
used this observation to give a PTAS for the Chamberlin–
Courant’s rule. Here we give a strong generalization of their
result that applies to appropriate non-finicky utilities and
OWA families including k-median, k-best, and geometric
progression OWAs. Due to restricted space, we provide the
most interesting proof only.

We focus on the case of OWA vectors where only some
constant number ` of top positions are nonzero, and on (β, γ)-
non-finicky utilities (β, γ ∈ [0, 1]). In this case, Algorithm 2
(a generalization of an algorithm of Skowron et al. (2013))
achieves a good approximation ratio. The idea behind the
algorithm is as follows: To pick K items, it proceeds in K
iterations and in each iteration it introduces one new item into
the winner set. For each agent it considers the top x = γm
items with the highest utilities and in a given iteration it
picks an item a that maximizes the number of agents that
(1) rank a among items with the highest x utilities, and (2)
still have “free slots” (an agent has a free slot if among the
so-far-selected winners, fewer than ` have utilities among the
x highest ones for this agent).
Theorem 5. Fix a positive integer ` and let α be a nonin-
creasing OWA where at most first ` entries are nonzero. If
the agents have (β, γ)-non-finicky utilities, with γm ≥ `,
then Algorithm 2 is a polynomial-time β(1 − exp(−γK` ))-
approximation algorithm for α-OWA-WINNER.

2135



0

0.2

0.4

0.6

0.8

1

β

0 0.2 0.4 0.6 0.8 1
γ

(K/` = 5, approx = 0.9)

(K/` = 5, approx = 0.8)

(K/` = 5, approx = 0.7)

(K/` = 5, approx = 0.6)

(a)

0

0.2

0.4

0.6

0.8

1

β

0 0.2 0.4 0.6 0.8 1
γ

(K/` = 20, approx = 0.9)

(K/` = 20, approx = 0.8)

(K/` = 20, approx = 0.7)

(K/` = 20, approx = 0.6)

(b)

0

0.2

0.4

0.6

0.8

1

γ

0 10 20 30 40 50

K/`

(β = 1.0, approx = 0.9)

(β = 1.0, approx = 0.8)

(β = 1.0, approx = 0.7)

(β = 1.0, approx = 0.6)

(c)

Figure 1: The approximation ratios of Algorithm 2 for a nonincreasing OWA with at most ` top coefficients greater than zero, for
(β, γ)-non-finicky utilities. The lines in Figures (a) and (b) depict the relations between the parameters β and γ that, for a given
fixed ratio K

` lead to the same approximation bound. The lines in Figure (c) depict the relations between the parameter γ and the
ratio K/` that, for a given fixed value of the parameter β lead to the same approximation bound.

Proof. Consider an instance I of α-OWA-WINNER, with n
agents, m items, and where we seek a winner set of size K.
Let x = γm. We use an OWA where an agent’s total utility
from a winner set W depends on this agent’s utilities for his
or her top ` items from W . Thus, we introduce the notion of
each agent’s free slots. Initially, each agent has ` free slots.
Whenever an agent j has a free slot and the algorithm selects
an item a such that for j, a is among x items with highest
utilities, we say that a starts occupying one free slot of j.
After such an item is selected, j has one free slot less.

Let ni denote the total number of free slots of all the agents
after the i-th iteration of the algorithm; n0 = `n. We show
by induction that ni ≤ `n

(
1− x

`m

)i
. Indeed, the inequality

is true for i = 0. Let us assume that it is true for some
i: ni ≤ `n

(
1− x

`m

)i
. Let Fi denote the set of agents that

have free slots after iteration i. There are at least ni

` such
agents. For j ∈ Fi, let S(j) be the number of j’s top-x items
that were not included in the solution yet. If j ∈ Fi has
s free slots, then S(j) = (x − ` + s). Thus we have that∑
j∈Fi

S(j) ≥ ni + (x − `)ni

` = nix
` . By the pigeonhole

principle, there exists an item that is among top-x items for at
least nix

`m agents from Fi. Thus, after the (i+ 1)-th iteration
of the algorithm, the total number of free slots is at most:

ni+1 ≤ ni −
nix

`m
= ni

(
1− x

`m

)
≤ `n

(
1− x

`m

)(i+1)

.

The number of free slots after the last iteration is at most:

nK ≤ `n
(
1− x

`m

)K
= `n

(
1− γ

`

)K≤ `n exp(−γK` ) .

Thus, the number of occupied slots is at least `n −
`n exp(−γK` ). Every item that occupies an agent’s slot has
utility for this agent at least βumax, where umax is the maxi-
mal utility that any of the agents assigns to an item.

It remains to assess the OWA coefficients for the utili-
ties of the items in the solution. If for some agent i the
utility of an item a, ui,a, is taken with coefficient αp
(p > 1), then in the solution there must be an item a′

such that ui,a′ ≥ ui,a and ui,a′ is taken with coefficient
αp−1. So there must exist at least 1

` (`n − `n exp(−γK` ))
occurrences of the items whose utilities are taken with co-
efficient α1. By repeating this reasoning for the remaining

occurrences of the items from the solution, since α is non-
increasing, we get that the total utility of the agents is at
least βumax(`n−`n exp(−γK` )) 1`

∑`
i=1 αi = βumaxn(1−

exp(−γK` ))
∑`
i=1 αi. Since no solution has utility higher

than numax

∑`
i=1 αi, we get our approximation ratio.

Approximation ratio of Algorithm 2 is particularly good
whenK is large compared to `. This, indeed, is the most inter-
esting case because for smallK we can find optimal solutions
by brute-force search (combining these two approaches leads
to a PTAS; see Theorem 6 below). Nevertheless, Algorithm 2
often gives a satisfactory approximation guarantees by itself.
Figure 1 depicts the classes of non-finicky utilities for which,
for a fixed ratio K/`, Algorithm 2 guarantees appropriate
approximation ratios: Parts (a) and (b) of the figure show the
relation that β and γ have to satisfy to obtain a particular
approximation ratio, for a given value K

` . Part (c) shows the
relation between the value of γ and the ratio K

` that has to be
satisfied for Algorithm 2 to achieve a particular approxima-
tion ratio under (1, γ)-non-finicky utilities.

Interestingly, Theorem 5 can be generalized to the case
of OWAs that are not nonincreasing (achieving a slightly
weaker approximation ratio). Combining this result with a
brute-force search for small values of K, we obtain a PTAS.

Theorem 6. Fix a value ` and let α be a family of OWAs
that have nonzero values on top ` positions only. There is a
PTAS for α-OWA-WINNER for the case of (i) Borda-based
utilities, and (ii) (1, γ)-non-finicky utilities (for constant γ).

5 Summary
We proposed a new model for the problem of selecting a
number of items used jointly by a group of agents. We ar-
gued that the model is practical and we showed a number of
settings where it is directly relevant. In particular, it general-
izes several known multiwinner voting rules. We investigated
tractability of our problems. We have provided general hard-
ness results and a number of approximation algorithms for
natural special cases of the problem.
Acknowledgements. The authors were supported by NCN
grant 2013/09/N/ST6/03661 and by AGH University grant
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