
NOËL LAVERNY and JÉRÔME LANG

FROM KNOWLEDGE-BASED PROGRAMS TO GRADED
BELIEF-BASED PROGRAMS, PART I: ON-LINE

REASONING∗

ABSTRACT. Knowledge-based programs (KBPs) are a powerful notion for
expressing action policies in which branching conditions refer to implicit knowledge
and call for a deliberation task at execution time. However, branching conditions in
KBPs cannot refer to possibly erroneous beliefs or to graded belief, such as

“if my belief that ϕ holds is high
then do some action α

else perform some sensing action β”.
The purpose of this paper is to build a framework where such programs can be
expressed. In this paper we focus on the execution of such a program (a compan-
ion paper investigates issues relevant to the off-line evaluation and construction
of such programs). We define a simple graded version of doxastic logic KD45
as the basis for the definition of belief-based programs. Then we study the way
the agent’s belief state is maintained when executing such programs, which calls
for revising belief states by observations (possibly unreliable or imprecise) and
progressing belief states by physical actions (which may have normal as well as
exceptional effects).

1. INTRODUCTION

Knowledge-based programs, or KBPs (e.g. Fagin et al. 1995) are a
powerful notion for expressing action policies in which branching
conditions refer to implicit knowledge and call for a deliberation
task at execution time: informally speaking, branching in KBPs has
the following form:

if Kϕ then π else π ′

where K is an epistemic (generally S5) modality, and π , π ′ are sub-
programs. However, branching conditions in KBPs cannot refer to
possibly erroneous beliefs or to graded belief, such as in

while I have no strong belief about the direction of the railway station

do ask someone

[89]Synthese (2005) 147: 277–321
Knowledge, Rationality & Action 89–133

© Springer 2005

DOI 10.1007/s11229-005-1350-1

278 NOËL LAVERNY AND JÉRÔME LANG

The purpose of this paper is to build a framework for such
belief-based programs (BBPs). While knowledge states in KBPs are
expressed in epistemic logic (usually S5), BBPs need a logic of
graded belief, where different levels of uncertainty or entrenchment
can be expressed. We therefore have to commit to a choice regarding
the nature of uncertainty we wish to handle. Rather than reason-
ing with probabilistic belief states (and therefore introducing prob-
abilistic modalities), which would take us far from usual logics of
knowledge or belief such as S5 and KD45,1 we choose to define
belief states as ordinal conditional functions (OCF) (Spohn 1988) –
also called kappa-functions. Introducing OCFs in logic is techni-
cally unproblematic (see [Goldszmidt and Pearl 1992; Boutilier et al.
1998, 1999] for logical frameworks of dynamicity and uncertainty
based on OCFs); besides, OCFs are expressive enough in many sit-
uations where there exists only a small number of “belief degrees”;
therefore they are a good trade-off between simplicity and expres-
sivity, as well as between ordinality and cardinality, since they allow
for an approximation of probabilities without the technical difficul-
ties raised by the integration of logic and probability. Thus, unsur-
prisingly, OCFs have been used in several places for building logical
frameworks of dynamicity and uncertainty (Goldszmidt and Pearl
1992; Boutilier 1998; Boutilier et al. 1998).

Then, many difficulties arise when considering the way a belief
state should be progressed by an action. As in most logical frame-
works for reasoning about action we distinguish between pure sens-
ing actions who leave the state of the world unchanged and act
only on the agent’s mental state by giving her some feedback about
the actual world, and purely ontic (or physical) actions, aiming at
changing the state of the world without giving any feedback to the
agent. This partition can be made without loss of generality (see
e.g. [Scherl and Levesque 1993; Herzig et al. 2000), since complex
actions (with both ontic effects and feedback) can be sequentially
decomposed in two actions, the first being purely ontic and the sec-
ond one being a pure sensing action.

Let us first consider sensing actions. In S5-based KBPs, observa-
tions provided by sensing actions are considered fully reliable; they
are taken into account by a pure belief expansion operation. What
we need is suitable handling of uncertain initial beliefs, uncertain
and partially unreliable observations, and a belief revision opera-
tion for incorporating observations into the current belief state. As

[90]

KNOWLEDGE-BASED PROGRAMS 279

to ontic actions, BBPs, are intended to cope with the distinction
between normal effects and more or less exceptional effects.

We start by defining a graded version of KD45 (Section 2). In
Section 3 we show how belief states are revised by possibly unreli-
able observations produced by sensing actions. In Section 4 we show
how belief states are progressed (or updated) when the agent per-
forms (physical) actions which may have alternative effects, some
of which being more exceptional than others. Belief-based programs
and their relationship to partially observable Markov decision pro-
cesses are the subject of Section 5. Section 6 discusses further
research directions. Since related work pertains to several different
areas (depending on whether it relates to graded modalities, revi-
sion with uncertain inputs, or progression), we discuss it in the cor-
responding sections of the document, rather than having a specific
Section on related work.

2. KD45G

2.1. Graded Beliefs and BBPs

Our goal being to allow for branching conditions referring to
implicit and graded beliefs, we start by generalizing the well-known
doxastic logic KD45 so as to allow for graded belief modalities.

Let PS be a finite set of propositional symbols, The (non-modal)
language LPS is defined in the usual way as the propositional lan-
guage generated from PS, the usual connectives, and the Boolean
constants � and ⊥. Now, we define the language LOPS of graded
doxastic logic KD45G.

DEFINITION 1. The language LOPS generated from a set of prop-
ositional symbols PS is defined as follows:

• if ϕ is an objective formula of LPS then B1ϕ,B2ϕ, . . . ,B∞ϕ are
formulas of LOPS ;

• if ϕ is an objective formula of LPS then O1ϕ,O2ϕ, . . . ,O∞ϕ
are formulas of LOPS ;

• if � and � are formulas of LPS then ¬�,�∨�,�∧� are for-
mulas of LOPS .

Biϕ, for i ∈N=N ∪ {∞}, intuitively means that the agent believes
ϕ with strength i. The larger i, the stronger the belief expressed by

[91]

280 NOËL LAVERNY AND JÉRÔME LANG

Bi , and B∞ is a knowledge modality and may be denoted more sim-
ply by K (belief with infinite strength is true knowledge). Modali-
ties O1, O2, On and O∞ are only belief modalities, generalizing only
knowing (Levesque and Lakemeyer 2000). Intuitively, Oiϕ means
that all the agent believes to the degree at least i is ϕ.

Note that the language LOPS considers only subjective and flat for-
mulas. Neither formulas with nested modalities, nor formulas such
as ϕ ∧ Biψ , where ϕ, ψ are both objective, are formulas of LOPS .
This restriction is made for the sake of simplicity; it would be pos-
sible to consider a full modal language, and then prove, as it is the
case in KD45, that each formula is equivalent to a flat formula, but
we leave this technical issue aside since it has little relevance to the
issues dealt with in this paper. Likewise, combinations of objective
and subjective formulas do not play any role either as far as express-
ing and interpreting BBPs are concerned. Formulas of KD45G are
denoted by capital Greek letters �,� etc. while objective formulas
are denoted by small Greek letters ϕ,ψ etc.

A BBP is built up from the set of primitive actions ACT and
usual program constructors. Given a set ACT of primitive actions,
a BBP is defined inductively as follows:

• the empty plan λ is a BBP;
• for any α∈ ACT, α is a BBP;
• if π and π ′ are BBP then π;π ′ is a BBP;
• if π and π ′ are BBP and � is a formula of LOPS , then if �

then π else π ′ and while � do π are BBPs.

Thus, a BBP is a program whose branching conditions are doxastically
interpretable (since formulas of LOPS are subjective): the agent can
decide whether she believes to a given degree that a formula is true
(whereas she is generally unable to decide whether a given objec-
tive formula is true in the actual world). For instance, the agent per-
forming the BPP

π =while¬(B2r ∨B2¬r) do ask;
if B2r then goright else golef t

performs the sensing action ask until she has a belief firm enough
(namely of degree 2) about the way to follow (we’ll see in Section
5 that if the ask action does not give fully reliable and informative
outcomes then this program is not guaranteed to stop).

[92]

KNOWLEDGE-BASED PROGRAMS 281

2.2. Semantics

We now give a semantics for interpreting formulas of LOPS. Let S=
2PS be the (finite) set of states associated with PS. States are denoted
by s, s ′ etc. Rather than writing a state with a subset of PS, for sake
of clarity, we prefer to write them by listing all propositional symbols
with a bar on the symbol when it is false in the state: for instance, if
PS={a, b, c, d}, then instead of s={b, d} we write s= ābc̄d; instead
of s=∅ we write s= āb̄c̄d̄ etc. If ϕ is objective then we note Mod(ϕ)=
{s∈S|s |=ϕ}. For A⊆S, Form(A) is the objective formula (unique up
to logical equivalence) such that Mod(Form(A))=A. If A={s} then
we write Form(s) instead of Form({s}).

DEFINITION 2 (Belief states). An OCF (Spohn 1988), also called
a belief state, is a function κ : S �→N such that mins∈S κ(s)= 0, κ is
extended from states to objective formulas by κ(ϕ)=min{κ(s)|s |=ϕ}.

Intuitively, κ(s) is the exceptionality degree of s, κ(s) is usually
interpreted in terms of infinitesimal probabilities; κ(s)= k <+∞ is
then understood as prob(s)= o(εk), where ε is infinitely small. In
particular:

• κ(s)= 0 means that s is a normal state (a normal state is not
exceptional, to any degree).

• κ(s)=1 means that s is “simply exceptional”;
• κ(s)=2 means that s is “doubly exceptional’;
• κ(s)=+∞ means that s is truly impossible. Any state s such

that κ(s)<∞ is called a possible state.

The normalization constraint mins∈S κ(s) = 0 imposes that there
exists at least one normal state. The void belief state κvoid is defined
by κvoid(s)=0 for all s.

We now define satisfaction of a LOPS formula by a belief state.

DEFINITION 3. A model for KD45G is simply a an OCF κ. The
satisfaction of a formula of LPS in a model κ is defined by:

• for ϕ objective and i ∈N, κ |=Biϕ iff κ(¬ϕ)� i;
• for ϕ objective and i ∈N, κ |=Oiϕ iff ∀s ∈S, s |=¬ϕ⇔κ(s)� i
• κ |=�∨� iff κ |=� or κ |=�
• κ |=¬� iff κ �|=�.

[93]

282 NOËL LAVERNY AND JÉRÔME LANG

The connectives ∧,→,↔ are defined from ∨ and ¬ in the usual
way. � is valid (resp. satisfiable) iff it is satisfied in any model (resp,
in at least one model). � is a consequence of � (denoted by � |=�)
iff for any κ, κ |=� implies κ |=�. � and � are equivalent (denoted
by �≡�) iff � |=� and � |=�.

Let us briefly comment the definitions.

• κ |= Biϕ holds as soon as any model of ¬ϕ is exceptional at
least to the degree i (i.e., is such that κ(s)� i), or, equivalently,
all states such that κ(s)< i (i.e., at most i – 1-exceptional) sat-
isfy ϕ. In particular, B1ϕ is satisfied when all normal states sat-
isfy ϕ, and B∞ϕ is satisfied when all possible states (to any
degree) are models of ϕ.

• κ |=Oiϕ holds in κ as soon as the states exceptional at least
to the degree i are exactly the countermodels of ϕ, or equiva-
lently, the states exceptional at most to degree i−1 are exactly
the models of ϕ. In particular, O1ϕ is satisfied when all normal
states satisfy ϕ, and all models of ϕ are normal.

Importantly, O1�, means that the agent does not believe anything
to the degree 1, therefore nothing either to the degree 2, etc. The
only κ satisfying O1� is κvoid.

It can be shown easily that each Bi is a KD45 modality restricted
to flat formulas:

PROPOSITION 1. For all ϕ,ψ in LPS and all i, the following for-
mulas are valid in KD45G:

1. Oiϕ→Biϕ;
2. Bjϕ→Biϕ whenever j � i;
3. Bi(ϕ∧ψ)↔Biϕ∧Biψ ;
4. ¬Bi⊥.

Proof.

1. Let κ such that κ |=Oiϕ, which, by definition of the satisfac-
tion relation, is equivalent to ∀s ∈ S, s |=¬ϕ iff κ(s)� i. This
implies min{κ(s)| s |=¬ϕ}� i, that is, κ(¬ϕ)� i, therefore κ |=
Biϕ.

2. Assume j � i. κ |= Bjϕ is equivalent to κ(¬ϕ) � j , which
implies κ(¬ϕ)� i, i.e., κ |=Biϕ.

[94]

KNOWLEDGE-BASED PROGRAMS 283

3. κ |= Bi(ϕ ∧ ψ) is equivalent to κ(¬(ϕ ∧ ψ)) � i. Now,
κ(¬(ϕ ∧ ψ)) = κ(¬ϕ ∨ ¬ψ) = min(κ(¬ϕ), κ(¬ψ)). Therefore,
κ |= Bi(ϕ ∧ ψ) is equivalent to min(κ(¬ϕ), κ(¬ψ)) � i i.e.,
κ(¬ϕ)� i and κ(¬ψ)� i, which is equivalent to κ |=Biϕ and
κ |=Biψ , i.e., κ |=Biϕ∧Biψ .

4. Let κ a belief state. Since there exists a s such that κ(s)=0, we
get κ(�)=0, hence for all i�1, κ |=¬Bi⊥.

Remark that due to (3), Biϕ → Biψ is valid whenever ϕ |= ψ .
Remark also that (2) and (3) fail to be valid if we replace Bi by Oi .

EXAMPLE 1. Let κ defined by κ(ab)=0, κ(ab)=1, κ(ab)=1 and
κ(ab)=∞. Then

• κ |=B1a∧¬B2a : the agent believes a to the degree 1 (because
the (single) normal state, i.e, ab, satisfies a), but this belief is
no firmer than that: a is not believed to the degree 2, because
there is a ¬a-state s such that κ(s)=1, namely ab.

• κ |=K(a∨b), because all possible states (namely, ab, ab and ab)
satisfy a∨b;

• κ |=¬B1b, because the normal state ab does not satisfies b.
• κ |=O1(a∧¬b), because a∧¬b is all the agent believes in the

normal states;
• κ |=O∞(a∨b).

The meaning of κ |=Oiϕ is better understood by the following sim-
ple result:

PROPOSITION 2. The two following statements are equivalent:

1. κ |=Oiϕ

2. for every objective formula ψ , κ |=Biψ iff ϕ |=ψ .

Proof.

(1) ⇒ (2) Let κ |=Oiϕ.
(a) Let ψ such that ϕ |=ψ . By Proposition 1, κ |=Oiϕ implies
κ |=Biϕ, therefore, by Proposition 1, κ |=Biψ .
(b) Let ψ such that ϕ �|= ψ , which entails that there exists
a state s such that s |= ϕ ∧ ¬ψ . Now, s |= ϕ and κ |=Oiϕ

together imply κ(s)< i, which in turn implies κ(¬ψ)<i and
therefore κ �|=Biψ .

[95]

284 NOËL LAVERNY AND JÉRÔME LANG

(2) ⇒ (1) Assume (1) false, i.e., κ |=¬Oiϕ; then either (c) there is an
s such that s |=¬ϕ and κ(s)<i, or (d) there is an s such that
s |=ϕ and κ(s)� i. If (c) holds, then κ �|=Biϕ and then taking
ψ =ϕ falsifies (2). If (d) holds, then take ψ =¬Form(s). We
have κ(ψ)=κ(s)� i, and yet ϕ �|=ψ , which falsifies(2).

Syntactically, since the number of states is finite, Oiϕ can be defined
from the Bi modalities by the following formula (which is finite only
when PS is finite):

PROPOSITION 3.

Oiϕ≡Biϕ∧
∧

s|=ϕ
¬Bi(ϕ∧¬Form(s))

Proof.

• We start by showing Oiϕ |=Biϕ∧
∧
s|=ϕ ¬Bi(ϕ∧¬Form(s)). Let

κ such that κ |=Oiϕ, which, by definition of the satisfaction
relation, is equivalent to (a) ∀s |=ϕ, κ(s)< i and (b) ∀s |=¬ϕ,
κ(s)� i. From point 1 of Proposition 1 we have κ |=Biϕ. Now,
let s |=ϕ, which by (a) implies κ(s)< i. κ(s)< i, together with
s �|=ϕ∧¬Form(s), imply κ(¬(ϕ∧¬Form(s)))< i, therefore κ |=
¬Bi(ϕ ∧¬Form(s)). This being true for all s |= ϕ, and the set
of states being finite, we get (d) κ |=∧s|=ϕ ¬Bi(ϕ ∧¬Form(s)).
From (c) and (d) we get κ |=Biϕ∧

∧
s|=ϕ ¬Bi(ϕ∧¬Form(s)).

• Now, we show Biϕ∧
∧
s|=ϕ ¬Bi(ϕ∧¬Form(s)) |=Oiϕ. Let κ |=

¬Oiϕ. Then, either (e) there is a state s such that s |= ¬ϕ
and κ(s) < i or (f) there is a state s such that s |= ¬ϕ and
κ(s)� i. If (e) holds, then κ(ϕ)<i and therefore κ |=¬Biϕ and
a fortiori κ |= ¬(Biϕ ∧

∧
s|=ϕ ¬Bi(ϕ ∧¬Form(s))). If (f) holds,

then for this state s it holds κ(ϕ ∧ ¬Form(s)) � i, therefore
κ |=Bi(ϕ ∧¬Form(s)), which entails that κ |=¬(∧s|=ϕ ¬Bi(ϕ ∧
¬Form(s))). In both cases (e) and (f) we have κ |= ¬(Biϕ ∧∧
s|=ϕ ¬Bi(ϕ ∧ ¬Form(s))). This being true for all κ |= ¬Oiϕ,

we have ¬Oiϕ |= ¬(Biϕ ∧
∧
s|=ϕ ¬Bi(ϕ ∧ ¬Form(s))), which is

equivalent to Biϕ∧
∧
s|=ϕ ¬Bi(ϕ∧¬Form(s)) |=Oiϕ.

EXAMPLE 2. Let PS= {x, y}; we have O2(x ∨ y) ≡ B2(x ∨ y) ∧
¬B2x∧¬B2y∧¬B2(x∧¬y∨¬x∧y). The formula O1x∧O2x∧O3�
means that the agent believes only x to the degree 2, that he does

[96]

KNOWLEDGE-BASED PROGRAMS 285

not believe more to the degree 1 and that he does not believe any-
thing to a degree > 2.

2.3. Normal Forms

We now introduce some useful syntactical notions. A formula of LOPS is

• a doxastic atom iff it is a formula Biϕ where ϕ is objective.
• a O-doxastic atom iff it is a formula Oiϕ where ϕ is objective.
• a normal positive doxastic (NPD) formula iff � is of the form

B∞ϕ∞ ∧ Bnϕn ∧ · · · ∧ B1ϕ1, where ϕ∞, ϕ1, . . . , ϕn are objective
formulas such that for all j and i >j we have |=ϕj→ϕi .

• a normal O (NO) formula iff it is of the form O∞ϕ∞ ∧
On+1ϕ∞∧Onϕn∧· · ·∧O1ϕ1, where ϕ∞, ϕ1, . . . , ϕn are objective
formulas such that for all j and i >j we have |=ϕj→ϕi .

EXAMPLE 3.

• B3¬x, K(¬x∨¬y) are doxastic atoms;
• O3¬x is a O-doxastic atom;
• K�∧B4�∧B3a∧B2a∧B1(a∧b) is a NPD formula;
• O∞�∧O4�∧O3a∧O2a∧O1(a∧b) is a NO formula.

When writing a normal positive doxastic formula B∞ϕ∞ ∧ Bnϕn ∧
· · ·∧B1ϕ1, we omit subformulas Biϕi such that ϕi+1≡ϕi , as well as
tautological subformulas of the form Bi�: for instance,

B∞�∧· · ·∧B4�∧B3a∧B2a∧B1(a∧b)
is simply denoted by its equivalent simplified form

B3a∧B1(a∧b)
Henceforth, formulas such as B2a,B∞¬a ∧ B1(b ∧¬a) are consid-
ered as normal positive doxastic formulas. The limit case where all
ϕi are � is simply denoted by � – which is therefore a NPD for-
mula as well. Likewise, ⊥ is also a NO formula.

Since Bi(ϕ ∧ ψ)↔ Biϕ ∧ Biψ and Biϕ→ Bjϕ (i � j) are valid
in KD45G, any conjunction of doxastic atoms can be equivalently
rewritten in NPD form. For instance,

B3a∧B1(a→b)∧B1c

is equivalent to B3a∧B1(a∧b∧ c).

[97]

286 NOËL LAVERNY AND JÉRÔME LANG

We also make use of the following syntactical shortcut: for any
NPD formula � = B∞ϕ∞ ∧ Bnϕn ∧ · · · ∧ B1ϕ1,Only(�) is the for-
mula O∞ϕ∞ ∧ On+1ϕ∞ ∧ Onϕn ∧ · · · ∧ O1ϕ1. Such formulas com-
pletely express the agent’s belief state; they are satisfied by a single
OCF, namely κ�=G(�) defined in Section 2. For instance,

Only(B3a∧B1(a∧b))
= O∞�∧· · ·∧O4�∧O3a∧O2a∧O1(a∧b)

Any belief state κ corresponds to a NO formula �κ , unique up to
logical equivalence:

DEFINITION 4 (From belief states to NO formulas and vice
versa).

1. for any belief structure κ, H(κ)=�κ is the NO formula (unique
up to logical equivalence) defined by

�κ =O∞ϕ∞∧On+1ϕ∞∧Onϕn∧· · ·∧O1ϕ1

where

• n=max{κ(s) | s ∈S and κ(s)<∞}
• for all i ∈{1, . . . , n,∞}, ϕi= Form({s ∈S| κ(s)< i}).

2. given a NO formula �=O∞ϕ∞ ∧On+1ϕ∞ ∧Onϕn ∧ · · · ∧O1ϕ1,
G(�)=κ� is the OCF defined by

κ�(s)=

⎧
⎪⎪⎨

⎪⎪⎩

0 if s |=ϕ1

i if s |=ϕi+1∧¬ϕi and i=1, . . . , n−1
n if s |=ϕ∞∧¬ϕn
+∞ if s �ϕ∞

EXAMPLE 4. Let κ defined by κ([a,¬b])=0, κ([a, b])=1,
κ([¬a, b])=1 and κ([¬a,¬b])=∞. Then

H(κ)=O∞(a∨b)∧O2(a∨b)∧O1(a∧¬b)

The following property tells that there is a one-to-one correspon-
dence between OCFs and equivalence classes (w.r.t. equivalence on
KD45G) of NO formulas:

[98]

KNOWLEDGE-BASED PROGRAMS 287

PROPOSITION 4. For any NO formula � = O∞ϕ∞ ∧ On+1ϕ∞ ∧
Onϕn∧· · ·∧O1ϕ1, κ |=� iff κ=κ�.

Proof. Let �=O∞ϕ∞∧On+1ϕ∞∧Onϕn∧· · ·∧O1ϕ1.

⇒ Suppose κ |=�, which is equivalent to the following condition:
for all s∈S and every i, s |=ϕi iff κ(s)<i. This helps us remark-
ing that (a) for all s ∈ S, κ(s)>n implies κ(s)=+∞. Consider
now the following four cases:

• κ(s)= 0. In this case, s |= ϕ1 and by definition of κ�, we
have κ�(s)=0;

• κ(s)= i where 1� i�n−1. In this case, s |=¬ϕi ∧ϕi+1 and
by definition of κ�, we have κ�(s)= i.

• κ(s)=n. In this case, s |=ϕ∞∧¬ϕn, and by definition of κ�,
we have κ�(s)=n.

• κ(s)=+∞. In this case, s |=¬ϕ∞ and by definition of κ�,
we have κ�(s)=∞.

Due to (a), these cover all possible cases, therefore κ�=κ.

⇐ We have to verify that κ� |=�. First, we check that for all s ∈
S, s |=¬ϕ∞ iff κ�(s)=+∞, therefore κ� |=O∞ϕ∞. Next, for all
s ∈ S and all i � n, s |= ¬ϕi iff κ�(s)� i, therefore κ� |=Oiϕi .
Hence, κ� |=�.

COROLLARY 1. κ�κ =κ and �κ�≡�.

Proof. Let κ be a belief state. It is easily checked that κ |=�κ .
Now, letting �=�κ in Proposition 4 gives κ |=�κ iff κ=κ�κ , hence
κ�κ = κ. This shows that H =G−1 (where NO formulas are identi-
fied, by a slight abuse of notation, with their equivalence class w.r.t.
logical equivalence), therefore �κ�≡�.

Notice that when writing �κ =O∞ϕ∞ ∧On+1ϕ∞ ∧Onϕn ∧ · · · ∧
O1ϕ1, ϕi is the formula expressing all the agent believes to the
degree i in the belief state κ.

2.4. Related Work on Modal Logics of Graded Belief

Although it is original, the construction given in this Section is not
the primary goal of the paper. It is very similar to the work on
stratified belief bases and possibilistic logic (e.g. (Dubois et al. 1994))

[99]

288 NOËL LAVERNY AND JÉRÔME LANG

where the duality between (semantical) belief states and (syntactical)
NPD formulas can be expressed as well. A multimodal system (with
no account for only believing) for possibilistic logic is given in Fariñas
del Cerro and Herzig (1991). As for gradual doxastic logics, van der
Hock and ch Meyer 1991 define a gradual version of KD45 as well.
The interpretation of graded belief is, however, totally different from
ours, since Bnϕ expresses that ϕ is true in all worlds except n or less.

3. OBSERVATIONS AND REVISION

3.1. Combination of Belief States

We now define the combination of belief states, and by isomorphism,
the combination of NO formulas. Calling it a “connective” is an
abuse of language, since it only connects NO formulas and is there-
fore not a full-fledged connective.

DEFINITION 5 (OCF combination). Let κ1 and κ2 be two OCFs.
If minS(κ1+ κ2)=∞, then κ1⊕ κ2 is undefined; otherwise, κ⊕ κ2 is
defined by

∀s ∈S, (κ1⊕κ2)(s)=κ1(s)+κ2(s)−min
S
(κ1+κ2)

When defined, we have minS(κ1 ⊕ κ2) = 0, therefore κ1 ⊕ κ2 is an
OCF.

In the particular case of κϕ defined by

κϕ(s)=
{

0 if s |=ϕ
+∞ if s |=¬ϕ

then

(κ⊕κϕ)(s)=
{
κ(s)−κ(ϕ) if s |=ϕ
+∞ if s |=¬ϕ

provided that κ(ϕ)<∞. Therefore, (κ⊕κϕ)(s)=κ(s|ϕ), where κ(.|ϕ)
is Spohn’s conditioning (Spohn 1988).

The intuitive idea behind OCF combination is first illustrated when
minS(κ1+κ2). When combining the beliefs coming from the sources
1 and 2 (corresponding respectively to κ1 and κ2), the combined
exceptionality degree of a state s is the sum of the exceptionality of
s according to 1 and of that according to 2.

[100]

KNOWLEDGE-BASED PROGRAMS 289

EXAMPLE 5. Consider κ1 = κ�1 and κ2 = κ�1 , where �1 = Only
(B∞(a∨b)∧B2a∧B1(a∧b)) and �2=Only(B1b).

κ1 κ2 κ1⊕κ2

ab : 0 0 0
ab̄ : 1 1 2
āb : 2 0 2
āb̄ : ∞ 1 ∞

κ1 and κ2 do not conflict: there is a state, namely ab, considered
normal by both; hence the identity κ1 ⊕ κ2 = κ1 + κ2. Now, (κ1 ⊕
κ2)(ab)= 0 intuitively means that the state ab, considered normal
by both κ1 and κ2, is considered normal by their combination as
well. Next, ab̄ being considered simply exceptional by both κ1 and
κ2, the combination of both considered it doubly exceptional ((κ1⊕
κ2)(ab̄)= 2.) This is justified by the fact that κ1 and κ2 are consid-
ered as two independent sources: intuitively, if ab̄ is the actual state
then both sources 1 and 2 have to be wrong. Considering now that
source 1 (resp. 2) is wrong about ab̄ with probability o(ε) (because
κ1(ab̄)= κ2(ab̄)= 1), the probability that both sources are wrong is
in o(ε2).

When both sources κ1 and κ2 conflict, we end up with a κ1 + κ2

without any normal state. Renormalizing then just corresponds to
making the least exceptional states normal.

EXAMPLE 6. Consider κ1 as above and κ3=κ�3 , where

�3=Only(B∞(¬a∨¬b))

κ1 κ3 κ1+κ3 κ1⊕κ3

ab : 0 ∞ ∞ ∞
ab̄ : 1 0 1 0
āb : 2 0 2 1
āb̄ : ∞ 0 ∞ ∞

No state being considered normal by both sources, ab̄, being the
“closest to normality” when considering both sources, is made nor-
mal in their combination.

Up to an isomorphism, ⊕ corresponds to the “product combina-
tion” of possibility distributions (see Section 3.4. of (Benferhat et al.

[101]

290 NOËL LAVERNY AND JÉRÔME LANG

2001)), as well as to an infinitesimal version of Dempster’s rule of
combination (Dempster 1967). The details are in Appendix.

By isomorphism, NO formulas can be combined as well:

DEFINITION 6. For � and � two NO formulas we have:

�⊗�=
{
H(κ�⊕κ�)=H(G(�)⊕G(�)) if defined
⊥ otherwise

Since, due to Corollary 1, there is a one-to-one correspondence
between NO formulas (modulo logical equivalence) and belief states,
the following holds: let �, � are two NO formulas such that �⊗
� �≡⊥, then κ |=�⊗� iff κ=κ�⊕κ� .

PROPOSITION 5. The following formulas are valid:

1. Only(Biϕ)⊗Only(Bjϕ)≡Only(Bi+jϕ);

2. Only(Biϕ)⊗Only(Bj¬ϕ)≡
⎧
⎨

⎩

Only(Bi−jϕ) if i >j
Only(Bj−i¬ϕ) if j > i
Only(K�) if i= j

3. �⊗�≡�⊗�;
4. �⊗ (�⊗�)≡ (�⊗�)⊗�);
5. �⊗�≡�

Proof.

1. By definition,

κOnly(Biϕ)(s)=
{

0 if s |=ϕ
i if s �ϕ

and

κOnly(Bj ϕ)(s)=
{

0 if s |=ϕ
j if s �ϕ

Therefore

(κOnly(Biϕ)⊕κOnly(Bj ϕ))(s)

{
0 if s |=ϕ
i+ j if s �ϕ

[102]

KNOWLEDGE-BASED PROGRAMS 291

2. We have

κOnly(Biϕ)(s)=
{

0 if s |=ϕ
i if s �ϕ

and

κOnly(Bj¬ϕ)(s)

{
j if s |=ϕ
0 if s �ϕ

Assume i > j . Then min(κOnly(Biϕ) + κOnly(Bj¬ϕ))= j ; now, if
s |= ϕ then (κOnly(Biϕ) + κOnly(Bj¬ϕ))(s) = i − j and if s |= ¬ϕ
then (κOnly(Biϕ)+κOnly(Bj¬ϕ))(s)=0. The case j >i is symmetric.
Lastly, if i=j then min(κOnly(Biϕ)+κOnly(Bj¬ϕ))= i, and for every
s, (κOnly(Biϕ)+κOnly(Bj¬ϕ))(s)=0, hence κOnly(Biϕ⊗Bj¬ϕ)κvoid.

3. obvious.
4. ((κ1 ⊕ κ2) + κ3)(s) = κ1(s) + κ2(s) − minS(κ1 + κ2) + κ3(s) −

minS((κ1⊕κ2)+κ3). Now, minS((κ1⊕κ2)+κ3)=mins∈S(κ1(s)+
κ2(s)−minS(κ1 + κ2)+ κ3(s))=mins∈S(κ1(s)+ κ2(s)+ κ3(s))−
minS(κ1 + κ2); therefore, ((κ1 ⊕ κ2) ⊕ κ3)(s) = κ1(s) ⊕ κ2(s) +
κ3(s) − minS(κ1 + κ2 + κ3). This expression is symmetric in
κ1, κ2 and κ3, therefore, (κ1⊕κ2)⊕κ3= (κ2⊕κ3)⊕κ1); by com-
mutativity, we then get (κ1⊕κ2)⊕κ3=κ1⊕ (κ2⊕κ3). Lastly, by
isomorphism we get �⊗ (�⊗�)≡ (�⊗�)⊗�);

5. obvious from κ�=κvoid and κ⊕κvoid=κ.

An important corollary of point 1 is that �⊗� is generally not
equivalent to �.

As an example, we consider �1 ⊗�2 where �1 =Only(B∞(a ∨
b) ∧ B2a ∧ B1(a ∧ b)) et �2 =Only(B1b). We show with the array
above that �1⊗�2≡�3 where �3=Only(B2(a∧b)∧B∞(a∨b)).

κ�1 κ�2 κ�3

ab : 0 0 0
ab : 1 1 2
ab : 2 0 2
ab : ∞ 1 ∞

3.2. Observations

Let us now introduce observations and revision of a belief state
by an observation. The feedback of a sensing action is an obser-
vation. The simplest sensing actions are basic tests, whose feedback

[103]

292 NOËL LAVERNY AND JÉRÔME LANG

consists of the truth value of a given objective formula. Unlike
most approaches to sensing in reasoning about action and planning,
assuming that all sensing actions are basic tests such as in (Scherl
and Levesque 1993; van Linder et al. 1994; Levesque 1996; Herzig
et al. 2001) becomes a loss of generality when considering belief
instead of knowledge: we want to allow for more general sensing
actions, whose feedback might be imprecise and/or unreliable.

DEFINITION 7. An Observational believe state, or, for short, an
observation, is a belief state κobs, corresponding to a NO formula
obs = H(κobs) =Only(B∞o ∧ Bnon ∧ · · · ∧ B1o1) (by convention we
write o∞=o).

An observation is therefore defined by the belief state it conveys
(which, in practice, may be a function of the belief state of the
source and the belief that the agent has on the reliability of the
source): κobs is all we observe when getting the observation obs.
κobs can also be viewed as the belief state the agent gets into when
obtaining obs in the void belief state κvoid. The void observation
obsvoid is defined by obsvoid=Only(K�) – i.e., κobsvoid =κvoid.

The outcome of a reliable truth test for a given variable x is an
observation of the form obs ≡Only(B∞o), where o= x or o=¬x.
In this case, obs is a reliable and fully informative observation about
x. If obs≡Only(B∞o) where o is a more general formula (such as,
for instance, x ∨ y), then obs is reliable but incomplete; a degener-
ate case is when o=�: the tautology is observed – obviously with
full reliability. Now, a simple observation obs≡Only(Bkok), where
k <∞, is only partially reliable. A complex observation is com-
posed of a reliable part (possibly conveying little information, some-
times none at all) and some partially reliable parts – the amount
of information obviously decreasing with the reliability level. This
rather complex definition is due to the fact that a single observa-
tion generally relates to the real state of the world in several ways,
with various degrees of uncertainty (exactly as in the Bayesian
case). Consider for instance reading the value θ on a tempera-
ture sensor, which may for instance correspond to the observation
obs=Only(B1(t − 1 � θ � t + 1)∧B2(t − 2 � θ � t + 2)∧B∞(t − 5 �
θ � t+5)).

Here is another example. At 8 in the morning, the agent hears on
the radio “due to a strike of a part of the airport staff, today the

[104]

KNOWLEDGE-BASED PROGRAMS 293

air traffic will be subject to strong perturbations; as for now, no flight
has been scheduled yet”. The agent, who namely has a ticket for a
11.00 flight to destination D, views this as an observation that: (a)
for sure, perturbations will occur; (b) there is a strong (but not total)
evidence that he will not leave at 11.00 as initially planned; (c) there
is a weaker evidence that he won’t be able to leave today at all, There-
fore, using the variables p (perturbations), m (the agent gets a flight
in the morning as planned) and l (the agents gets a flight later in the
day), the complex observation brought by the radio information may
be Only (B∞p∧ B2(p∧¬m)∧ B1(p∧¬m∧¬l)).

3.3. Revision

Now, the agent revises her current belief state by an observation
simply by combining both.

DEFINITION 8. Let κ be a belief state and κobs an observational
belief state. The revision of κ by κobs is the combination of κ and
κobs, i.e., rev(κ, o)=κ⊕κobs.

One may be somewhat surprised by the fact that revision is defined
by a symmetric operator, while most standard approaches to belief
revision are definitely non-commutative. The latter (apparent) non-
commutativity comes from the status of the observation, which is
considered as definitely true and must be accepted in any case.2

However, belief revision with fully reliable observations is a par-
ticular case of our general revision, which argues that standard
(AGM) belief revision can also be considered as commutative, pro-
vided that each piece of information is labeled by its status (reliable
or not).

Now, by isomorphism, revision can be performed syntactically:
�=Only(B∞ϕ ∧Bnϕn ∧ · · · ∧B1ϕ1) being a NO formula and obs=
Only(B∞o ∧ Bpop ∧ · · · ∧ B1o1) an observation, the revision � by
obs is �⊗obs. The following result shows how the latter expression
can be computed syntactically in a compact way, without performing
revision state by state:

PROPOSITION 6. Given � and obs two NO formulas,

�⊗obs≡Only(B1ψp∧· · ·∧Bmψp+m−1∧B∞ψ)

[105]

294 NOËL LAVERNY AND JÉRÔME LANG

where

• ψ=ϕ∧o;
• ∀i ∈N,ψi= (ϕ1∧oi)∨ (ϕ2∧oi−1)∨· · ·∨ (ϕi ∧o1);
• p=min{j,ψj �≡⊥};
• m=max{j,ψp+j−1 �≡ψ}.
Proof. First we show that∀i∈N, Mod(ψj)={s|κ�(s)+κobs(s)<j}.

Let s ∈ S such that κ�(s)+ κobs(s)< j , then κ�(s)< j − κobs(s), hence
s |=ϕj−κobs(s) (cf. Definition 4). Furthermore, the same definition implies
s |= oκobs(s)+1. Therefore, s |=ψj . Conversely, let s |=ψj . Then, by con-
struction of ψj , there exist u and v such that u+v= j +1 and s |=ϕu∧
ov. Using definition 4, this implies that κ�(s)<u and κobs(s)< v, i.e.,
κ�(s)+κobs(s)<j .

This property shows first that minS(κ + κobs) = p − 1, and
then that Mod(ψp+i−1) = {s|κ(s) + κobs(s) < p + i − 1}, i.e., Mod
(ψp+i−1)= {s|κ(s)+ κobs(s)−minS(κ + κobs) < i} = {s|κ� ⊕ κobs(s) <

i}. Furthermore, it obviously holds that Mod(ψ)={s ∈S|κ�(s)<∞
and κobs(s) < ∞} = {s ∈ S|(κ� ⊕ κobs)(s) < ∞}. This shows that
κO∞ψ ∧Omψp+m−1∧· · ·∧O1ψp=κ�⊕κobs. Hence, by isomorphism,
O∞ψ ∧Omψp+m−1∧· · ·∧O1ψp≡�⊗ (O∞o∧Oror ∧· · ·∧O1o1).

The semantical expression (immediate from Section 3) of the combina-
tion of� (corresponding to, κ�) by obs (corresponding to κobs) is simply
κ(s|obs)=κ(s)+κobs(s)−minS(κ+κobs), i.e., κ(.|obs)=κ⊕κobs.

Applying Proposition 6 to the specific case of simple observa-
tions – of the form obs= Only(Bkok) – gives a rather long formula
that we will not write down here, except in two cases: k=+∞ and
k=1. First, when k=1:

COROLLARY 2. Let � = Only(B∞ϕ∞ ∧ Bnϕn ∧ · · · ∧ B1ϕ1) and
obs= Only(B1o1). Then �⊗obs≡ Only(�) where � is as follows:

Case 1: ϕ1∧o1 �≡⊥
�=B1(ϕ1∧o1)∧B2(ϕ1∨ (ϕ2∧o1))∧· · ·
∧Bn(ϕn−1∨ (ϕn∧o1))∧Bn+1(ϕn∨ (ϕ∞∧o1))

∧B∞ϕ∞

Case 2: ϕ1∧o1≡⊥
�=B1(ϕ1∨ (ϕ2∧o1))∧· · ·∧Bn−1(ϕn−1∨ (ϕn∧o1))

∧Bn(ϕn∨ (ϕ∞∧o1))∧B∞ϕ∞

[106]

KNOWLEDGE-BASED PROGRAMS 295

Then, when obs=Only(B∞o) is a reliable observation, applying
Proposition 6 gives

COROLLARY 3. Let �=Only(B∞ϕ∞ ∧ Bnϕn ∧ · · · ∧ B1ϕ1) and
obs=Only(B∞o). Assume ϕ∞∧o �≡⊥ and let p=min{j, ϕj ∧o �≡⊥};
Then (if p�n)

�⊗obs≡Only(B∞(ϕ∞∧o)
∧Bn−p+1(ϕn∧o)∧· · ·∧B1(ϕp∧o))

Here is a more intuitive example.

EXAMPLE 7. Consider an agent asking pedestrians about the way
to the railway station. Assume there are only two directions, r
(right) and ¬r (left). The agent’s initial belief state is void (κ0 =
κvoid). When asking a pedestrian, five observations are possible:

• �obs1 = Only(B2r), corresponding to a pedestrian answering
“the station is on the right” without hesitation (however, the
observation is considered as not fully reliable – since it is
known that pedestrians sometimes give wrong indications even
when seem to be sure);

• �obs2 =Only(B1r), corresponding to a pedestrian answering “I
believe it’s on the right but I might be wrong”);

• �obs3=Only(B2¬r);
• �obs4=Only(B1¬r);
• �obs5=Only(B∞�) (the pedestrian answers “I have no clue”).

We have for instant κobs1={(r,0); (¬r,2)} and κobs4={(r,1); (¬r,0)}.
Obviously, κ0⊕κobsi=κobsi for any i.

• After observing obs2, we have κ1= κ0⊕ κobs2 = κobs2 and �1=
�0⊗�obs2=Only(B1r).

• Assume now that the second pedestrian gives obs2 too, Using
Proposition 6, we get:

– ψ=�∧�=�;
– ψ1= r ∧ r= r;
– ψ2= (r ∧�)∨ (�∧ r)= r;
– ψ3= (r ∧�)∨ (�∧�)∨ (�∧ r)=�

therefore p= 1 and p+m= 3, hence �1⊗�obs1 =Only(B2r ∧
B∞�)=Only(B2r).

[107]

296 NOËL LAVERNY AND JÉRÔME LANG

If the second observation had been obs4 instead of obs2 we would
have had �2=�1⊗�obs4=Only(B∞�) (the agent comes back to his
initial belief state). Indeed,

• ψ=�∧�=�;
• ψ1= r ∧¬r=⊥;
• ψ2= (r ∧�)∨ (�∧¬r)=�

therefore p = 2 and p + m = 2, hence �1 ⊗ �obs2 = Only(B1� ∧
B∞�)=Only(B∞�).
It can be shown by induction that after p1 occurrences of obs1, p2

of obs2, p3 of obs3, p4 of obs4 and p5 of obs5 (in any order), iter-
ated combination leads to

• Only(Bqr) if 2p1+p2>2p3+p4 and q=(2p1+p2)−(2p3+p4);
• Only(Bq¬r) if 2p1+p2< 2p3+p4 and q= (2p3+p4)− (2p1+
p2);

• Only(B∞,�) if 2p1+p2=2p3+p4.

This example shows how observations reinforce prior beliefs when
they are consistent with them3. It clearly appears that the crucial
hypothesis underlying the combination rule is independence between
the successive observations. Thus, on Example 7, the successive
answers are independent (pedestrians do not listen to the answers
given by their predecessors). If, on the other hand, we want to
express that successive actions are dependent of each other, then we
just have to add one or several hidden variables (as commonly done
in Markov processes) which would have the effect of blocking (or
limiting) the reinforcement4.

We conclude this section by a discussion on the recent paper (van
Ditmarsch 2004), which defines 5 revision operators, four of which
appear to be instances of our revision operator:

• minimal revision (*1 in (van Ditmarsch 2004)) is the weakest
form of revision (in the weak sense, that is, without the so-called
“success postulate” telling that when revising by ϕ, then ϕ

should be believed afterward; it coincides with revision by
Only(B1ϕ)– however, the ‘eventually successful’ property does
not hold in our framework because we also consider worlds
with an infinite rank, so that if initially all ϕ-states have an infi-
nite rank, then after any number of revisions by Only(B1ϕ), the
agent still believes ¬ϕ.

[108]

KNOWLEDGE-BASED PROGRAMS 297

• maximal revision (*2 in (van Ditmarsch 2004)) corresponds to
a revision by Only(B∞ϕ) and therefore to the usual Spohnian
revision, used as well in iterated revision frameworks such as
(Darwiche and Pearl 1997).

• “focus on ϕ” revision (*4 in (van Ditmarsch 2004)) corresponds
to a revision by Only(Bkϕ) such that k=max{κ(s)|κ(s)<∞}.
The effect of such a revision is to make all ϕ-states that are ini-
tially possible more plausible than all ¬ϕ-states.

• “successful minimal” revision (*5 in (van Ditmarsch 2004))
corresponds to a revision by Only(Bkϕ) with k = κ(ϕ) + 1 –
intuitively, k is the smallest integer such that the revision by
Only(Bkϕ) ensures that ϕ is more believed than ¬ϕ.

3.4. Related Work on Revision by Uncertain Observations

In addition to (van Ditmarsch 2004) (discussed in Section 3), a
close work to ours is (Boutilier et al. 1998), where observational
systems allowing for unreliable observations are modeled using
OCFs, Their work is less specific than ours (notice that in the
absence of ontic actions, our revision process falls in the the class
of Markovian observation systems). The main difference between
(Boutilier et al. 1998) and our Section 3 is that the revision func-
tions in (Boutilier et al. 1998) remain defined at the semantical
level, which, if computed state by state following the definition,
needs an exponentially large data structure. Our approach can there-
fore be viewed as providing a compact representation for a spe-
cific class of observation systems. In another line of work, namely
(Bacchus et al. 1999), models noisy observations in a probabilis-
tic version of the situation calculus (again, compact representation
issues are not considered). (Thielscher 2001) considers noisy sensors
as well in a logical framework, but with no graded uncertainty.

Belief transmutations and adjustments (Willams 1994) are based
on OCFs too; however, they are based on Spohn’s notion of α-con-
ditionalization which, similarly to Jeffrey’s rule in probability the-
ory, consist in changing minimally a belief state so as to force a
given formula to have the exceptionality degree α; this totally dif-
fers from a revision rule enabling an implicit reinforcement of belief
when the observation is consistent with the initial belief state, as
seen in Example 7. Likewise, the work of (Aucher 2004), which
defines a logic for public and private announcements with graded
plausibility, is based on Spohn’s conditionalization as well. The

[109]

298 NOËL LAVERNY AND JÉRÔME LANG

difference between both revision is salient in probability theory
as well: Jeffrey’s rule has no implicit reinforcing behavior, while
Pearls’rule does – see a discussion on both in (Chan and Darwiche
2003). See also (Dubois and Prade 1997) for a panorama of revision
rules in numerical formalisms, including OCFs.

4. PROGRESSION

We now consider the case of ontic (or physical) actions. Progressing
a belief state by an ontic action is the process consisting of project-
ing the expected changes implies by the action on the current belief
state so as to produce a new belief state, representing the agent’s
beliefs after the action is performed.

Purely ontic actions may change the state of the world but do
not give any feedback. Therefore, given an initial belief state κ and
an ontic action α, it is possible to determine the future belief state
(after the action is performed) by projecting the possible outcomes
of α on the current belief state. This operation is usually called pro-
gression: prog(κ, α) is the belief state obtained after α is performed
in belief state κ. By isomorphism, if � is a NO formula, we also
define Prog(�,α)=H(prog(G(�),α)).

4.1. Semantical Characterization of Progression

The semantics of progression is defined as in [Boutilier 1998] by
means of OCF transition models.

DEFINITION 9. An OCF transition model for action α is a collec-
tion of OCFs {κα(.|s),s∈S}.

κα(s
′|s) is the exceptionality degree of the outcome s ′ when perform-

ing action α in state s. Notice that for all s ∈S, mins ′∈S κα(s ′|s)= 0
holds, therefore κα(.|s) is an OCF. κα can be seen as the ordinal
counterpart of stochastic transition functions.

DEFINITION 10 (Progression of κ by an ontic action). Given an
initial belief state κ and an ontic action α whose dynamics is
expressed by the OCF transition model κα, the progression of κ by
α is the belief state κ ′ = prog(κ, α) defined by

[110]

KNOWLEDGE-BASED PROGRAMS 299

∀s ′ ∈S κ ′(s ′)=min
s∈S
{κ(s)+κα(s ′|s)}

This definition appears in several places, including (Goldszmidt and
Pearl 1992; Boutilier 1998, Boutilier et al. 1998). It is the ordinal
counterpart of p′(s ′)=∑s∈S p(s)p(s

′|s, α). Notice that κ ′ is a belief
state, because the normalization of both κ and κα(.|s) imply

min
s∈S

{
min
s∈S
{κ(s)+κα(s ′|s)}

}
=0

i.e., minS κ ′ =0

EXAMPLE 8. Consider two blocks A and B lying down on a table;
the propositional variable x is true if A is on top of B, false other-
wise. A robot can perform the action α consisting in try to put A
on B. If A is on B in the initial state, the action has no effect; oth-
erwise, it normally succeeds (i.e., x becomes true), and exceptionally
fails (in that case, x remains false). The OCF transition model for α
is: κα(x|x)=0;κα(¬x|x)=∞;κα(x|¬x)=0;κα(¬x|¬x)=1.

Assume the initial state is κvoid, then κ ′ =prog(κvoid, α)={(x,0),
(¬x,1)}; now, prog(κ ′, α) = κ ′′ = {(x,0), (¬x,2)}. More generally,
after performing α n times without performing any sensing action
(starting from κvoid), we get prog(κvoid, α

n)={(x,0), (¬x, n)}, whose
associated NO formula is Onx: after performing action α n times
(without sensing), the agent believes to the degree n that A is on B.

Example 8 shows that once again, the underlying hypothesis is the
independence between the outcomes of the different occurrences of
actions. Indeed, the intuitive explanation of the result of previous
example is that after these n executions of α, A is still not on B if
and only if all n occurrences of α failed; each of the failures has
an exceptionality degree of 1 and failures are independent, hence-
forth, n successive failures occur with an exceptionality degree of n.
Notice that this reinforcement effect is a consequence of the use of
⊕ (if conjunction were used instead, we would still get O1x after
performing α n times). Again (see Section 3), this reinforcement can
be limited or blocked using hidden variables expressing some corre-
lations between the outcomes of the different action occurrences.

In the rest of this section we now show how progression can be
computed syntactically, which avoids explicitly computing progres-
sion state by state consisting of a straightforward application of the
definition.

[111]

300 NOËL LAVERNY AND JÉRÔME LANG

4.2. Action Theories with Exceptional Effects

The first thing we need is a syntactical description of action effects.
Therefore, we show that action effects can be described by graded
action theories, generalizing action theories so as to allow for more
or less exceptional action effects.

We first recall briefly that an action theory is a logical theory
describing the effects of a given action on a set of variables (or
fluents), in a language equipped with a syntactical way of distin-
guishing between the states of the world before and after the action
is performed. Propositional action theories are usually written by
duplicating each variable x of PS in xt et xt+l (representing x respec-
tively before and after the execution of the action)5; this is the way
we use for representing graded action theories.

Thus, let PSt = {xt | x ∈ PS}, PSt+1{xt+1 | x ∈ PS}, St = 2PSt and
St+1 = 2PSt+1 . For any formula �, let �t (resp. �t+1) be the for-
mula obtained from � by replacing each occurrence of x by xt (resp.
xt+1). A graded action theory is a NO formula of this extended lan-
guage:
α =Only(B∞r ∧ Bnrn ∧ · · ·B1r1). We just give the graded
action theory corresponding to Example 8:

α=Only(B∞(xt→xt+1)∧B1xt+1)

The graded action theory can be obtained from a set of causal
(dynamic or static) rules through a completion process whose tech-
nical details are omitted because they are only little relevant to the
subject of this paper. This completion does not present any particu-
lar difficulty: it is an easy extension of completion for nondetermin-
istic action theories such as in (Lin 1996; Giunchiglia et al. 2003).

4.3. Syntactical Characterization of Progression

We now show how progression can be computed syntactically, which
avoids explicitly computing progression state by state consisting of a
straightforward application of the definition.

Like for the static case, any OCF transition models corre-
spond to graded action theories and vice versa: {κα(.|s), s ∈ S}
induces
α =Only(B∞r ∧ Bnrn ∧ · · · ∧ B1r1) where ri = Form{(s ′t+1,
st) |κα(s ′t+1 | st)< i}.

Now, we recall the definition of forgetting a subset of proposi-
tional variables X from an objective propositional formula ψ (Lin
and Reiter 1994):

[112]

KNOWLEDGE-BASED PROGRAMS 301

1. forget({x}, ψ) = ψx←�∨ψx←⊥;
2. forget(X∪{x},ψ) = forget({x}, forget(X,ψ)).

Forgetting is extended to S5 formulas in (Herzig et al. 2003) and
is here extended to NO formulas in the following way: if � =
Only(B∞ϕ∧Bnϕm∧· · ·∧B1ϕ1) and X⊂Var(�), then Forget(X,�)=
Only(B∞forget(X,ϕ)∧Bnforget(X,ϕn)∧· · ·∧B1forget(X,ϕ1)).

Now we have the following syntactical characterization of pro-
gression:

PROPOSITION 7. Let � be the NO formula corresponding to the
initial belief state κ, and α an ontic action described by an action
theory as previously defined. Then

Prog(�,α)≡Forget(PSt ,�t ⊗
α)

We start by proving the following Lemma.

LEMMA 1. Let {X, Y} be a partition of PS and κ an OCF on
2PS . Define κX : 2X×N by: for all sX ∈2X, κX(sX)=min{κ(sX, sY) s.t.
sY ∈2Y }. Then �κX =Forget(�κ,Y).

Proof. Notice first that min κX=0, therefore κX is an OCF. Now,
let i ∈ {1, . . . , n,∞} and sX ∈ 2X. Assume sX � forget(Y,ϕi). Then,
by Corollary 5 of Proposition 20 in (Lang et al. 2003), there is no
sY ∈ 2Y such that (sX, sY) |= ϕi ; therefore, for all sY ∈ 2Y we have
κ(sX, sY)� i and minsY∈2Y κ(sX, sY)� i, i.e., κX(sX)� i. Conversely,
assume sX |= forget(Y,ϕi). Then, again from Corollary 5 of Prop-
osition 20 in (Lang et al. 2003), there exists a sY ∈ 2Y such that
(sX, sY) |=ϕi , therefore minsY∈2Y

κ(sX, sY)< i, i.e., κX(sX)< i. In sum-
mary, for every i and every sX, κX(sX) < i iff sX |= forget(Y,ϕi),
which enables us to conclude that �κX = Forget(�κ,Y).
We now prove Proposition 7.

Proof. We start by defining the cylindrical extension κ̃ of κ
to 2St×St+1 by: for all st ∈ St , κ̃(st , st+1) = κ(st). Then, by defini-
tion 10, and using min(st ,st+1)∈St×St+1{κ(st)+ κα(st+1 | st)} = 0 we get
κ ′(st+1)=minst∈St {(κ̃ ⊕ κα)(st , st+1)}. Now, the definition of ri (i =
1, . . . , n,+∞) implies κα = κ
α and the definition of κ̃ implies κ̃ =
κ�t . Therefore, by Definition 5, we get: κ̃ ⊕ κα =G(�t ⊗
α). Now,
κ ′(st+1) = minst∈St κ(st)+ κα(st+1|st)=minst∈St (κ̃ ⊕ κα)(st , st+1). Now,

[113]

302 NOËL LAVERNY AND JÉRÔME LANG

using Lemma 1, κ ′(st+1)=κForget(Vart ,�t⊗
α), which, by isomorphism,
is equivalent to Prog(�,α) = Forget(PSt ,�t ⊗
α).

Thus, progression amounts to a combination followed by a for-
getting. For the first step, Proposition 6 can be applied again, as
shown on the following example. The second step amounts to a
sequence of classical forgetting operations.

EXAMPLE 8 (Continued). We have

α=Only(B∞(xt→xt+1)∧B1xt+1)

The initial belief state corresponds to

�=Only(B1x)

Then,

�t ⊗
α=Only(B∞ψ ∧Bnψn∧· · ·∧B1ψ1)

where

ψ = �∧ (xt→xt+1);
ψ1 = xt ∧xt+1;
ψ2 = (xt ∧ (xt→xt+1))∨ (�∧xt+1);
ψ3 = (xt ∧ (xt→xt+1))∨ (�∧ (xt→xt+1)∨ (�∧xt+1))

After simplifying the expression we get ψ = xt → xt+1; ψ1 = xt ∧
xt+1; ψ2 = xt+1; ψ3 = xt → xt+1 = ψ . Next, we get �t ⊗
α ≡
Only(B∞(xt→ xt+1)∧B1(xt ∧ xt+1)∧B2xt+1) and Forget (PSt ,�t ⊗

α) = Only(B∞� ∧ B1xt+1 ∧ B2xt+1) = Only (B2xt+1), and finally
Prog(�,α)=Only(B2x).

Note the importance of combination, which explains the reinforce-
ment obtained when chaining several actions. Such a reinforcement
would not be obtained if conjunction were used instead of combi-
nation: doing α many times would give B1x again and again.

4.4. Related Work on Actions with Exceptional Effects

Goldszmidt and Pearl 1992 and Boutilier 1999 study belief update
operators with belief states modeled by OCFs, so as to model excep-
tional effects of actions. These operators are very similar to our pro-
gression for ontic actions from a semantical point of view – but they

[114]

KNOWLEDGE-BASED PROGRAMS 303

do not give any syntactical characterization of progression. Shapiro
et al. 2000 considers physical and sensing actions in a situation cal-
culus setting, where states are mapped to a plausibility values; these
plausibility values are simply inherited from plausibility values in
the initial belief state (noisy observations and exceptional effects
actions are not considered). See also Baral and Lobo (1997) for a
language for describing normal effects in action theories. Lang et al.
2001 define also an update operator for belief states modeled by
OCFs, but this operator, which plays more or less for belief update
the role played by transmutations for belief revision, is very differ-
ent from the one given in this article and could not even handle our
simple Example 8.

5. ON-LINE EXECUTION OF BBPs

5.1. Execution and Progression

BBPs have been defined in Section 2 from a set of propositional
symbols PS and a set of primitive actions ACT. For the sake of sim-
plicity, primitive actions are assumed to be either purely physical (or
ontic) or purely informative actions: ACT = ACTP ∪ ACTI (where
actions in ACTP are physical and actions in ACTI are purely infor-
mative, that is, pure sensing actions). This simplification is usual
(see Scherl and Levesque 1993; Herzig et al. 2000; Reiter 2001a)
and does not induce any loss of generality, as any complex action
with both physical and informative effects can be decomposed in
two actions performed in sequence, the first one being purely phys-
ical and the second one purely informative.

The on-line execution of a belief program is a function mapping
a pair consisting of an initial belief state and a program to a set of
traces of the program.

DEFINITION 11 (Traces). A trace is a sequence τ =〈〈κt , αt , obst〉
0�t�T−1, κT 〉 where T � 0 and for all t , κt is a belief state, αt an
action and obst an observation. (If T =0 then τ =〈κ0〉.)

We make use of the following notations:

• if T �= 0 then we write τ = 〈κ0, α0,obs0〉.τ ′, where τ ′ = 〈〈κt , αt ,
obst〉1�t�T−1, κT 〉.

• tail(τ)=κT .

[115]

304 NOËL LAVERNY AND JÉRÔME LANG

As in Reiter (2001b), each time a program interpreter adds a new
action αt to its action history, the robot (or whatever entity execut-
ing the program) also physically performs this action. Since some of
these actions are informative actions, we cannot predict off-line the
outcome of the program, therefore we must consider a set of possi-
ble executions of the program, i.e., a set of traces.

We first have to define an informative action formally. As we said
previously, the notion of informative action we need is more com-
plex that actions of the type sense(ψ) used e.g. in Reiter(2001b).
These reliable and precise test actions sense(ψ), that send back
obs(Kψ) if ψ is true in the actual state and obs(K¬ψ) otherwise, are
generally assumed to be deterministic, that is, the observation they
send back is a function of the actual state of the world. Because
we want to allow for possibly unreliable observations, we cannot
assume informative actions to be deterministic: the possibility of
gathering unreliable pieces of information must come together with
the possibility of having several possible observations even if the
state of the world is given: for instance, in Example 7, given that the
station is on the right (s = r), we may, for instance, observe either
B1r, B2r, Kr,�, B1¬r and B2¬r, K¬r cannot occur as an observa-
tion in that state.

DEFINITION 12 (Feedback function). A feedback function

feedback: ACT×S→2OBS

maps each action and each state to a set of observations, satisfying
the following requirements:

1. feedback(α, s) �=∅;
2. if α is ontic then feedback(α, s) = {obsvoid}
3. if obs ∈ feedback(α, s) then obs(s) <∞.

feedback(α, s) is the set of possible observation obtained after per-
forming the sensing action α in state s. Condition 1 requires each
action to send back a feedback (possibly void). Ontic actions cannot
send any non-void feedback (Condition 2) (alternatively, we could
have restricted the definition of the feedback function to informative
actions only, but not doing this allows for simpler and shorter defi-
nitions further on). Condition 3 ensures a minimum level of consis-
tency between the feedback and the current state, since we exclude
that an observation occurs in a state that it totally excludes. The

[116]

KNOWLEDGE-BASED PROGRAMS 305

reason for requirement (3) is that revision of κ by obs(Only(Kϕ)) is
not defined when κ(ϕ)=∞ (cf. Section 3); thus, (3) excludes fully
contradicting sequences of observations such as obs(Kϕ) followed
by obs(K¬ϕ) without any ontic action being executed inbetween. In
particular, a fully reliable test action such as sense(ψ) as in (Scherl
and Levesque 1993; Reiter 2001b) is modeled by the following feed-
back function:

feedback(α, s)=
{
{obs(Only(Kψ))} if s |=ψ
{obs(Only(K¬ψ))} if s |=¬ψ

But generally, there may be any number of possible outcomes for a
given sensing action, including possible void observations (obsvoid=
Only(K�)).

Now, the agent generally does not know the actual state of the
world with precision, which calls for extending the feedback func-
tion from states to belief states:

DEFINITION 13 (Subjective feedback). Let feedback be a feed-
back function. Then the subjective feedback function feedbackS
induced by feedback is the function

feedbackS : ACT×BS→2OBS

mapping each action and each belief state to a set of observations,
defined by

feedbackS(α, κ)=
⋃
{feedback(α, s) |κ(s)<∞}

It is easily checked that the following properties follow immediately
from Definitions 12 and 13.

1. feedbackS(α, κ) �=∅;
2. if α is ontic then feedbackS(α, κ)={obsvoid};
3. if obs ∈ feedbackS(α, κ) then rev(κ, obs) is defined.

In the specific case where α is a fully reliable truth test that sends
back obs(Kϕ) or obs(K¬ϕ) then

feedbackS(α, k)=

⎧
⎪⎨

⎪⎩

{obs(Kϕ)} if κ |=Kϕ
{obs(K¬ϕ)} if κ |=K¬ϕ
{obs(Kϕ)}, {obs(K¬ϕ)} otherwise

[117]

306 NOËL LAVERNY AND JÉRÔME LANG

In other words, if the agent already knows that ϕ is true, then the
only possible feedback is observing that ϕ is true (otherwise the
agent would have had an incorrect infinite belief, that is, incorrect
knowledge).

We now define the set of possible executions of a BBP π in an
initial belief state κ.

DEFINITION 14 (possible executions of a BBP). A trace τ = 〈〈κt ,
αt ,obst〉0�t�T−1, κT 〉 is a possible execution of the BBP π in the
belief state κ iff one of the following conditions is satisfied:

1. τ =〈κ〉 and π =λ;
2. (a) τ = 〈κ,α,obs〉.τ ′ where α ∈ ACTP (b) π = α;π ′, (c) obs =

obsvoid and (d) τ ′ is a possible execution of φ′ in prog (κ, α);
3. (a) τ = 〈κ,α,obs〉.τ ′ where α ∈ ACTI , (b) π = α;π ′, (c) obs ∈

feedbackS(α, κ) and (d) τ ′ is a possible execution of π ′ in rev
(κ,obs);

4. (a) τ = 〈κ,α,obs〉.τ ′, (b) π = if � then π1 else π2;π3, and
(c) either κ |=� and τ is a possible execution of (π1;π3) in κ, or
κ |=¬� and τ is a possible execution of (π2;π3) in κ.

5. (a) τ =〈κ,α,obs〉.τ ′, (b) π = while � do π1;π2, and (c) either
κ |=� and τ is a possible execution of (π1;π) in κ, or κ |=¬�
and τ is a possible execution of π2 in κ.

We denote by exec(π, κ) the set of possible executions of π in κ.

It is easily shown that any BBP has at least one possible execution
in any belief state. There may be infinitely many such possible exe-
cutions, as shown in the following example.

EXAMPLE 9. Consider Example 7 again. Here are some possi-
ble executions of π = while ¬(B2r ∨ B2¬r) do ask in κOnly(�),
where κ0 = κOnly(�), κ1 = κOnly(B1r), κ2 = κOnly(B1¬r), κ3 = κOnly(B2r), κ4 =
κOnly(B2¬r), obs1=obs(Only(B1r)) and obs2=Only(B1¬r).
• 〈〈κ0,ask,obs1〉, 〈κ1,ask,obs1〉, κ2〉;
• 〈〈κ0,ask,obs2〉, 〈κ3,ask,obs1〉, κ4〉;
• 〈〈κ0,ask,obs1〉, 〈κ1,ask,obs2〉, 〈κ0,ask,obs1〉,
〈κ1,ask,obs1〉, κ2〉;

• 〈〈κ0,ask,obs1〉, 〈κ1,ask,obs2〉, 〈κ0,ask,obs2〉,
〈κ3,ask,obs2〉, κ2〉; etc.

[118]

KNOWLEDGE-BASED PROGRAMS 307

There are infinitely many possible executions of π . They can be
finitely described by the regular expression [(ab ∪ cd)∗; (ae ∪ cf)],
where a = 〈κ0,ask,obs1〉, b = 〈κ1,ask,obs2〉, c = 〈κ0,ask,obs2〉, d =
〈κ3,ask,obs1〉, e=〈κ1,ask,obs1〉 and f =〈κ3,ask,obs2〉〉).

We now show how progression can be extended from single actions
to belief-based programs, and then show the correspondance with
the set of possible executions of the program.

DEFINITION 15 (Progression of an initial belief state by a BBP).
Given a BPP π and an NO formula �, the progression of � by π
is the set of NO formulas Prog (�,π) defined inductively by

• Prog(�,λ)={�};
• if π=α;π ′ with α∈ ACTP then Prog(�,π) = Prog(Prog(�,α),
π ′)

• if π =α;π ′ with α∈ ACTI then

Prog(�,π)=
⋃

obs∈feedback(α,κ�)

Prog(�⊗obs, π ′)

• if π = (if � then π1 else π2); π3 then

Prog(�,π)=
{

Prog(�, (π1;π3)) if � |=�
Prog(�, (π2;π3)) otherwise

• if π = (while � do π1); π2 then

Prog(�,π)=
{

Prog(�, (π1;π)) if � |=�
Prog(�;π2) otherwise

The following result guarantees that the syntactical way of comput-
ing progression is correct.

PROPOSITION 8. � ∈ Prog(π,�) iff there is an execution τ ∈
exec(π, κ�) such that tail(τ)=κ� .
Remark that an equivalent formulation of the above identity is

tail(exec(π, κ))={κ�,� ∈Prog(π,�κ)}
where tail(X)={tail(τ) s.t. τ ∈X}.

[119]

308 NOËL LAVERNY AND JÉRÔME LANG

Proof. By induction on the size of π . We first define the size of
a BBP inductively by: size(λ)= 0; size(α)= 1 for α �= λ; size(π;π ′)
= size(π)+ size(π ′); size(if � then π1 else π2) = max(size(π1),
size(π2))+1; size(while � do π ′) = size(π ′)+1. Let us consider the
induction hypothesis

I(m) : for all π such that size(π)�m and for all κ,

tail(exec(π, κ))={κ� s.t. � ∈Prog(�κ,π)}
If π=λ then exec(π,�)={�}={�}κ� by Corollary 1. Therefore I (0)
is verified. Assume now that I (m) is verified and let π be a BBP
such that size(π)=m+1.

• if π=α;π ′ and α∈ ACTP . Since size(π ′)=m,I (m) implies that
exec(π ′, κ)={κ�,�∈Prog(�κ,π

′)}. Then we have the following
chains of equivalences:

� ∈Prog(�,π)
iff � ∈Prog(�, (α;π ′))
iff � ∈Prog(Prog(�,α)π ′)
iff there is a τ ′ ∈ exec(π ′, κProg(�,α)) such that tail(τ ′)=κ�
iff there is a τ ′ ∈ exec(π ′,Prog(κ�,α)) such that tail(τ ′)=κ�
iff there is a τ ∈ exec((α;π ′), κ�) such that tail (τ ′)=κ�
iff there is a τ ∈ exec(π, κ�) such that tail (τ)=κ�.
iff κ� ∈ tail(exec(π, κ�)).

• let π = α;π ′ and α ∈ ACTI . Again, exec(π ′, κ) = {κ�,� ∈
Prog(�κ,π

′)} holds the induction hypothesis. Then we have the
following chains of equivalences:

� ∈Prog(�,π)
iff � ∈Prog(�, (α;π ′))
iff � ∈⋃{Prog(�⊗obs) |obs∈ feedback(α,�)}
iff there is a obs ∈ feedback(α,�) and a τ ∈ exec

(π ′, κ�⊗obs)such that tail(τ)=κ�
iff there is a obs ∈ feedback(α,�) and a τ ∈ exec

(π ′, rev(κ�, κobs)) such that tail (τ)=κ�
iff there is a τ ∈ exec((α;π ′), κ�) such that tail(τ)=κ�
iff κ� ∈ tail(exec(π, κ�))

• let π = (if � then π1 else π2); π3. Note that size(π1;π3)�
m and size(π2;π3) � m, therefore the induction hypothesis
can be applied to π1;π3 and to π2;π3. Then we have � ∈
Prog(�,π)

[120]

KNOWLEDGE-BASED PROGRAMS 309

iff either � |=� and � ∈ Prog(�, (π1;π3)) or ��� and
� ∈ Prog(�, (π2;π3))

iff either κ� |=� and there is a τ ∈ exec
((π1;π3), κ�) such that tail(τ)=κ� or κ� �� and
there is a τ ∈ exec((π2;π3), κ�) such that tail(τ)=κ�

iff κ� ∈ tail(exec(π, κ�)).
• the case π = while � do π1;π2 is similar to the latter.

Therefore, in all cases we have �∈Prog(�,π) iff κ� ∈ tail(exec(π, κ�)),
or equivalently, tail(exec(π, κ)) = {κ� s.t. � ∈ Prog(�κ,π)}. This
being true for any π of size m+1, we have shown that the induction
hypothesis carries on from m to m+1, which completes the proof.

EXAMPLE 10. Consider Example 7 again. We have the following:

Prog(π,Only(�))={Only(B2r),Only(B2¬r)}

Remark here that Prog(π,Only(�)) is finite although exec
(π, κOn1y(�)) is infinite.

5.2. BBP as Implicit and Compact Representations of POMDP
Policies

POMDPs are the dominant approach for planning under par-
tial observability (including nondeterministic actions and unreliable
observations) – see for instance (Kaelbling et al. 1998; Bonet and
Geffner 2001) for two of the most relevant references on plan-
ning with POMDPs). The relative plausibility of observations given
states, as well as the notion of progressing a belief state by an
action, has its counterparts in POMDPs. Now, there are two impor-
tant differences between POMDPs and our work.

A POMDP policy σ is a labeled automaton, that is, a graph
whose vertices are labeled by actions and edges by observations, and
the outcoming edges from a vertex v labeled by α are labeled by a
possible feedback obs of α (in particular, if α is ontic then there is
a unique outcoming edge from v, labeled by obsvoid).

Unlike a BBP, a policy can be followed without needing to per-
form a deduction task for evaluating a branching condition: a policy
is executed just by following the observation flow and executing the
indicated actions.

[121]

310 NOËL LAVERNY AND JÉRÔME LANG

Given a BBP π and an initial belief state, it is possible to “com-
pile” π into a policy σ , by simulating its execution and evaluat-
ing the branching conditions for each possible observation sequence.
For the sake of simplicity we define this induced policy as a tree; it
is then possible to reduce the tree into a smaller graph by a stan-
dard automaton minimization process.

In the following definition we denote by Tree(α, 〈obs1, τ1〉, . . .,
〈obsp, τp〉) the tree whose root is labelled by α and containing p

subtrees τ1, . . . , τp, labeled respectively by obs1, . . . ,obsp.

DEFINITION 16. Let π be a BBP and κ a belief state. Then the
policy σ = policy (π, κ) induced by π and κ is defined inductively by

• policy(λ, κ) is the tree composed of a single vertex labeled by λ;
• if π =α;π ′ with α∈ ACTP then

policy(π, κ)=Tree(α, 〈obsvoid,policy(π ′,prog(κ, α))〉)
• if π =α;π ′ with α∈ACTI then

policy(π, κ)=Tree(α, 〈obs1,policy(π ′, rev(κ,

obs1)〉, . . . , 〈obsp,policy(π ′, rev(κ,obsp)〉)
where {obs1, . . . ,obsp}= feedbackS(α, κ).

• if π = (if � then π1 else π2);π3 then

policy(π, κ)=
{

policy((π1;π3), κ) if κ |=�
policy((π2;π3), κ) otherwise

• if π = (while � do π ′);π ′′ then

policy(π, κ)=
{

policy((π ′;π), κ) if κ |=�
policy(π ′′, κ) otherwise

The crucial difference between a BBP and the policy implementing
it is in the expression of branching conditions :

• in a BBP branching conditions are subjective, since they refer
to the current belief state of the agent.

• in a POMDP policy, branching conditions are objective: the
next action is dictated by the last observation made.

This difference in the nature of branching conditions has two
important practical consequences:

[122]

KNOWLEDGE-BASED PROGRAMS 311

1. a policy is directly implementable (at each point in the policy exe-
cution, the next action to be performed is specified directly from
the feedback and is therefore determined in linear time, just by
following the edge corresponding to the observation made in the
policy graph). Contrariwise, a BBP is not directly implementable,
since branching conditions have first to be evaluated. Evaluating
a branching condition is a coNP-hard problem that has to be
solved on-line: thus, BBPs need a deliberation phase when being
executed, while policies do not.

2. a BBP is a much more compact description of the policy than the
explicit specification of the policy itself. Indeed, policies induced
by BBPs without while statements are, in the worst case, expo-
nentially larger than that the BBP they implement.

A policy is a particular case of a protocol in the sense of Fagin et al.
(1995). A single-agent protocol maps the local state of the agent to
an action; here, a local state is defined by the sequence of obser-
vations and actions performed so far (and thus corresponds to a
vertex in the policy tree). A more extensive discussion on the differ-
ences between protocols and KBPs can be found in Fagin et al.
(1995). We end up this discussion by giving two examples.

EXAMPLE 11. Consider the BBP

while¬(B2x∨B2¬x) do ask

applied in the void initial belief state κvoid.
Then the policy σ implementing π , as it is defined above, is

an infinite tree, which can easily be shown to be reductible to the
following finite graph G=〈V,E〉 defined by:

• V ={v�, vB1x, vB2x, vB1¬x, vB2¬x};
• v�, vB1x and vB1¬x are labeled by ask whereas vB2x and vB2¬x are

labeled by λ.
• E = {(v�,obs(B1x), vB1x), (v�,obs(B1¬x), vB1¬x), (vB1x,obs
(B1x), vB2x), (vB1x,obs(B1¬x), v�), (vB1¬x,obs(B1¬x), (vB2¬x)),
(vB1¬x,obs(B1x), v�)}, where (v�,obs(B1x), vB1x) denotes an
edge from v� to vB1x labeled by obs(B1)x), etc.

EXAMPLE 12. Consider a model-based diagnosis problem, with n
components 1, . . . , n. For each component i, the propositional var-
iable ok(i) represents the status of component i (working state if

[123]

312 NOËL LAVERNY AND JÉRÔME LANG

ok(i) is true, or failure state otherwise).
 is a propositional formula
expressing links between the components, given some background
knowledge about the system plus possibly some initial measure-
ments: for instance,
 = (¬ok(1) ∨ ¬ok(2)) ∧ (¬ok(1) ∨ ¬ok(3)) ∧
¬ok(4) means that one of the components 1 and 2 is faulty, one of
the components 1 and 3 is, and component 4 is faulty. Each com-
ponent can be inspected by means of a purely informative action
inspect(i) whose feedback is either Kok(i) or K¬ok(i), and repaired
by means of an ontic action repair(i) whose effect is ok(i). For the
sake of simplicity we assume that beliefs are nongraded. Consider
the following BBP π :

while ¬K(ok(1)∧· · ·∧ok(n))
do

pick a i such that ¬Kok(i)
if K¬ok(i)
then repair(i)
else if ¬Kok(i)

then inspect(i)
end if

end if
end while

It can be shown that this program is guaranteed to stop after less
than 2n actions. The size of the policy σ induced by π is, in the
worst case, exponential in n.

To sum up, BBPs are a smart and compact way of specifying poli-
cies, which, on the other hand, requires much more computational
tasks at execution time than the explicit policy.

Our work can thus be seen as a first step towards bridging KBPs
and POMDPs. It would be interesting to go further and to build
a language for BBPs describing “real” POMDP (with probabilistic
belief states). This would require a rather deep modification of our
framework, since probabilistic modalities are more complex than
our graded belief modalities. This issue of designing probabilistic
programs as compact description of POMDP policies is a promis-
ing topic that we leave for further research.

[124]

KNOWLEDGE-BASED PROGRAMS 313

5.3. Detailed Example

Let us consider a last example, inspired from Levesque (1996).

EXAMPLE 13. The agent has a bowl, initially empty, and a box of
3 eggs; each egg is either good or rotten. There are three actions:

• takeNewEgg is a pure ontic action resulting in the agent hav-
ing in his hand a new egg from the box; since this new egg may
be good or rotten, takeNewEgg is nondeterministic; however,
its normal result is the agent having a good egg in his hand;
getting a rotten egg in hand is 1-exceptional.

• testEgg is a pure sensing action, consisting of smelling the
egg; its feedback contains two possible observations: Only(B1g)
and Only(B1¬g). (Note that smelling is here considered as not
fully reliable).

• putIntoBowl is a pure ontic action consisting in breaking the
egg into the bowl; it results in the content of the bowl being
spoiled if the egg is rotten, and in the bowl containing one
more egg if the egg is good.

This domain can be modeled using the following set of variables:

• egg (the agent holds an egg in his hand);
• g (the last egg taken from the box is a good one);
• in(i) for i ∈{0, . . . ,3} (the bowl contain exactly i eggs);
• spoiled (the bowl contain at least one rotten egg);
• and the derived fluents om(i), i = 0, . . . ,3, defined from the

other fluents by: om(0) ≡ in(0) ∨ spoiled and for all i > 0,
om(i)≡in(i)∧¬spoiled.

The ontic action takeNewEgg is modeled by the following transi-
tion system: for any state s, let s+ (egg,g) (resp. s+ (egg,¬g)) the
state obtained from s by (a) assigning g to true (resp. false) and
(b) assigning egg to true, Then, for any s, κ(s+ (egg,g)|s)=0 and
κ(s + (egg,¬g)|s)= 1. The action theory corresponding to take-
NewEgg is

=

takeNewEgg

K(eggt+1∧
(
∧

i

in(i)t+1↔in(i)t

)

∧(spoiledt+1↔spoiledt))∧B1gt+1

[125]

314 NOËL LAVERNY AND JÉRÔME LANG

The ontic action putIntoBowl is modeled by the following transi-
tion system: for any state s, let is be the number of eggs in the
bowl in s (that is, s |= in(is) and s |= ¬in(j) for all j �= i(s)). Let
next(putIntoBowl, s) be the state defined by:

• if s |= egg∧ g then next(putIntoBowl, s) is the state obtained
from s by (a) assigning egg to false; (b) assigning in(is) to
false and in(is+1) to true (the rest being unchanged);

• if s |=egg∧¬g then next(putIntoBowl, s) is the state obtained
from s by (a) assigning egg to false; (b) assigning in(is) to
false and in(is + 1) to true; (c) assigning spoiled to true (the
rest being unchanged);

• if s |=¬egg then next(putIntoBowl, s)= s.
Then κputIntoBowl (next(putIntoBowl, s)|s) = 0 and for all s ′ �=
s, κputIntoBowl(s

′|s)=+∞. The action theory corresponding to
putIntoBowl is

=

putIntoBowl

K(¬eggt+1∧
(
∧

i

in(i+1)t+1↔in(i)t

)

∧(spoiledt+1↔ (spoiledt ∨gt))∧ (gt+1↔gt))

Let us now consider the BBP

π = (takeNewEgg;testEgg; if B1g then putIntoBowl)3

(where (π ′)3 means that the subplan π ′ is repeated three times) and
the initial belief state Init=Only(Kin(0)). Figure 1 shows the pro-
gression of Init by π .

Let us give some intuitive explanations about why these 4 belief
states are obtained as possible outcomes of the program:

Case 1 The three tests came out to be negative, and therefore no
egg has been put into the bowl: the final belief state is
K(in(0)).

Case 2 Only one of the three tests came out to be positive, and
therefore one egg has been put into the bowl. In the final
belief state, the agent knows for sure that there is one egg
on the bowl (K(in(1)); moreover the agent believes to the
degree two that this egg is a good one (B2om(1)): indeed,
when taking an egg out of the box, the agent has a prior
belief (to the degree 1) that it is good (B1g), and after
testing it, a positive result reinforces this belief up to the

[126]

KNOWLEDGE-BASED PROGRAMS 315

Figure 1.

degree 2, due to the reinforcement effect of combination
(Section 3).

Case 3 Two out of the three tests came out to be positive: in the
final belief state the agent knows that there are two eggs in
the bowl, and for the same reasons as in Case 2, he believes
to the degree 2 that both are good (B2om(2)).

Case 4 All three tests being positive, the eggs have all been put into
the bowl. For the same reasons as above the agent believes
they are all good.

6. CONCLUSION

This paper has paved the way towards building a language for pro-
gramming autonomous agents with actions, sensing (observations),
and graded beliefs. Beliefs are expressed in a high-level language
with graded modalities. Progression (by ontic actions and sensing)
can be computed directly in this high-level language. We have shown

[127]

316 NOËL LAVERNY AND JÉRÔME LANG

how to compute a precompiled policy from a belief-based plan, that
more or less corresponds to a policy in the POMDP meaning.

At least two issues for further research are expected in a near
future.

6.1. Integrating Belief-Based Programming and Golog

A fairly close area is that of cognitive robotics, especially the work
around Golog and the situation calculus (e.g., Reiter 2001a), which
are concerned with logical specifications of actions and programs,
including probabilistic extensions and partial observability.

First, we consider extending our belief-based plans towards a full
belief-based programming language that could be an extension of
Golog (e.g., Reiter 2001a). Golog allows for logical specifications of
actions and programs, including sensing, in a high-level language
which, on one hand, is far more expressive than ours, since it allows
for many features (quantification over actions and states, nondeter-
ministic choice, etc.) that are absent from our purely propositional
language. Knowledge-based programming is also implementable in
Golog (Reiter 2001b). On the other hand, knowledge-based pro-
gramming in Golog (Reiter 2001b) does not allow for graded uncer-
tainty.

Note that there have been several probabilistic extensions of
the situation calculus and Golog: (Bacchus et al. (1999)) gives an
account for the dynamics of probabilistic belief states after perceiv-
ing noisy observations and performing physical actions with noisy
effectors, and (Grosskreutz and Lakemeyer (2000)) consider proba-
bilistic Golog programs with partial observability, with the aim of
turning off-line nondeterministic plans into programs that are guar-
anteed to reach the goal with some given probability. However, both
lines of work consider simple branching conditions involving objec-
tive formulas, which is not suited to knowledge-based programming.
As knowledge-based programming in Golog calls for an explicit
knowledge modality as in (Scherl and Levesque 1993; Reiter 2001b),
graded belief-based programming needs a collection of belief modal-
ities, together with a syntactical way of making the agent’s beliefs
evolve after performing an action or an observation.

Thus, enriching BBPs with the highly expressive features of
Golog and the situation calculus will ultimately results in a sophisti-
cated language for belief-based programming, which is definitely an
objective we want to pursue.

[128]

KNOWLEDGE-BASED PROGRAMS 317

6.2. Off-line Reasoning: Introducing Second-Order Uncertainty

An issue that has not been considered here is the off-line evalua-
tion of belief based plans. Many problems are raised by such an
issue. First, in order to represent complex sensing actions, obser-
vations should be attached with their likelihood of occurrence (as
in Boutilier et al. 1998). Given this, the projection of an initial
belief state by a plan needs to introduce second-order uncertainty:
for instance, on Example 7, given that accurate observations are
more frequent than inaccurate, one would like to obtain that after
asking two persons, then normally the agent is in the belief state
O2r or in the belief state O2¬r, and exceptionally he is in the void
belief state. This calls for introducing belief states over belief states
and a second family of modalities. These issues are investigated in
the companion paper (Laverny and Lang 2005).

ACKNOWLEDGEMENTS

We are indebted to the two anonymous referees for their fruitful
remarks, which helped us a lot rewriting this paper.

APPENDIX: OCF COMBINATION AND DEMPSTER’S RULE OF
COMBINATION

A mass assignment is a mapping from 2S \ {∅} to [0, 1] such that∑
X⊆S m(X) = 1. Let m1 and m2 be two mass assignments, then

Dempster’s rule combines m1 and m2 into the mass assignment m1⊕
m2 defined by

(m1⊕m2)(X)=
∑{m1(Y).m2(Z) s.t. Y,Z⊆S,X=Y ∩Z}

1−∑{m1(Y).m2(Z) s.t. Y,Z⊆S,Y ∩Z=∅}

(and undefined when there is no pair (Y,Z) such that Y ∩Z �=∅ and
m1(Y).m2(Z) �=0).

Now, let ε be an infinitesimal. To every OCF κ we associate the
following family MA(κ) of infinitesimal mass assignments, defined
by: for all s ∈ S such that κ(s) �=+∞,m({s})= o(εκ(s)); for all s ∈ S
such that κ(s)=+∞,m({s})= 0; and for any non-singleton subset
X of S, m(X)=0. Clearly, for any infinitesimal mass assignment m
giving a zero mass to all non-singleton subsets there is exactly one

[129]

318 NOËL LAVERNY AND JÉRÔME LANG

κ such that m∈MA(κ), and we then note OM(m)= κ (where OM
stands for order of magnitude). Then we have the following:

PROPOSITION 9. IfOM(m1)=κ1 andOM(m2)=κ2 thenOM(m1⊕
m2)=κ1⊕κ2 (andm1⊕m2 is undefined iff κ1⊕κ2 is undefined).

Proof. Let m1 and m2 such that OM(m1)= κ1 and OM(m2)=
κ2, with min(κ1 + κ2) �= +∞. Since m1(X) = m2(X) = 0 for any
non-singleton X, m1⊕m2(X)=0. Then

1−
∑
{m1(Y).m2(Z) s.t. Y,Z⊆S,Y ∩Z=∅}

= 1−
∑
{m1({s}).m2({s ′}) s.t. s, s ′ ∈S, s �= s ′}

=
∑
{m1({s}).m2({s}) s.t. s ∈S}

= o(εmin{κ1(s)+κ2(s) s.t. s∈S})
= o(εmin(κ1+κ2))

Therefore, (m1⊕m2)({s})=o(εκ1(s)+κ2(s)−min(κ1+κ2)).

NOTES

∗ A premliminary and shorter version of this paper in the Proceedings of the
16th European Conference on Artificial Intelligence (ECAI-04), pp. 368–372
(Laverny and Lang 2004).
1 For instance, the crucial property K(ϕ ∧ ψ)←→ (Kϕ ∧ Kψ) is satisfied in
S5 and KD45, but not in a probabilistic doxastic logic: if Pαϕ expresses that
Prob(ϕ)�α, or if it expressed that Prob(ϕ)=α), then in both cases Pαϕ ∧Pαψ
is not equivalent to Pα(ϕ∧ψ).
2 Note, however, that there exist so-called non-prioritized versions of belief revi-
sion, in which acceptance of the observation is not taken for granted, and espe-
cially [Boutilier et al. 1988], to which our approach is compared at the end of
this Section.
3 This has to be contrasted with transmutations (Williams 1994) where one
enforces the new belief state to satisfy a constraint of the form κ(ϕ)= i. Probabil-
ity theory has also both kinds of rules: Jeffrey’s (without implicit reinforcement)
and Pearl’s (see (Chan and Darwiche 2003) for a discussion).
4 For instance, suppose that we ask repeatedly to the same agent (say, Hans),
and that this agent is rational enough to give the same answer each time; in this
case, we want to totally block the reinforcement effect; then we add five mutually
exclusive new variables a1, . . . , a5, which means that for all i and j �= i,K¬(ai ∧
aj) is part of the agent’s background knowledge, as well as B2(a1→ r),B2(a2→

[130]

KNOWLEDGE-BASED PROGRAMS 319

¬r),B1(a3→ r) and B1(a4→¬r) – therefore, a1 means that Hans has a strong
belief that r holds, etc. – and the possible observations sent as feedback by the
asking action are Only(Kai) for i ∈ {1, . . . ,5}. This ensures that (a) the answer
given is always the same, and (b) no reinforcement occurs: if for instance, the
agent observes a3 many times, then B1r holds but B2r does not.
5 In the particular case where α is deterministic, its effects can be described by
successor state axioms of the form xt+1↔ϕt for each x ∈PS.

REFERENCES

Aucher, G.: 2004, ‘A combined system for update logic and belief revision’, in 7th
Pacific Rim Int. Workshop on Multi-Agents (PRIMA2004).

Bacchus, F., J. Halpern, and H. Levesque: 1999, ‘Reasoning about noisy sensors and
effectors in the situation calculus’, Artificial Intelligence 111, 171–208.

Baral, C. and J. Lobo: 1997, ‘Defeasible specifications in action theories’, in Pro-
ceedings of IJCAI’97.

Benferhat, S., D. Dubois, and H. Prade: 2001, ‘A computational model for belief
change and fusing ordered belief bases’, in M. A. Williams and H. Rott, (eds.),
Frontiers in Belief Revision, Kluwer Academic Publishers, pp. 109–134.

Bonet, B. and H. Geffner: 2001, ‘Planning and control in artificial intelligence. A
unifying perspective’, Applied Intelligence 3(14), 237–252.

Boutilier, C.: 1998, ‘A unified model of qualitative belief change: A dynamical sys-
tems perspective’, Artificial Intelligence Journal 98(1–2), 281–316.

Boutilier, C., R. Brafman, H. Hoos, and D. Poole: 1999, ‘Reasoning with condi-
tional ceteris paribus statements’, in Proceedings of the 15th Conf. on Uncertainty
in Artificial Intelligence (UAI’99), pp. 71–80.

Boutilier, C., N. Friedman, and J. Halpern: 1998, ‘Belief revision with unreliable
observations’, in Proceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98), pp. 127–134.

Chan, H. and A. Darwiche: 2003, ‘On the revision of probabilistic beliefs using
uncertain evidence’, in Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI-03).

Darwiche, A., and J. Pearl: 1997, ‘On the logic of iterated belief revision’, Artificial
Intelligence 87(1–2), 1–29.

Fariñas del Cerro, L., and A. Herzig: 1991, ‘Modal logics for possibility theory’,
in Proceedings of the First International Conference on the Fundamentals of AI
Research (FAIR’91), Springer Verlag.

Dempster, A. P.: 1967, ‘Upper and lower probabilities induced by a multivaluated
mapping’, in Annals Mathematics Statistics 38, 325–339.

Dubois, D., J. Lang, and H. Prade: 1994, ‘Possibilistic logic’, in D. M. Gabbay, C. J.
Hogger, and J. A. Robinson (eds.), Handbook of logic in Artificial Intelligence and
Logic Programming, volume 3, Clarendon Press – Oxford, pp. 439–513.

Dubois, D., and H. Prade: 1997, ‘A synthetic view of belief revision with uncertain
inputs in the framework of possibility theory’, International Journal of Approxi-
mate Reasoning 17(2–3), 295–324.

Fagin, R., J. Halpen, Y. Moses, and M. Vardi: 1995, Reasoning About Knowledge,
MIT Press.

[131]

320 NOËL LAVERNY AND JÉRÔME LANG

Giunchiglia, E., J. Lee, N. McCain, V. Lifschitz, and H. Turner: 2003, ‘Nonmono-
tonic causal theories’, Artificial Intelligence 153, 49–104.

Goldszmidt, M. and J. Pearl: 1992, ‘Rank-based systems: A simple approach to
belief revision, belief update, and reasoning about evidence and actions’, in Pro-
ceedings of KR’92, pp. 661–672.

Grosskreutz, H. and G. Lakemeyer: 2000, ‘Turning high-level plans into robot pro-
grams in uncertain domains’, in Proc. ECAI-2000, pp. 548–552.

Herzig, A., J. Lang, D. Longin, and Th. Polacsek: 2000, ‘A logic for planning under
partial observability’, in AAAI-00, pp. 768–773.

Herzig, A., J. Lang, and P. Marquis: 2003, ‘Action representation and partially
observable planning in epistemic logic’, in Proceedings of IJCAI03, pp. 1067–
1072.

Herzig, A., J. Lang, and T. Polacsek: 2001, ‘A modal logic for epistemic tests’, in
Proceedings of ECAI’2000, pp. 553–557.

Kaelbling, L. P., M. L. Littman, and A. R. Cassandra: 1998, ‘Planning and acting in
partially observable stochastic domains’, Artificial Intelligence 101, 99–134.

Lang, J., P. Liberatore, and P. Marquis: 2003, ‘Propositional independence : For-
mula-variable independence and forgetting. Journal of Artificial Intelligence
Research, 18, 391–443.

Lang, J., P. Marquis, and M.-A. Williams: 2001, ‘Updating epistemic states’, in
Springer-Verlag (ed.), Lectures Notes in Artificial Intelligence 2256, Proceedings of
14th Australian Joint Conference on Artificial Intelligence, pp. 297–308.

Laverny, N. and J. Lang: 2004, ‘From knowledge-based programs to graded BBPs,
part I: on-line reasoning’, in Proceedings of ECAI-04, pp. 368–372.

Laverny, N. and J. Lang: 2004, ‘From knowledge-based programs to graded BBPs,
part II: off-line reasoning’, in Proceedings of IJCAI-05.

Levesque, H.: 1996, ‘What is planning in the presence of sensing?’, in AAAI 96, pp.
1139–1146.

Levesque, H. and G. Lakemeyer: 2000, The Logic of Knowledge Bases, MIT Press.
Lin, F.: 1996, ‘Embracing causality in specifying the indeterminate effects of

actions’, in Proc. of AAAI’96.
Lin, F. and R. Reiter: 1994, ‘Forget it!, in Proceedings of the AAAI Fall Symposium

on Relevance, New Orleans, pp. 154–159.
Reiter, R.: 2001a, Knowledge in Action: Logical Foundations for Specifying and

Implementing Dynamical Systems. MIT Press.
Reiter, R.: 2001b, ‘On knowledge-based programming with sensing in the situation

calculus’, ACM Transactions on Computational Logic 2, 433–457.
Scherl, R. B. and H. J. Levesque: 1993, ‘The frame problem and knowledge-produc-

ing actions’, in AAAI-93, pp. 698–695.
Shapiro, S., M. Pagnucco, Y. Lesperance, and H. Levesque: 2000, ‘Iterated belief

change in the situation calculus’, in Proceedings of KR2000, pp. 527–537.
Spohn, W.: 1988, ‘Ordinal conditional functions: a dynamic theory of epistemic

states’, in William L. Harper and Brian Skyrms (eds.), Causation in Decision,
Belief Change and Statistics, volume 2, Kluwer Academic Pub., pp. 105–134.

Thielscher, M.: 2001, ‘Planning with noisy actions (preliminary report)’, in
M. Brooks, D. Powers, and M. Stumptner (eds.), Proceedings of the Australian
Joint Conference on Artificial Intelligence, LNAI, Adelaide, Australia, December
2001, Springer.

[132]

KNOWLEDGE-BASED PROGRAMS 321

van der Hoek, W. and J.-J.Ch. Meyer: 1991, ‘Graded modalities for epistemic logic’,
Logique et Analyse 133–134, 251–270.

van Ditmarsch, H.: 2004, Prolegomena to Dynamic Belief Revision. Technical report,
University of Otago, New Zealand.

van Linder, B., W. van der Hoek, and John-Jules Ch. Meyer: 1994, ‘Tests as episte-
mic updates’, in Proceedings of ECAI 1994, pp. 331–335.

Williams, M.-A: 1994, ‘Transmutations of knowledge systems’, in Proceedings of
KR’94, pp. 619–629.

Noël Laverny
IRIT, Université Paul Sabatier
31062 Toulouse Cedex
France
E-mail: Noel.Laverny@freesbee.fr

Jérôme Lang
IRIT, Université Paul Sabatier
31062 Toulouse Cedex
France
E-mail: lang@irit.fr

[133]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

