
- 1 -

LH* Schemes with Scalable Availability
(IBM Almaden Res. Rep. RJ 10121 (91937), (May 1998))

W. Litwin1, J. Menon2, T. Risch3

Abstract

Modern applications increasingly require scalable, highly available and distributed storage systems. High-availability

schemes typically deliver data despite up to n ≥ 1 simultaneous unavailabilities of the storage nodes (disks, processors

with storage, or entire computers), where n is fixed. Such schemes are insufficient for scalable files, since the probability

of more than n failures increases arbitrarily with file size. We propose a new schema termed LH*sa withstanding up to n

simultaneous unavailabilities with n scaling with the file. We present LH*sa file manipulation and recovery algorithms. We

discuss the access and storage performance, and variants tuning selected features. We show that LH*sa files may scale

to any number of nodes, keeping the probability of data unavailability arbitrarily small.

1 Introduction

Within a few years, scalability became the key word to modern storage systems, and to the next

generation of applications and of computer systems in general, [A&al95], [C&al95], [M97a-c], [FBW97].

Fast processing of large collections of data, required by modern applications, crucially needs horizontal

scalability, i.e., the ability to run over a fast network of share-nothing sites, or nodes. Of special interest is

horizontal scalability over commodity components, e.g., mass produced Wintel or Unix boxes like RS-

6000, Alpha etc. and networks like Fast Ethernet or ATM, [A&al95], [I98], [M96], [M97], [M97a]. Large

and scalable data collections critically demand high-availability and security of the stored data, [ChS92],

[B&al95], [H96], [T95a], [L96], [A&al97]. Traditional high-availability storage techniques provide for

limited horizontal scalability, including the hardware RAID schemes, [PGK88], [R97], [KH98], and, more

recent software RAID schemes, e.g. within Windows NT and others [SS90], [MRW95], [RM96], as well as

the Log-Structured Arrays [M98].

1 Université Paris 9, litwin@etud.dauphine.fr

2 IBM Research, Almaden Center, jmenon@almaden.ibm.com
3 Linkoping University, torri@ida.liu.se

- 2 -

Among various directions, research into horizontal scalability led recently to a new class of data

structures termed Scalable Distributed Data Structures (SDDSs). Numerous SDDS schemes have been

proposed since 1994. Some are in the References section below, a more complete annotated bibliography is

in [SDDS]. The LH* schema is probably best known and most studied [LNS96]. It is based on the well-

known Linear Hashing (LH) schema, [L80], [K98], [R98], used in numerous products. Several variants

were designed, some with high-availability built-in [LN96a], [L&a97], [LR97]. The SDDSs in general

allow data structures to scale-up (horizontally) to very large sizes, i.e., thousands of server nodes and

millions of clients4. These capabilities open the perspective of TB data storage, and even of PB data

collections, supporting billions of transactions [M97b]. LH* in particular, allows a client to find an object

(record) identified by its OID (key) in general in two messages, or in four messages at worst, regardless of

the number of storage nodes. Combined with the efficient use of large distributed RAM that may now

reach, e.g., 8 GB on a workstation, [M97c], SDDSs should lead to performance impossible for more

traditional storage systems.

Known high-availability schemes, e.g. variants of the RAID schemes, [PGK88], [BBM93], [BM92],

[SS90], [RM96], [W96], and known high-availability variants of LH*, [LN96a], [L&a97], and [LR97],

typically guarantee that all data remain available as long as no more than n ≥ 1 sites (buckets) of the file fail

simultaneously. The value of n is a parameter chosen at file creation time. Higher n provides for higher

reliability that is higher probability that no data is lost in a crash. Such n-availability schemes, (read n as

single, double..), suffice for reasonably static files. They may not suffice for scalable files. Whatever is the

choice of n, the reliability must decrease when the file grows [H&a94], [NW94]. More flexible schemes are

needed with scaling n. We call such schemes scalable availability schemes, or s-availability schemes in

short.

The basic constraint on any s-availability schema is that the change from n-availability to (n+1)-

availability should be incremental, i.e., without entire file reorganizing. We propose an s-availability

4 Such numbers could seem futuristic only a few years ago. Today, a popular Web site can get 15M accesses per

day easily. In the enterprise world, a popular accounting & management company claims 140K notebooks and WSs

accessing its servers daily.

- 3 -

schema called LH*sa (‘sa’ standing for s-availability) fulfilling this requirement. To the best of our

knowledge, it is the first known s-availability schema.

We first define the LH*sa schema with uncontrolled reliability. The n-availability increases any time the

file reaches some size. We present the file manipulation principles and the recovery algorithms. We show

that LH*sa files may easily scale up to thousands of nodes and PBytes. We then overview variants tuning

some features. Next, we add the capability to control the reliability so it remains close to a desired level.

The control reveals necessary in presence of higher failure probabilities. Alternatively, it can improve

storage and access performance. Finally, we analyze the related work, and we state the conclusions.

In Section 2 we present the LH*sa scheme. In Section 3, the analysis of its s-availability performance

show that the availability of an LH*sa file may remain about independent of the file size. In Section 4 we

discuss some design variations. Section 5 discusses the reliability control. Section 6 discusses related work.

Section 7 concludes the paper. The Appendix provides details of the scalability analysis in Section 3 and

the glossary lists main terms and symbols used.

2 Principles of LH*sa

2.1 LH* schema

LH*sa schema is based on the LH* schema, [LNS93], [LNS96]. An LH* file is stored at LH*-server

computers (nodes), and is used by applications at LH*-client nodes. A server is always available for access

from clients. A client is autonomous, perhaps mobile, and the initiator of the connections to the servers. The

file consists of records, (objects), identified by primary keys, (OIDs), usually noted c in what follows.

There can be a non-key part of the records, often structured into attributes (fields). A record R with key c is

denoted as R or R (c), or simply record c if the non-key part is unimportant in the context. A client can

search, insert, or delete a record. Records are stored in buckets with a capacity of b records; b >> 1. Buckets

are numbered 0,1,2…M-1 where M denotes the number of buckets in the file. A file has one bucket per

server, although different files may share servers. Buckets are basically identified with their servers, unless

distinction of roles is necessary. A bucket can be in RAM or on a disk. Searching a bucket in RAM can be

orders of magnitude faster than on disk.

- 4 -

The physical (network) address of every bucket is in some physical allocation table. These tables are at

the clients and the servers. An allocation table can be static, or may dynamically expand with the file.

Addresses of new buckets get propagated to clients and among servers as detailed in [LNS96]. Some of the

rules will be recalled.

The file is created with N ≥ 1 buckets, N = 1 usually in what follows. The file scales up with inserts,

through bucket splits. The splitting and addressing rules of LH* are based on the popular linear hashing

(LH) algorithm [L80], [K98], [R98]. LH is present in numerous products & platforms: Berkeley-DBM

from SleepyCat, Linux, LH-Server for high-performance large client-server applications under Windows-

NT or Novell from Revelation Software, jLH-Server in Java, also from Revelation Software, Netscape

Browser, Netscape SuiteSpot, Unify-2000 RDBMS… These products are used in turn within dozens of

other products.

In LH*, as in LH, every split moves about half of the records in a bucket into a new bucket appended to

the file. The splits are done in the order 0,1..N-1; 0,1..2N -1; 0,1..2jN -1,0.. ; j = 0,1.. The next bucket to

split is denoted bucket ñ. The value of ñ is called the split pointer.

The splits are triggered by bucket overflows. In LH*, a bucket that overflows basically reports the

overflow to a dedicated node called the coordinator. The coordinator applies the load control policy to find

whether the overflow should trigger the split. If so, the coordinator initiates the split of bucket ñ.

To perform the splits and the addressing, an LH* file uses a family of hash functions hl ; l = 0,1,.. called

LH-functions. Each h hashes a key c into bucket address, e.g., hl (c) = c mod 2l N. A split results from the

replacement of function hl currently used for bucket ñ with function hl + 1. This usually re-maps about half

of the records into a new address ñ + 2 l N. The coordinator appends the new bucket and moves the records.

Every bucket contains in its header the bucket level. This value, usually denoted j, is initialized to

j(m) = 0 in every bucket m < N when the file is created. The j(m) value indicates that LH-function hj(m) was

the last used to split bucket m, or to create bucket m, for m ≥ N. At any time, and for any bucket m in an

LH* file, one only has j(m) = î or, perhaps, j(m) = î + 1, for some î = 0,1,.. called the file level. The

coordinator is the only node to store the current values of ñ and î, collectively called the file state. The

correct address, denoted a, of key c in an LH* file is the address where c should be dynamically hashed to,

given current values of ñ and of î. The address a is defined by the LH addressing algorithm [L80]:

- 5 -

(A1) a ← hî (c) ;

 if a < ñ then a ← hî + 1 (c) ;

An LH* client does not access the coordinator for the address computation, to avoid a hot spot. It

caches an image approximating the file state. The image consists of values noted i' and n' ; i' = n' = 0 for a

new client, accessing the file for the first time. These values may vary among clients and may differ from

the actual ñ and î. The client uses the image to calculate the address a' = A1 (n', i'). It then sends the request

to server a'. The basic requests are: a key search requesting record c, an insert, an update, and a delete of

record c. The client sends these using unicast (point-to-point) messages.

It might happen that a' ≠ a. Hence, any bucket m receiving a request first tests whether m = a. It can be

proven that m = a iff m = hj (c). If the test fails, the server forwards the request to another server. The LH*

test and forwarding algorithm is as follows, [LNS93]. Address â is presumed a:

(A2) â ← hj (c) ;

 if â = m then accept c ;

 ã ← hj - 1 (c) ;

 if ã > m and ã < â then â ← ã ;

 forward c to bucket â ;

The forwarding process could a priori create many hops. The major property of LH* is that every

request to an LH* file is forwarded to the correct address a in at most two hops, [LNS93].

For any SDDS, the correct server that got a forwarded message sends to the client an Image Adjustment

Message (IAM). For LH*, an IAM contains the j value of server a' to which the client has sent the request.

It may also contain its physical address, as well as physical addresses of some buckets preceding bucket a'

[LNS96]. The client executes then the IA-Algorithm, [LNS93]:

 (A3) if j > i' then i' ← j - 1, n' ← a’ +1 ;

 if n' ≥ 2i' then n' = 0, i' ← i' +1 ;

 The result of (A3) is a better image, with both i' and n' closer to the actual values. The new image

guarantees also that as long as there is no new split, the addressing error that triggered the IAM is not

repeated. The physical allocation table at the client may also get refreshed with some new addresses.

(A3) makes LH*-images converge rapidly [LNS93]. Usually, O (log M) IAMs to a new client (the

worst case for image accuracy) suffice to eliminate the forwarding. If a client already has a good image, but

- 6 -

the file starts to scale-up, Algorithm (A3) suffices to keep the incidence of forwarding on the access

performance about negligible. In practice, the average key insert cost is one message, and both a successful

and unsuccessful key search cost is two messages, regardless of the file size. The worst access performance

of an insert or search is four messages, also regardless of the number of nodes of the file. It corresponds to

the case of two hops.

These figures translate to access times depending on the network and CPU speeds, and whether the

searched buckets are in RAM or at disk [LNS94]. Experiments with the LH* implementation under

Windows NT, RAM buckets, and 100 Mbit/s AnyLan network, show the key search time of 200 µs for a

1Kbyte record [B96]. On a Gbit/s network, key search times should be in general under 100 µs, the CPU

speed becoming the bottleneck. Similar figures apply to inserts into an LH* file. These times are file size

independent, i.e., hold for very large GByte files that can fit into the distributed RAM of multicomputers in

larger organizations. They are also orders of magnitude faster than for traditional disk based files and most

likely impossible to attain with disk technology. The presence of mechanical parts typically imposes about

10 ms per access at least.

An LH* file also supports scan search, or scan in short, searching for every record with some non-key

values. The client ships a scan in parallel to every bucket. If multicast is available on the network, the scan

may be multicast. Otherwise, unicast messages are used. The client's image may not show all the buckets.

The algorithm in [LNS96].guarantees that every bucket gets the unicast scan request, and that it gets it only

once.

Once a scan is sent, the client should determine when it got the requested replies. A probabilistic

termination, or probabilistic scan, consists of setting a time-out for the reception of every new record. Only

servers with the selected records reply. Alternatively, the client sets up a deterministic scan. It checks

whether all the selected record have arrived. One protocol for a deterministic termination [LNS96] is that

every bucket replies with at least its address m, its level jm, and the selected records, if any. The client

terminates when it has received, in any order, m = 0 and m = 1 etc., up to m = 2i + n, where i = min (jm),

and n = min (m) with jm = i. This guarantees that all the buckets replied.

The principles of LH* lead to many variants with performance tradeoffs [LNS96], [KLR96]. There are

several ways to perform load control, increasing the average load factor over the basic value of 70 %. There

- 7 -

are also many ways to perform a split and to organize the bucket interior. One may also design LH*

schemes without a coordinator [LNS93a].

2.2 The LH*sa file structure

An LH*sa file F consists of an LH* file F0 called the data file and of i = 1..J parity files Fi. The file-

state data of F consist of values (ñ, î) of F0 mirrored at all buckets 0. Records of F0 are called data records

(objects), Fig. 1, or simply records. A data record c is the user record c sent for storage. Each parity file

contains parity buckets 0,1.. with parity records for the high-availability. Parity records contain check

information used to achieve the desired level of availability. An LH*sa file consists of at least (F0 , F1) with

files Fi > 1 progressively added when F0 scales. Every F0-bucket m contains in its header in addition to jm a

value called bucket availability level usually denoted i or im below. This value denotes the number of parity

files Fi associated with the bucket. As it will appear, im also indicates the number of parity buckets, and of

parity records per data record in bucket m. All data and parity buckets are basically at different servers.

Every LH*sa file is provided with a family of grouping functions, noted fi ; i = 1,2.. Each fi provides to

every data bucket a number gi, called bucket group number. A bucket (availability) group consists of all

buckets sharing gi. Functions fi are chosen so that all bucket groups are of the same size in the number of

participating buckets, denoted k. Every data or parity record has furthermore some distinct rank within its

bucket noted r ; r = 1,2.. This is basically the position of the record in the bucket. Each data record c is

provided with im record (availability) group numbers that are pairs (gi, r). A record (availability) group

consists of all data records sharing the same (gi, r). A record group size is at most k, as it will appear.

Every record group (gi, r) is provided with a parity record with rank r stored in bucket gi of Fi. Hence, all

the parity records of record groups within the same bucket group gi are in the same parity bucket gi. The

value (gi, r) is considered the key of the parity record. Fig. 1 shows the structure of a parity record. It

contains the keys c of all the records in group (gi, r), and the parity bits B. The bits suffice to recover the

non-key data of every single unavailable group member. Example 2.3.2 below illustrates this capability

more in depth.

Parity records are created or updated when the application makes an insert or an update of a record c.

The correct data bucket m stores or updates record c. For every parity file Fi
 ; i = 1..im; it also forwards the

new record c with its rank r to bucket gi. If record c was only updated, it sends to gi the update record where

- 8 -

only the bits that have changed are set to 1. Bucket gi either has, or has not yet, the parity record (gi, r).

Accordingly, record (gi, r), with rank r, is created or updated.

non-key datac Bclc1

Parity record (gi, r)Data record c

parity bits

Fig. 1 Record structure in LH*sa files

Each value gi for a record c is calculated from its correct data bucket address m. The grouping functions

fi : m -> gi are:

g1 = int (m / k)

g2 = mod (m / k) + int (m / k2)

g3 = mod (m / k2) + int (m / k3)

gi = mod (m / ki - 1) + int (m / ki).

The groups generated by each function are:

f1 : (m, m + 1, m + 2.. m + (k-1)) for m = 0,k..

f2 : (m, m+k, m+2k.. m + (k-1) k) for m = 0,1,2..k-1, k2, k2+1..k2+ (k-1), 2*k2..

f3 : (m, m+k2, m+2k2.. m+(k-1) k2) for m = 0,1.. k2-1, k3, k3+1.. k3 + (k2 - 1), 2k3..2k3+(k2 - 1)

...

fi : (m, m+ki-1, m+2ki-1.. m+(k-1)k i-1) for m = 0,1..ki-1
 - 1, ki.. ki + ki-1 - 1, 2ki...

Example

Consider k = 4. The following groups are generated and illustrated in Fig. 2. Groups of f1 and of f2
 are

shown arranged so their numbers appear as usual 2-d coordinates. Groups of f1 appear horizontal and those

of f2
 are vertical. Bucket addresses correspond to points, e.g. bucket 9 is in groups g1 = 2 and g2 = 1.

Members of fi -groups with i > 2 are along the diagonal lines. The members of groups f1, f2, f3 and of f4

involving element 0 are respectively shown in italics, bold, bold italics, and, finally, underlined.

- 9 -

f1 : 0 = (0,1,2,3), 1 = (4,5,6,7), 2 = (8,9,10,11)..

f2 : 0 = (0,4,8,12), 1 = (1,5, 9,13).. 3 =(3,7,11,15), 4 = (16,20,24,28)..7 = (19,23,27,31),

8 = (32,36..44)..

f3 : 0 = (0,16,32,48), 1 = (1,17,33,49).. 15 = (15,31,47,63), 16 = (64,80, 96, 112)..

...

f1

f2..6543210

..
6
5
4
3
2
1
0 0 21

4 65
8 109

3
7

11
12 1413 15

16 1817
20 2221
24 2625

19
23
27

28 3029 31

64 6665
68 7069
72 7473

67
71
75

76 7877 79

32

48

Fig. 2 LH*sa groups for k =4 and J = 4.

The following easy to see properties hold for the LH*sa grouping functions:

• Every fi partitions the set of numbers {0,1,2..}.

• Every data record in a record group (g,r) is in a different bucket.

• For every bucket address m1, m2 and grouping function fi, if m1 and m2 belong to the same

bucket group gi generated by fi ; i = 1,2.. ; then for every fj ; j > i ; m1 and m2 belong to different

groups gj.

 These properties allow for the scalable availability when employed as follows. The basic schema for

LH*sa we first address is called LH*sa with uncontrolled reliability. The meaning of this qualifier is

explained in Section 5.

- 10 -

2.3 File expansion

2.3.1 Overview

An LH*sa file is created with the f1-groups, basically with one (N = 1) bucket, and any convenient k

value, provided that k = 2l for some l > 0. The value i0 in bucket 0 is initialized to 1. For every insert, a

parity record in F1 is created or updated. The f1-structure provides trivially 1-availability, allowing recovery

from any single bucket unavailability. When the file scales up, the f2 record groups start to be added. Their

creation starts with the split creating bucket k. This is the split of bucket 0, given that k = 2l. The f2 parity

records are from now on created for every record at each split. The im value in the split bucket m is set to

im :=: im + 1. The i value in the new bucket created by the split is set to the new im as well. This process

creates f1 and f2-groups, for all the buckets up to bucket k2 - 1.

If the file scales up to bucket k2, the f3 - groups start. Bucket k2 is also created by a split of bucket 0.

From now on, every split of a bucket gracefully builds-up the f3 - group structure for the records in the

bucket and those moving out. It also updates to i = 3 the header of each split bucket, and of each new one.

When F0 reaches bucket k3 - 1, the whole file bears f3 - groups. Once a split of bucket 0 creates bucket k3,

the grouping according to f4 starts. The process continues with grouping using f4 starting when bucket k4 is

created etc.

The value im at each data bucket m is the number of bucket groups gi bucket m currently participates in.

It also indicates the buckets gi that should be updated by an insert or an update to bucket m. The value

I = min (im) ; m = 1..M – 1 ; is called file availability level. As it will appear soon, an LH*sa file is a I-

availability file. At any time, a bucket with LH-level î + 1 has the grouping level i = J where J = I + 1 or

J = I. In turn, the bucket not yet split, still using hî, carries the grouping level i = I = J or i = I = J - 1.

Hence, at any time, there are at most two grouping levels in F0.

2.3.2 Example

Fig. 3 shows an evolution of an LH*sa file. The file is created with data and parity buckets 0. Their

capacities are assumed b = 4, and bucket group size is k = 2. Record structures are in Fig. 1. The keys of

data record are italic. Only the first two bits of the non-key part of a data record or of the parity bits are

materialized in the figure. Even parity is assumed, hence the total number of bits equal to 1 at the same

position within the record group should be even. As usual, each parity bit allows therefore for the recovery

- 11 -

of a single missing bit at the same position within an unavailable data record. Also as usual, updates to

parity records are performed using the XOR operation.

Fig. 3a illustrates the file state after initial five inserts. Four data records are stored in data bucket 0. The

record ranks r = 1..4 correspond to the positions, e.g. record 21 has rank 3. Bucket 0 also resends each

insert with its rank to bucket g1 = 0 of F1, to create or update the parity record with the same rank. The f1-

groups correspond to the horizontal groups in Fig. 2. Every record group contains one record. Hence parity

records are initially replicas of the data records.

The fifth insert creates an overflow of bucket 0. The bucket stores record 3 as an overflow record. It

also resends it to F1, together with its record group number (0, 5). It reports the overflow situation to the

coordinator that requests bucket 0 to split. Since j0 = 0, bucket 0 uses LH-function h1 to split. The example

considers the family of LH-functions hi : c → c mod 2i . The split creates bucket 1 of F0 and moves there

all records with odd keys. The result is in Fig. 3b. In both buckets, jm is set to 1 after the split. Note that the

overflow was resolved, i.e., record 3 is stored within the bucket.

The data records remaining in the split bucket may get new ranks, e.g., record 30 in data bucket 0 at

Fig. 3a. Records that move get successive rank in the new bucket which are here r1 ranks in bucket 1. Fig.

3b shows the new situation in our example. Both data buckets 0 and 1 send messages about the new ranks

to the parity bucket 0 in F1. This bucket updates the parity records accordingly, as in Fig. 3b. The result is

three parity records. This number is the highest r after the split in both buckets 0 and 1 at Fig. 3b. Note that

this is about half less than before the split, and that the overflow disappeared in consequence. The parity

records (0,1) and (0,2) provide now each the parity for k = 2 data records, with keys 12 and 21, and 30 and

15, respectively. The size of these record groups is thus that of the bucket group. The parity bits are

recomputed and typically change, e.g., bits in record (0, 1) become 01. Record (0,3) corresponds to only

one data record. The size of the corresponding record group is thus less than that of a bucket group.

Fig. 3c shows the situation after three more inserts. The insert of record 42 added a record to record

availability group (0,3) and modified its parity record (0,3). Inserts of records 7 and 13 started record

groups (0,4) and (0,5) and led to the corresponding parity records. The overflow situation generated a

message from bucket 1 to the coordinator. According to LH* principles it triggered the split of bucket 0 of

F0, using h2. Record 13 remained temporarily stored as an overflow record at bucket 1. Split of bucket 0

- 12 -

generated bucket 2 of F0, as illustrated in Fig. 3d. It led to the update of the parity records in bucket 0 of F1

corresponding to data records remaining in bucket 0. Records that moved to bucket 2 also got new bucket

group number g1, g1 = 1. This lead to the creation of bucket 1 of F1 and of the parity records (1,0) and (1,1).

13,00..

 42,3,00

0

0

(c)

(b)

(a)

File F0

30,01..
21,10..
15,01..
12,11..

30,01..
21,10..
15,01..
12,11..

3,00..

0

30,01..
12,11..

1

 3,00..
15,01..
21,10..

0

12,11..

1

7,10..
3,00..
15,01..
21,10..

13,00..

0

42,00
30,01..
12,11..

1

7,10
3,00..
15,01..
21,10..

42,00..
30,01..

13,00..

0 1

42,00..
30,01.. .

(d)
42,00..
12, ,3010..

File F2

0

8,01..
12,11..

1

17,11
13,00..
21,10..

42,00..
30,01..

0 1

(e) 7,10..
3,00..
15,01..

2

2 3

3 ,00..

0

30,15,00..
12,2,01..

0

7,10
13,00..

30,15, 00..
3,00..

12,21 ,01..

File F1

7,10..
3,00..
15,01..
12,21,10..

17,00..
8,13,01..
12,21,10..

7,10..
42,3,00..
30,15,00..

0

0

8,42 ,00..
12, ,3010..

17,7,01..
13,3,00..
21,51,11..

1

j = 0
i = 1

j = 1
i = 1

j = 1
i = 1

j = 1
i = 1

j = 1
i = 1

j = 2
i = 2

j = 1
i = 1

j = 2
i = 2

j = 2
i = 2

j = 2
i = 2

j = 2
i = 2

j = 2
i = 2

Fig. 3 Evolution of LH*sa file

- 13 -

Since k = 2, the split also led to the creation of the F2 file. Accordingly, i was set to 2 in data buckets 0

and 2. Two parity records according to f2 were also created in F2 bucket 0. They group same rank records in

bucket 0 and/or bucket 2 of F0. The f2 - grouping corresponds to vertical groups in Fig. 2. Records in

bucket 1 of F1 remain grouped according to f1 only.

Fig. 3e shows the file after two more inserts, of records 8 and 17. The latter insert triggered the split of

bucket 1, using h2 again. The inserts, and the changes to values of r due to the split, triggered updates to

some parity records in both F1 and F2. Note that the split suppressed the overflow in F1 bucket 0 and

decreased the total number of F1 records. It also created parity records in F2 for every data record that was

in data bucket 1. At this point, every data record is grouped according to f1, and to f2 and has two parity

records. New parity records in F2 led to creation of its bucket 1.

Since F0 reaches k2 = 4 buckets, the split pointer ñ points again to bucket 0 that is next to split, using h3.

This split will start the f3 grouping, creating bucket 0 of F3. Further splits will progressively create f3-

groupings for all other buckets of F0. If the inserts continue the expansion will continue with h4 and f4 etc.,

to any size needed.

Note that in Fig. 3 the indexes j of LH-functions and i of grouping functions have the same values. This

property is however valid only for k = 2.

2.4 High-availability

2.4.1 Overview

In general, file F is said to be available if all the user data stored in F are available for access. File F is a

high-availability file if it remains available even if some of data records or buckets are unavailable. An n-

availability file, (read n as single, double, triple...), remains available despite the unavailability of any n

buckets, while the unavailability of some (n + 1) buckets compromises its availability. The unavailability of

m > n may be still recoverable for some buckets, but not for all. These recovery capabilities are schema

specific. Finally, F is a scalable-availability (s-availability) file if n grows (or shrinks) with the file. Other

facets of availability management, e.g., concerning the management or recovery of the code, such as the

coordinator, running at servers and clients, are beyond the scope of the LH*sa design. See [T95a] for

instance for a discussion of the related issues.

- 14 -

The example illustrates the high-availability features of the LH*sa schema. Grouping by f2 allows every

pair of records c1, c1’ in the same f1 record group (g1, r), to become members of different groups (g2, r) and

(g2’, r). There is no other record of (g1, r) in (g2, r) or (g2
’, r). If c1 and c1’ both fail, they cannot be

recovered using parity bits of (g1, r). However, c1 can be possibly recovered using parity bits of (g2, r).

Likewise, c1’ can be recovered from (g2’, r). Adding f2, thus allows for 2-availability.

For instance, in Fig. 3e record 12 in bucket 0 is f1 - grouped with record 21. If bucket 0 fails, one can

recover record 12 from record (0, 1) in F1. If record 21 is unavailable as well, the record (0, 1) in F1 does

not suffice. Record 12 can then be recovered from record (0, 1) in F2. Likewise, record 21 can be

recovered from record (1, 1) in F2. In fact, it can be alternatively recovered from record (0, 1) of F1, after

the recovery of record 12.

In contrast, f2 does not allow for 3-availability. If c1, and the parity records of its record groups (g1,r)

and (g2, r) fail, c1 is not recoverable. This would be for instance the case of the failure of the records: 12 in

F0, (0, 1) in F1, and (0, 1) in F2. More generally, in Fig. 2 it would be the case of unavailability of a record

in any data bucket, together with the parity records of both its vertical and horizontal groups. In such cases,

the unavailable data record can be recovered using its f 3 group. The necessary f 3 bucket should be

available, assuming that at most 3 records can fail simultaneously. Creating f3 groups, allows thus for 3-

availability. By the same token, adding f4 allows for 4-availability etc. The n-availability may scale up in

this way to any degree required by the file size.

The notable overall result is that the increase to the high-availability in LH*sa file is done incrementally,

one existing bucket at the time. No global reorganizing occurs. The behavior of LH*sa files has the goal

highlighted in the Introduction as of primary importance for s-availability files.

The next sections present unavailability detection and recovery in an LH*sa file in depth. We first

discuss unavailability detection and the overall principles of recovery. Next, we present the recovery

algorithms. We start with the basic algorithms recovering respectively a data bucket and a parity bucket in

presence of a single unavailability. We then show the full LH*sa bucket recovery algorithm, combining the

basic ones to recover from a multiple unavailability. Afterwards, we show the record recovery algorithms,

reconstructing a single record subject to the key search in an unavailable bucket. If found, the record is not

restored in the file, but only provided to the application, avoiding the need to wait for the full bucket

- 15 -

recovery. Finally, we address file state data recovery and the self-detected recovery of a bucket. For each

algorithm, we prove its correctness that it provides 1-availability or I-availability, respectively.

2.4.2 Unavailability detection and overall recovery management

A client or a server attempting to access some bucket m, at some physical address s, can detect its

unavailability. The coordinator requesting a split of bucket m can also detect it. Finally, bucket m restarting

from an unavailability during which no access to it was requested, can self-detect its unavailability as well.

The client or the server notifies the coordinator. The failed bucket may be a data bucket, and/or a parity

bucket. The recovery of data bucket 0 should include the file state data (ñ, î) of all the current files Fi.

Specific recovery actions are also required when the unavailability is self-detected.

Bucket m is recovered at some spare server at address s' ≠ s. It is assumed that a spare server is always

available. The address s' becomes the new physical address for bucket m. If the unavailability occurs during

a key search, the coordinator may also attempt to recover only the requested record. The record recovery

should typically complete the search faster than the full bucket recovery. It either delivers the record or

determines that there is no such record in the file.

The location change of bucket m to address s’ is sent out to clients and servers using IAMs. It may

happen that an unrelated forwarding occurs and its IAM brings to the client the address s', among other

physical addresses [LNS96]. It may also happen that the client is unaware of the new address when it

attempts to access bucket m. In this case, it sends the request to address s which is then forwarded to the

correct address, as detailed below in Section 2.5.

2.4.3 Basic data bucket recovery

The coordinator needs to recover every record in the (single) unavailable data bucket m. Algorithm (A4)

does it for a single unavailability. Any parity file could be used, we assume F1 below since we deal with 1-

availability. For didactic reasons, we describe (A4) as if the coordinator directly used it. However, the

coordinator actually calls Algorithm (A6) presented later for recovering from a multiple unavailability,

which in turn calls (A4) internally. If it happens that m = 0; the coordinator first recovers the file state, as it

is shown in Section 2.4.8. In Step 1 of (A4) the coordinator initializes the spare bucket. Step 2 finds in F1

every parity record with keys of data records that were in bucket m. In Step 3, all F1 buckets with such

- 16 -

records reconstruct the missing records and send them to the spare. In Step 4, the spare inserts all these

records and recovers the rm value. Steps 2 - 4 are executed basically in parallel.

Algorithm (A4) Data bucket recovery (case of n = 1)

Let bucket m be the (only) failed one, and let g be its bucket group number according to f1.

1. The coordinator creates the spare bucket m’, and initializes its header with the values of j and of i that

were in the unavailable bucket.

2. The coordinator issues a query, let it be Q1, to bucket g in F1. Q1 requests the following manipulation.

3. For every record (g, r) containing data key c that is LH-mapped to bucket m given ñ, and î:

3.1 If the record has only one data key, then bucket g reconstructs the data record from the

parity bits, and sends it to bucket m’, together with r.

3.2 Otherwise, bucket g searches in F0 for every record c’ with key c’ ≠ c in record (g, r), then

reconstructs record c from these records and from record (g, r). Finally, it sends record c to

bucket m’, together with r.

4. Bucket m’ inserts record c with rank r.

Proof. One has to prove that under the single bucket unavailability assumption Algorithm A4

reconstructs all and only the unavailable data records, and with the original ranks. Under the single bucket

unavailability assumption, parity bucket g is available and all the data buckets with bucket group number g

except for bucket m are available. The file state being available, or recovered earlier, for m = 0 the

coordinator can always initialize the spare bucket with j and i. Every record c in bucket m had to be LH-

mapped to address m, given the F0 state. Every related parity record has to contain key c and no other

parity record can contain c. Step 3 finds all these parity records through Q1. A record (g, r) found may have

one or more keys in it. First case corresponds to key c alone in record (g, r), and to absence of other data

records in record group (g, r). The content of record (g, r) suffices then alone to recover the unavailable

record c; this motivates Step 3.1. Otherwise the data keys in record (g, r) correspond to all and only the data

records necessary and sufficient with record (g, r) to reconstruct record c. Step 3.2 is always able to bring

all these records to bucket m’ with record (g, r). All the corresponding data buckets must be indeed

available (under the single unavailability assumption). It therefore can recover every corresponding

unavailable record.

Step 3 reconstructs all the unavailable records, since it loops over all and only the corresponding keys.

Finally, Step 4 puts all the records within the spare with their original ranks. @

- 17 -

2.4.4 Basic parity bucket recovery

This is done through Algorithm (A5). As for (A4), for didactic reasons, we describe (A5) as if the

coordinator directly used it. However, it is actually also called through Algorithm (A6) that basically

reduces to (A5) if only one parity bucket is unavailable. Algorithm A5 works for every Fi.

Algorithm (A5) Parity bucket recovery (case of n = 1)

1. Let bucket gi be the failed parity bucket. The coordinator initializes a hot spare as new recipient of

bucket gi. It also instructs it to send query Q2 to all buckets m of F0 whose bucket group number is gi. Q2

requests every record within these buckets with its rank r.

2. For every set of records with the same (gi, r), the spare reconstructs the parity record and provides

it with rank r.

Proof. Under the assumption of single unavailability, all the buckets to receive Q2 are available. The

bucket address m of every bucket with bucket group number gi can be easily computed from formulae for fi

in Section 2.2. Since Q2 requests also rank r of each record, it brings all the data records required to

recover every parity record, and only those records. @

Actual implementation of Q2 lead to design choices we address in Section 4.

2.4.5 LH*sa bucket recovery

Algorithms (A4) - (A5) provide for 1-availability. Multiple unavailability may concern data buckets,

and/or parity buckets, and/or file state data. Algorithm (A6) below combines (A4) and (A5) to provide I-

availability for a file with the availability level I, i.e. with at most J = I +1 parity files. (A6) assumes that

file state data is available when it is launched.

(A6) is initially called by the coordinator when unavailability of bucket m is detected. This can be a

data bucket or a parity bucket in F1. Accordingly, (A6) starts the recovery using (A4) or (A5) with F0 and

F1. This attempt may succeed or fail. In the latter case, bucket m initialized at the spare by each algorithm is

deleted. The reason for the failure may be further unavailability of data or parity buckets. In the latter case,

if I = 1, or there are more than I failed buckets, the recovery ends up unsuccessfully. Otherwise, the

recovery restarts using F0 and F2. This phase concerns bucket m if it was a data bucket, or one of the data

buckets whose unavailability was discovered by (A5). This recovery succeeds or fails again, in which case

one continues using F3 provided that I > 2 etc., up to FJ. If one succeeds, the bucket recovery continues for

all other data buckets discovered unavailable. If all these buckets are recovered, then the recovery of the

- 18 -

parity buckets starts. These may uncover further unavailable data buckets. If so, the recovery switches back

to those. If it works out, then (A6) returns to the recovery of the remaining parity buckets. If all this

succeeds, (A6) terminates successfully.

This principle leads to two lists in (A6). List B1 contains the addresses of the unavailable data buckets.

List B2 contains the addresses of the unavailable parity buckets, including the corresponding i values. When

(A6) is initially called, one list has 1 element and the other list is empty. Boolean C indicates the success of

bucket recovery by (A4) or (A5). (A6) succeeds iff it returns both lists empty. During the execution of

(A6), the lists are maintained by A4 and A5. These are assumed modified adequately with respect to their

basic description. If (A4) or (A5) succeeds with the recovery, it removes the bucket from the list. The

algorithms also set C according to the success or failure of each recovery.

Algorithm (A6) LH* sa bucket recovery

While B1 ≠ ∅

 For each m ∈ B1

 C =: .false

while C =: .false call A4 (m, i)

if C =: .false then

 if i = I or (|B1| + |B2|) > I) then exit end if

 i = i + 1

 end while

 i =: 1

 End for

 if B2 = ∅ then exit

 else if (|B2|) > I) then exit end if

 For each m ∈ B2

 call A5 (m, i)

 End for

 if B1 = ∅ and B2 = ∅ then exit end if

 if (|B1| + |B2|) > I) then set C = .false ; exit end if

 else i =: 1

end while

Proof. Consider that the coordinator calls (A6) because of unavailability of data bucket m. (A4) may

succeed, leading to empty B1 and empty B2. This will make the recovery successful, and, accordingly (A6)

- 19 -

will exit. Alternatively, (A4) may detect the unavailability of the parity bucket. In this case, m remains in

B1, and (A4) updates accordingly list B2. Bucket m cannot be recovered from F1. If I = 1, the recovery is

impossible and (A6) terminates. (A6) also terminates unsuccessfully if the number of all unavailable

buckets exceeds I, as the LH*sa scheme is designed to provide I-availability only5. If neither of the

conditions occurs, the recovery of bucket m may succeed if F2 is used. (A6) continues accordingly, calling

(A4) for i = 2. It loops in this way until either (i) the bucket recovery succeeds, or (ii) unsuccessful

termination conditions are met on i or (iii) the number of unavailable buckets, triggering the failure of (A6).

If recovery of bucket m is successful, (A6) continues in the same way with every other element in B1

being an unavailable data bucket discovered on the way. As a result, either all these buckets are recovered

or (A6) exits unsuccessfully. If they are all recovered, B1 is empty, and the first for loop terminates. (A6)

then starts the recovery of all the unavailable parity buckets. In particular, the first for loop is skipped

entirely if the initial bucket m is a parity bucket.

The 2nd for loop recovers the remaining parity buckets that are all in B2. It may succeed for all or only

some of them. In the former case, the recovery should terminate successfully. Since both lists become

empty, (A6) will exit accordingly. In the latter case, some unavailable data bucket had to be encountered.

Hence, B1 is no longer empty, and these data buckets should be recovered, before the remaining parity

buckets in B2, are recovered in turn (hopefully). The recovery of the data buckets should start from F1,

being carried out as already described. That is why (A6) resets i to 1. Since the overall while loop tests the

emptiness of B1, (A6) will come back to the recovery of data buckets, as it should.

If there is at most I unavailable buckets, (A6) always terminates successfully. If FJ is reached and

explored unsuccessfully, which causes (A6) to exit unsuccessfully, it means that more than I unavailable

buckets are in F. The same occurs when there are more than I elements in both lists. Hence (A6) provides

the I – availability, as intended.

(A6) should always terminate in practice. There is however no theoretical guarantee on its termination.

If buckets fail often enough, it is easy to see that (A6) can indefinitely race through its for loops.

5 It is possible to modify (A6) so that one recovers sometimes more than I failed buckets, as shown in Section 4.1

- 20 -

2.4.6 Basic record recovery

The record recovery Algorithm (A7) reconstructs a data record c subject to a key search in an

unavailable data bucket m, or determines that record c was not in the file. It assumes that bucket m is the

only one unavailable. It can be performed, using any parity file Fi. The recovered record is not restored in

the file. The purpose of (A7) is only to speed-up the search, through concurrent execution with bucket

recovery. The latter may be longer than record recovery, since it has to recover b >> 1 records and to create

a new bucket.

Algorithm (A7) actually is only a part of Algorithm (A8) dealing with multiple unavailability. Step 1

retrieves the parity record from Fi. In Step 2, if no parity record is found, the key search terminates

unsuccessfully. In Step 3, record c is reconstructed if it was the only record in its group. Step 4 addresses

the case of several records in the group.

Algorithm (A7) Record recovery (case of n = 1)

1. The coordinator computes the group number gi of bucket m and sends query Q3 to parity bucket gi

requesting parity record (gi, r) containing c.

2. If Q3 terminates unsuccessfully, the search for c terminates as an unsuccessful key search.

3. If c is the only key in record (gi, r) then record c is reconstructed from the parity bits in record (gi,

r) only.

4. Otherwise, for every key c’ ≠ c in record (gi, r), the coordinator issues to F0 a key search for

record c’. If all records c’ are received, then, record c is reconstructed from these records and the parity

bits.

Proof. One has to prove that (A7) provides the searched record c if it were in the unavailable bucket m

or determines for sure that it was not there. Under the single unavailability assumption, bucket m is the only

one unavailable in F. Record g is in Fi iff record c was in bucket m. Hence, Step 1 always terminates and

determines whether record c was in F0. If so, Q3 brings the parity bits for record group g and keys of all its

other members. If record c was the only one in the group, the parity bits in record g suffice for its

reconstruction, in Step 3. Otherwise, Step 4 always brings all other members, since they are all in buckets

other than bucket m, and all these buckets are available. These records and parity bits in record g suffice to

reconstruct record c. @

- 21 -

2.4.7 LH*sa record recovery

Algorithm (A8) below provides record recovery in the presence of up to I unavailabilities for a file with

J parity files Fi. It uses (A7). The coordinator calls (A8) starting with (A7) on F1. If this attempt does not

find record c, and it encounters a failure of a bucket in F1 or in F0, then the recovery ends as unsuccessful if

I = 1. Otherwise, it continues using F2, etc., until FJ is explored. If it still encounters failures prohibiting the

completion, it exits unsuccessfully.

(A7) in (A8) is assumed slightly modified from the basic (A7) described previously. It sets a Boolean C

according to the result of the recovery attempt for each Fi. The C value also indicates the overall

completion of (A8) to the coordinator. As for (A5), the successful completion of (A7) within (A8) either

returns record c or the indicator that the record was not in F0. In addition, it returns lists B1 and B2 for the

coordinator, to launch the corresponding bucket recovery.

Algorithm (A8) LH* sa record recovery

i = 0 ; C =: .false

while C = false and i < I do

 i =: i + 1

call A7 (m, i)

end while

exit

Proof. If there is a single unavailability, (A8) reduces to (A5) applied to F1. Hence (A8) succeeds. If

there are J files Fi and up to J unavailabilities, then in at least one of Fi the parity bucket with c and all the

data buckets in the group of bucket m must be available. Hence, (A8) will succeed. Finally, if FI is reached

and an unavailability prohibiting recovery of record c is still encountered, there were at least

I + 1 unavailable buckets in F. Hence, (A8) may exit unsuccessfully.

2.4.8 File-state recovery

The file state data (ñ, î) are necessary for Algorithm (A4), and (A5). Hence, if bucket 0 is recovered,

they have to be recovered first into the new data bucket 0. These data are mirrored at all buckets 0, as they

are negligible in size and updated very infrequently. Since there are J +1 buckets 0, I – availability of state

data is trivially achieved.

- 22 -

2.4.9 Self-detected recovery

Bucket m can self-detect unavailability through a local test determining that its data are corrupted to the

point it cannot recover locally. It can also detect that it was restarted with the correct data from a temporary

unavailability. In both cases, bucket m contacts the coordinator before serving any file requests. In the first

case, it requests bucket recovery with new bucket m at its own address. In the second case, it asks the

coordinator whether it is still bucket m or the coordinator has recreated bucket m elsewhere. If it was

recreated, then the coordinator declares it a hot spare. It informs the bucket accordingly and provides it with

the address of the new bucket m. The hot spare m needs the address of its replacement to update its physical

node allocation table.

2.5 File manipulation

An application manipulates an LH*sa file as an LH* file. Internally, each manipulation is enhanced for

unavailability management. The general rule is that manipulations encountering unavailability are passed to

the coordinator for completion. In case of an insert, the client site serving the application sends the new

record c to the coordinator. The coordinator tests whether c already exists in the parity file. If so, it informs

the client that the insert would be erroneous, assuming that no duplicates are allowed. If not so, it informs

the client that the insert was successful and stores record c. In both cases, the client terminates the insert for

the application. The coordinator asynchronously performs the appropriate actions and completes the actual

insert of record c into the correct bucket.

As it was outlined in Section 2.4.2, it can also happen that an LH*sa client sends a key search or insert to

a former server of a bucket that was displaced. To resolve the addressing given this constraint, the client

always includes in the message the intended bucket number, let it be m. This principle applies to clients of

F0 and to servers of F0 acting as clients of any Fi.

Let it be server s to which the client sends the message. If it is unavailable, the client resends the

message to the coordinator, as was discussed in Section 2.4.2. Otherwise, server s either (i) carries

bucket m, or (ii) carries another bucket or (iii) has become a hot spare. In case (i) and (ii), server s matches

m against the bucket number it carries. If it succeeds, the request is processed as usual through

Algorithm (A2). If the matching fails, and in case (iii), the server resends the query to the coordinator

which delivers it. In both case (ii) and (iii), an IAM is sent to the client with the new address of bucket m.

- 23 -

A query can also encounter the unavailability of a forwarding bucket. The sender of any such query, a

client or a server, re-sends the query to the coordinator. The coordinator sends any such query to its correct

bucket, bypassing the forwarding through the use of the file-state data and of Algorithm (A1). If the correct

bucket appears unavailable, it initiates the record or bucket recovery.

Under these rules, an LH*sa key search for a record in an available bucket does not generate access to

any Fi. If each forwarding bucket is also available, and the correct bucket is not displaced, the search

performs as in the LH* file. An insert adds r to the record to produce the data record as described in

Section 2.3. It also sends the data record to F1..Fi according to the i value found in F0 bucket header. Scans

translate to parallel searches in F0. If all F0 buckets are available, a deterministic scan works as in the LH*

file. Otherwise, the coordinator is alerted, as discussed above. If a probabilistic termination is requested, the

scan basically works as in the LH* file. It basically cannot detect unavailabilities. Some detection can still

come from the network level, but such implementation specific capabilities are beyond the LH*sa design.

A request for deletion of record c from an LH*sa file causes the deletion of data record c. The

corresponding parity records are updated. A parity record is deleted, if no data key remains in it. We do not

elaborate on deletions further in this paper.

3 Scalability analysis

3.1 High-availability

We recall from Section 2.4 that one measure of high-availability is the n-availability. This is a

deterministic measure that depends solely on the file schema. Depending further on the schema, the

unavailability of m > n buckets may be recoverable for some, but not all buckets. An LH*sa file is always

I-available. An unavailability of m > I buckets may be recovered for some buckets, provided enhancements

to the algorithms above. These issues are discussed in Section 4.1.

A related probabilistic measure, among popular metrics, [BM92], [M94], [M98], [KH98], is the

reliability. It is the probability P that the (entire) file is available, [BM92]. Higher reliability means lower

probability of data unavailability, i.e., of an unavailability of m > I buckets. One typically expects P to

remain above some reasonable threshold T, e.g. T = 0.9. P depends on n, on probability p that a bucket

fails, and on number of buckets M in the file. Two important well-known properties link the availability

level and the reliability [H&a94]:

- 24 -

1. For every given M, P monotonously increases towards 1 with n (but never reaches 1, obviously). In

other words, increasing the availability increases the reliability.

2. In contrast, for every given n, P decreases arbitrarily close to 0 when M grows, i.e. when the file scales

up. In other words, increasing any n-available file decreases its reliability.

These properties will be discussed for LH*sa schemes. It will appear that scaling the availability according

to LH*sa schema, may effectively counter-balance Property 2.

In an LH*sa file with J parity files, either every bucket has the grouping level i equal to i = J = I or some

have i = J – 1. In the former case, there are I parity records per every data record. To estimate P of an

LH*sa file, one may start with that case. We denote the corresponding file as LHsa
I file and we denote P as

PI. An LHsa
1 file remains available as long as in every bucket group there is at most one unavailable bucket.

This includes the parity buckets. There is one parity bucket per group. There are also M / k groups.

Hence:

P p k p pk k M k
1

11 1 1= − + + −+ (() () ()) /
.

Note that P1 converges towards 0 when M increases.

An LH*sa
2 file is available only when at most two buckets in a bucket group are unavailable, including

the parity buckets. In every group, there are in practice 2 parity buckets. Hence P2 yields to:

P p C p p C p pk k k k k M k
2

2
1

2 1
2

2 21 1 1= − + − + −+ + + + (() () ()) /

P2 obviously also converges towards 0. Also, P1 > P2 .

In general, it is easy to see that the availability of LH*sa
I file is:

P p C p pI
k I

i

n

i
k I i k I i M k= − + −+

=

+ + − ∑(() ()) /1 1
1

Note again that for every I, PI converges towards 0 when I increases. Also, that PI increases with I, for

any given M.

An LH*sa file gets a new grouping using function fI =: I +1 and a new parity file FI > 1 when it gets bucket

M = kI - 1. From that point every split adds parity records of FI. The buckets not yet split belong to the

groups of fi ≤ I-1 only . The process lasts until M reaches M = 2kI - 1. Hence, the values P1,P2..PI are the

reliability P of the LH*sa file for M respectively:

- 25 -

P = P1 for M ≤ k ; P = PI for M = k I -1 .. 2k I –1.

For values of M between values kI - 1 and 2kI - 1, every bucket already split by LH function hî + 1 and the

new bucket it creates, participate in fI groups. The others still participate only in the groups up to fI - 1.

Hence, for these values of M, one has P monotonously increasing with M from PI - 1 to PI. For instance, for

M = k + 3 buckets 0,1,2,k,k + 1,k + 2 will already participate in f2 groups, while all others will still

participate in f1 groups only. When M reaches M = 2k buckets, the whole file becomes an LH*sa
2 file, and

remains so until M = k2.

Fig. 4 Uncontrolled reliability of LH*sa files

Fig. 4 shows the scalability of the (uncontrolled) reliability, of two LH*sa files.

k = 4 but differ with respect to the value of p, set respectively to p = 0.1 and p = 0.1

M = 4 to M = 1024 buckets. The values of PI are computed as above. The value of

are linearly interpolated, the difference between both bounds being negligible. The s

lower availability than in practice, hence making the high-availability difficult to ob

site is unavailable three to four days a month. Such values are orders of magnit

generally assumed for hardware RAID schemes, [BM92]. They seem nevertheless

for a software RAID, e.g., under Windows NT, and other high-availability scheme

components. An unavailability can occur for various additional reasons, e.g., b

maintenance program.

Without any high-availability features, p = 0.15 implies P = 0.5 already for the

file. A 1-availability schema, e.g. LH*S or LH*g1, [L&a97], [LR97], is only slig

.1

0.850

0.900

0.950

1.000

k 5

0.750

0.800

0.850

0.900

0.950

1 5
NM

N M
k = 4, p = 0k = 4, p = 0.
 = 4 , p = 0 .1k = 4, p = 0.1
PP
PP
Both examples assume

5. The files scale from

P between PI - 1 and PI

ample values of p have

tain. They mean that a

ude greater than those

close to the ones used

s based on commodity

ecause of a scheduled

 case of M = 4 bucket

htly better, as P = 0.7

- 26 -

already for M = 8. The figure shows that, in both cases, LH*sa provides, in contrast, P > 0.82 for p = 0.15,

and P > 0.92 for p = 0.1 for M up to M = 1024. For p = 0.1, P is always higher than the availability (1 - p)

of a single site. For p = 0.15, this is also the case for most of M values. In both cases, P progressively

slightly moves up, more for smaller p.

The Appendix shows several curves of P for higher availability values of p, p = 0.001..0.05. The values

of k are studied between 4 and 128. A larger k is advantageous for access and storage performance as we

will soon show. It appears that choosing k = 4 leads to the highest and flat P for all p’s studied. P

decreases for a larger k, but may still provide for an excellent availability, especially for a smaller p. For

instance, for p = 0.001, even k = 64 provides for P > 0.995 for the largest file growth studied, i.e., up to

M = 32K buckets. For p = 0.001, even k = 128 provides the availability P > 0.99 until the file reaches

M = 4K buckets. However, choosing k > 4 for a larger p typically leads to P that is always unacceptably

low or decreases rapidly when the file scales up. Thus k should be chosen more carefully for p > 0.001.

3.2 Storage occupancy

The storage cost of high-availability, let it be Cs is usually measured as Cs = S’ / S where S’ is the

storage for the data required for the high-availability and S is the storage for the data records. In an LH*sa

file F, S’ is used for the parity files F1…FJ and for additional data, with respect to LH*, within data buckets

in F0 and for the coordinator. These are the file-state data and i value at each F0 bucket. Their storage cost

is negligible. Thus S’ is essentially the storage for the parity files that can be measured as the number of

parity buckets.

It is easy to infer from the literature, e.g., [H&al94], that for any high-availability schema, static or

scalable, with groups of k data records, the minimal s to provide I-availability must be I / k. This value

corresponds to I parity records per group. Fewer parity records would trivially compromise I -availability, if

a data record had became unavailable with all its parity records.

For an LH*sa file specifically, Cs evolves with the size M of the data file F0 as follows. When F0 scales

up, s starts from some upper bound U1, decreases towards a lower bound L1, then increases again towards

some bound U2, then decreases to some L2 etc. Each pair UI and LI corresponds to I-availability state of F

where no FI + 1- groups are created yet, i.e., while I = J. As proven below, LI values are LI = I / k and they

- 27 -

occur for M = kI. With respect to U values, U1 is U1 = 1 and occurs for M = 1. Further U values are defined

by more complex expressions. It appears nevertheless that in practice, they can be approximated as:

UI + 1 = O (½ + I /k) when I ≥ 1.

The precision improves when I increases, and for a larger k. The corresponding M values are close to,

but above M = 2 kI. We now prove all these assertions.

Proof. An LH*sa file F is created with one F0 - bucket and one F1 - parity bucket. Hence, Cs = 1 and

I = J = 1. Next splits add only F0 buckets, until F0 reaches the size of M = k buckets. Hence Cs decreases

with each split which trivially means that M = 1 leads to Cs = U1, as asserted. The M-th split creates F0

bucket k, but also 2nd parity bucket of F1, and 1st parity bucket of F2, as it starts building 2-availability, Fig.

2. At this point, one still has I = 1, although J just increases to J = 2. Also, Cs starts to increase. This proves

the asserted existence and value of L1 at M = 1 / k.

To make easier the proof of the general case of UI > 1, we first derive U2 and L2 values. From the file

size of M buckets, where s = L1, each of next k splits adds one F2 – bucket and thus increases Cs. When F0

reaches M = 2k buckets, all k F2 – buckets, required for 2-availability, are in place. File F becomes a 2 -

 availability file, hence I catches up with J, becoming I = 2. Split of bucket 2k creates one more parity

bucket that is 3rd bucket in F1. Hence Cs still increases. This bucket is required for 2-availability of the

“line” of buckets 2k…3k-1, Fig. 2. Next k – 1 splits do not add any parity bucket. Hence Cs decreases, and

there is the local maximum for M = 2k +1:

U2 = (k + 3) / (2k + 1) ≈ ½ + 1 / k + 1 / 2k = O (½ + 1 / k).

Further expansion till M = k2 adds only one F1-bucket per k new F0-buckets. Hence Cs continues to

decrease. In contrast k splits following creation of bucket k2, hence within a new rectangle, create at least 2

parity buckets each, in files F2 and F3. Hence, Cs has a local minimum at M = k2 that is:

 L2 = 2k / k2 = 2 / k.

We now prove the LI values in general; UI values being addressed next. Observe that the case of I = 2

just analyzed generalizes. In fact, for every M = kI, F is an I-availability file were (i) all the necessary

parity buckets were built and (ii) last k –1 splits did not create any parity bucket. As it will be addressed

more in depth below, Cs value therefore had to decrease from UI, while M was increasing towards M = kI.

As it will appear more in detail below , each of the next splits in a series longer than kI, starting with the

- 28 -

creation of bucket kI, begin to build (I + 1)-availability so Cs increases again. For F0 with M = kI buckets,

there are kI – 1 parity buckets in each file F1...FI. This is the number of corresponding groups in F, Fig. 2.

Thus M = kI realizes locally the best Cs that is:

 Cs = LI = I k I - 1 / kI = I / k.

Finally, we now prove UI values. Observe from Fig. 2 how the file expands from I-availability file with

M = kI data buckets, towards (I + 1) – availability file ; I ≥ 1. The goal is to determine the value of M when

the last split occurs in the series above, where each split adds parity buckets. This M corresponds to UI + 1

that Cs reaches while growing from LI at M = kI. Notice that:

1. Next kI splits, of buckets 0,1…kI – 1, create kI parity buckets in FI + 1, and kI – 1 parity buckets per Fn ≤ I,

i.e., kI + I kI – 1 parity buckets in total. These splits lead to M = 2 kI.

2. Further splits must create Fn ≤ I buckets for data records that are in FI + 1 groups, but not in Fn ≤ I groups

that have been created so far. First kI – 1 such splits, perhaps only one if I = 1, create kI - 1 buckets in FI .

Provided I ≥ 2, they also create kI – 2 buckets in FI – 1, and kI – 2 buckets in FI – 2 for I ≥ 3 etc. This makes

kI - 1 + (I – 1) kI – 2 new parity buckets in total. The splits also add kI –1 data buckets to F0.

3. If I = 1, then Step (2) added a single F1–bucket, 1st in some line at Fig. 2. The corresponding Cs is

Cs = UI + 1, since next split does not create any parity bucket. If I > 1, thee next kI – 2 splits create Fj ≤ I -1

buckets for data records that are not in Fj ≤ I - 1 groups created so far. This adds kI – 2 + (I – 2) kI – 3 new

parity buckets in total. There are also kI –2 more data buckets in F0.

4. The process loops through Step (3), until a split creates the data bucket needing only an F1-bucket.

The following formulae for UI + 1 result from, for any I ≥ 1:

UI + 1 = (I kI – 1 + kI + I kI – 1 + kI - 1 + (I – 1) kI – 2 + kI – 2 + (I – 2) kI – 3 +…+1+1) / (2 kI + kI –1 + kI – 2

+…k+1)

 = (kI + (2I + 1) kI – 1 + I kI – 2 + (I – 1) kI – 3 +…+2) / (2 kI + kI –1 + kI – 2 +…k+1).

Dropping smaller terms leads to:

 UI + 1 ≈ kI + (2I + 1) kI – 1 / 2 kI

 = O (½ + I / k).

@

The value of I is a logarithmic function of M. In particular, one can easily see that:

- 29 -

LI = log k M / k.

For UI values, approximating the corresponding M value as M = 2k I – 1, one gets:

UI = O (½ + log k M / (log k 2 + 1) k).

Thus, the storage cost of LH*sa files scales basically as O (log k M). Furthermore, UI relates to LI as

follows:

UI = O (½ + (I – 1) /k) = O (LI + ½ - 1/k).

The storage cost Cs thus never exceeds by more than 50% the minimal possible cost, whatever are I and

M reached and k chosen (we recall that possible k values are 2,4,8,16....). The minimal cost LI, reached

periodically in log k scale when M becomes kI, achieves in addition the minimal storage for any high-

availability schema. Minimizing k to k = 2, leads to UI = LI and thus to the best storage use for every M

with respect to the theoretical minimum. However, such k maximizes globally the number of parity buckets

with respect to any larger k. It might not be the wisest choice if the reliability and other costs allow for a

larger k. Next larger k ; k = 4 ; leads to the storage cost of at most 25 % above the minimum, also regardless

of the file size. Likewise, k = 8 leads to the difference of 38 %. Enlarging k further progressively reaches

the 50 % variation, but decreases globally the storage for the file. This gain is unfortunately limited since,

we recall, a too large k compromises the reliability and the recovery costs. Notwithstanding, the entire

behavior of LH*sa, as it appears, makes the scheme clearly quite effective with respect to the storage use.

The resulting values should usually be acceptable in practice.

To illustrate this point, consider for instance k = 4 from Fig. 2. Then, L1 = 0.25 for M = 4. Afterwards,

the build-up of I = 2 starts and Cs re-grows to U2 ≈ 0.78 for M = 9. Next, Cs decreases back to L2 = 0.5

while I remains I = 2, for M = 16. Then, I = 3 level starts and Cs increases again to U3 ≈ 1 for M = 37,

falling back to L3 = 0.75 for M = 64. Afterwards Cs moves up and down between (UI, LI) bounds that are

(1.25, 1) for I =4 and M up to M = 256 data buckets, then (1.5, 1.25) for I = 5 up to M = 1024 buckets etc.

The latter values of each pair, we recall, are the best possible for any I-availability schema.

The choice of k = 8 would typically significantly lower Cs for the same M or I, in particular by half for

every LI. However, as Fig. 4 and the Appendix shows such k is acceptable basically only for p ≤ 0.05.

Smaller p value is, larger k can be chosen, e.g., even k = 128, as Appendix shows. The storage cost is then

- 30 -

quite negligible. At the expense however of an increased bucket and record recovery costs, as calculated in

Sections 3.4 and 3.5 below.

Notice that LI grows with M, so the importance of the constant ½ in UI progressively decreases. Thus Cs

globally closes on the lowest possible cost while the file scales. The practical incidence of this nice feature

seems nevertheless limited to k = 4 at best, given the log k M growth of I.

3.3 Access performance

In normal mode the parity records do not affect search performance. Hence, key search cost scales as

for LH*, i.e., it is two messages typically, and four messages in the worst case, regardless of M. A past

unavailability may create an additional forwarding to a new location of a bucket through the coordinator.

This adds two messages.

In the degraded mode, when an unavailability is encountered, the search cost includes the record

recovery cost, or bucket recovery costs. These much higher costs are addressed below.

The insert cost in the normal mode is the LH* insert cost, typically one message, plus the high-

availability penalty that are messages to each Fl ; l ≤ im. A typical insert cost is thus (1 + J). J value scales

as O (log k M). Thus, the insert cost of an LH*sa file scales well, being a few messages, for even very large

files. For instance, for a file with k = 8 and reaching 32K buckets, six messages should typically suffice.

Note, that the insert or update penalty must be at least I for any I-availability schema [H&a94].

Depending on the file state, the LH* penalty is therefore either the best or higher by 1 bucket and message.

This may seem a small price for the scalability.

The insert cost in degraded mode includes sending the record to the coordinator. The coordinator

delivers the record to the correct bucket, perhaps after recovery. This adds two messages.

The additional split cost in normal mode includes typically 2 bJ messages:

b messages to each Fi to remove records from the record groups they participated in.

b messages to each Fi to update parity records of new record groups the records participate in.

When new file FJ starts, the split includes in addition b messages to new file. In the degraded mode, the

bucket recovery cost must also be added in. All these costs scale as O (log k M), i.e., efficiently.

The cost of a scan in normal mode scales basically as that LH*, for the same reasons as for key search.

In the degraded mode, the bucket recovery costs need to be factored in.

- 31 -

3.4 Bucket recovery

Bucket recovery cost, let it be Cb is, at best that of a single bucket, let it be Cb,1. It’s actual value

depends on implementation choices for (A6) beyond the scope of this work. A gross evaluation of Cb,1 may

be as follows:

Cb,1 = O (k α b / bm).

Here, α denotes the average load factor of a bucket, and bm denotes the number of records per message

from a bucket to the spare site. This site is assumed to carry the entire recovery process. A few messages

that must occur between the coordinator and the spare and are not counted explicitly.

The α value depends on the LH* load control policy chosen for F0 [LNS96]. Typically, one should have

0.7 ≤ α ≤ 0.85. In practice, bm may be guessed within the range [1…10], and b in the order of [100…1000].

Thus, as one could easily guess, Cb is in the order of hundreds of messages at best, and perhaps in the order

of thousands.

Assuming J > 1, and no race condition addressed in Section 2.4.5, the worst case for Cb is

Cb = O (J Cb,1), so Cb = O (Cb,1 log k M). The worst case cost scales thus efficiently. The derivation of the

average Cb is obviously tedious, and not justified here. For our purpose, it suffices to observe that the

average should be typically very close to Cb,1. The probability of 2-failure should be indeed in practice an

order of magnitude smaller than that of a single one.

3.5 Record recovery

Record recovery cost, let it be Cr, is clearly typically O (k), and O (Jk) = O (k log k M) at worst,

assuming no race condition. The exact values depends on the actual implementation of (A8), beyond the

scope of this work. The best case can involve even fewer messages, as a record group can contain even a

single record, when it is just created. It suffices then to get the parity record only.

The average cost should be usually also about O (k), obviously. Thus the record recovery costs scale

efficiently as well.

4 Design variations

One may tune selected performance of the basic schema for some applications. Each optimization

comes with some price.

- 32 -

4.1 High-availability

The file structure allows, in several cases, for the recovery of more than I unavailabilities. The price is

the additional complexity of the recovery algorithms. For instance, these recovery capabilities are easy to

see from Fig. 2:

1. From any failure of (I + 1) data buckets for I > 1, and, more generally, from any unavailability of

(I + 1) buckets other than a data bucket and all its I parity buckets6.

2. From any failure of k data buckets or records in the same bucket or record group, and from the failure

of the parity bucket(s) of that group.

To illustrate the 1st point, consider that one needs to recover buckets 0,1,4,5 while I = 3. Bucket 0 can be

recovered using F3 and bucket 16, and the others in group 0 in F3. Once it is done, one can recover bucket 1

using F1, then bucket 4 using F2, and finally bucket 5, using F1, or F2. Other orderings are possible.

To illustrate the 2nd point, consider that all four buckets in f1 - group 0 failed, and that there are no

other failures in the file. Then, every data bucket can be recovered using its bucket group in F2. Once it is

done, any parity bucket in F1 can be recovered as well.

4.2 Bucket recovery

Algorithm (A5) states that all the records from the buckets within the parity group are sent to the spare

that performs the recovery of the parity bucket. The actual implementation has to specify the corresponding

transfer mode. There are many trade-offs, e.g., between the number of records sent per message and storage

efficiency at the spare. These details are left for further work.

It is possible to modify (A5) so that all or most of parity records are recovered at data buckets, instead

of being sent to the spare. This would decrease the load on the spare bucket and could make the recovery

faster. One solution is that l-th data bucket within the group where l = r mod k, gets all the records with

rank r, computes the parity record and sends it to the spare. The price to pay is an increase in the network

load, since now the parity records have to be sent through as well.

6 The latter configuration is traditionally called bad (I + 1)-erasures [H&a94], [NW94]. Optimality results proven

there for any I-available scheme with I =2 or I = 3 that supports all (I + 1)-erasures except the bad ones, apply to

LH*sa as well.

- 33 -

4.3 Record recovery

Algorithm (A7) does not specify the actual implementation of Q3 that searches for the parity record with

key c, and whose rank r is unknown. To provide for the fast search for the parity record when an insert or

an update occurs, it is natural to choose r as the primary key within bucket gi. The search Q3 is then

basically an intra-bucket scan. If this is too slow for an application, one may add within the parity buckets

an additional structure indexing records using the keys c. The price to pay is an additional storage and

maintenance of the index during inserts and updates.

4.4 Storage occupancy

The values of Cs higher than LI during each build-up phase when k ≥ 4, are the storage cost “premium”

one pays to LH*sa schema for its s-availability. We recall from Section 3.2 that these phases start at

M = kI - 1 to incrementally create the I-availability. The rationale behind the premium is that a series of new

parity buckets is created serving each less than k data buckets. This behavior opens avenues towards

variants of LH*sa tuning the premium, by creating new parity buckets only when the existing ones are used

by more data buckets. One may in particular consider to delay the entire I-availability build-up to at least

M = kI . This approach has the potential to lower Cs values even for M = kl ; l = 2,3... despite the fact that

for the basic schema the corresponding LI values were at their theoretical minimum level. The overall

drawback may be a somehow lower reliability. Some of these avenues are explored in next section.

5 Reliability control

The above analysis shows the basic algorithm works fine for a wise choice of k. That is P remains

always above some acceptable threshold T, e.g., T being the reliability (1-p) of a single bucket. It also

shows that one can tune the scalable availability with this goal in mind. We call such strategies the

reliability control. Two control variables appear, J and k with the goal variable P to be P > T, but also as

close as possible to T: The control variable can be manipulated as follows:

New values of J are introduced earlier or later with respect to the uncontrolled breakpoints

N = k J - 1 for new fJ.

Values of k can be decreased or increased when the file expands. That is, when P becomes too close to T,

instead of moving to higher J, it may suffice to set k =: k / 2, as long as k ≥ 1. Afterwards, J can increase,

- 34 -

and k can be increased again to the maximal value such that P would remain the closest possible to T but

also above T, to possibly minimize the storage cost.

With respect to the uncontrolled LH*sa, one advantage is possibly an improvement of access and storage

performance for smaller files. One may achieve also an about a constant reliability for higher p and for

larger M. For instance, the analysis shows that for p = 0.05, choosing T = 95 % requires k = 4 or smaller,

whether one controls the reliability or not. The control allows J to remain J = 4 for up to M = 8K. Without

it, J reaches J = 5 already for M = 512. The control saves one access per insert, and 1/k of storage. More

discussion follows below and in the Appendix.

It’s also easy to see that one may keep P > T for any M. Any time P decreases too close to T, the

control may introduce as may new fi as needed to raise P enough.

Generally, the decisions to change either J or k offer different trade-offs:

- Increasing J by one leads to one more parity record per data record. Hence it increases by one the insert

cost, somewhat the split cost, and by 1 / k the storage cost.

- Halving k progressively doubles the number of groups hence of parity records. In contrast it does not add

parity records per data record. The advantage is that, unlike above, the insert and split costs do not increase.

In contrast, the storage cost becomes substantially higher.

For instance, consider a file that has X records and uses f3, hence has 3X / k parity records, and an insert

costs 4 accesses in general. Assume that the availability becomes too close to T while the file is still scaling

up, hence either J should increase by one, or k > 1 should be halved. First choice means that when the file

doubles, there will be 8X / k parity records, while the insert cost will increases to 5 accesses in general. If

in contrast k is halved, then one ends up with same insert cost, but the file needs the storage for 12X / k

parity records.

There is therefore no unique algorithm for reliability control. One can control either only J or k or both.

Note that the change of k within each group can be incremental. One way for halving it is to start building

the new group in addition to the existing one in the bucket group where the split pointer ñ currently is. Each

split adds then records to the new group and removes them from the old one. The new and old parity

records are updated in consequence. The old one is removed when the last bucket in it is split. A similar

strategy can be used to double k.

Fig. 5 Controlled relia

5.1 Fixed group size

One strategy to control

creation, one chooses k and

the split pointer ñ in the da

has 2î buckets. At this poin

PJ that P will have if the f

If PJ is under T, then one

new insert and split accord

M doubles, all the data reco

M P J

4 0.901 2

8 0.812 2

16 0.873 3

32 0.920 4

64 0.846 4

128 0.906 5

256 0.822 5

512 0.895 6

1024 0.801 6

2048 0.887 7

0.000

2.000

4.000

6.000

8.000
4 16 64 25
6

10
24

40
96

16
38

4

0.000
0.200
0.400
0.600
0.800
1.000

4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

N

P(4)

P(8)

P(16)

P(32)

P(64)

P(128)

)

M

p)
(a
(b
- 35 -

bility (a) for k =4, p = 0.2 and T = 0.8,

 the reliability with the group size k fix

 T. The file itself is created with M = 1

ta file points to bucket 0, including the

t, the coordinator calculates P using form

ile reaches at least k buckets, or, if M do

increases J one by one, until PJ ≥ T. If

ing to all new fi 's. . Hence, when split p

rds are in new groups. P is calculated ag
(a)
P

J

compared to the uncontrolled one (b).

ed is Strategy (S1) that follows. At file

 data bucket. P is controlled every time

initial state of M = 1. The data file then

ulae in Section 3. It computes the value

ubles again, whichever value is greater.

 J increases, groups are created at each

ointer ñ comes back to ñ = 0, i. e., when

ain, J is increased if needed, and so on.

4096 0.938 8

8192 0.880 8

16384 0.775 8

- 36 -

(S1) LH* sa : Reliability control with fixed k

Let M be the current number of buckets in the file, PJ (m) the availability computed for the file of size m

according to formulae in Section 3, T the threshold on P, k = 2l the group size ; l = 1.2... Let ñ be the split

pointer in the data file, and let î be the file level.

For M = 1 choose the minimal J ; J =1,2.. ; so that PJ (k) > T.

If ñ = 0, then begin m = max (k, 2 î+1) ; while PJ (m) < T, J =: J +1 endwhile endif

For every insert, include the new record in all current groups fJ. If J increased, then include at each split

all the existing records into new groups.

Step 3 implies the creation or update of the corresponding parity records. Fig. 5 shows an example of

the scalability control according to the algorithm above. Fig. 5a shows the evolution of P and of J values

for the reliability control. The table shows numerical values corresponding to the graph of controlled P. The

probability p that a bucket is unavailable is assumed p = 0.2 which is high. The threshold T is chosen to be

T = 0.8 which means that the reliability of the file should be at least that of each bucket. For comparison,

Fig. 5b shows the curves P (M) for the uncontrolled reliability. This approach clearly fails for the discussed

p. Even k = 4 leads to P < T for already about M = 10 buckets. Controlling the reliability allows in contrast

the file to grow as required. The curves and the table show P about constant, up to M = 16K with J reaching

J = 8. This would be a very large file. The flat scale-up could clearly continue further using J > 8, to any M

needed.

The example shows also that (S1) may provides significant performance gains for smaller files, as J can

be significantly smaller. For instance, as long as the file does not exceeds M = 64 buckets, only four parity

records are needed, instead of up to eight. This halves the access and the storage costs with respect to those

reached for J = 8. That choice would be necessary for any static schema to provide for possible scaling of

M between 4K and 16K buckets. As long as this growth does not materialize a useless under-performance

would result.

5.2 Variable group size

Varying the group size allows for additional tuning of access and storage performance. The following

generalization of (S1) can be one corresponding strategy. It seeks for best access performance, then best

- 37 -

storage performance, provided that P > T. The corresponding algorithm is easy enough to explain, without

need for a formal definition.

Fig. 6 Controlled reliability with variab

The file is created with parameters T and p, and some

minimal bound on k. Using the formulae in Section 3, the

largest k so that P > T for M = k. When M reaches this value,

for the next expansion of the file. However, if the coordinato

2M, then it first attempts to decrease k before increasing J. T

reaches kmin. In the latter case, J is increased as much as needed

M P k i

4 0.803 2 1

8 0.812 4 2

16 0.802 2 2

32 0.898 2 3

64 0.806 2 3

128 0.815 1 3

256 0.815 2 4

512 0.849 1 4

1024 0.827 2 5

2048 0.877 1 5

4096 0.841 2 6

8192 0.900 1 6

16384 0.811 1 6

32768 0.920 1 7

65536 0.846 1 7

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000

4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

N

P

k

iJ
M

le k, for p = 0.2 and T = 0.8

 value kmin ≥ 1. The latter i

coordinator chooses the sma

 any time ñ = 0, the reliabi

r finds that P would become

his is done by halving k till

 to again reach P such that P

s a user

llest J,

lity is e

 P ≤ T

either P

 > T.
 defined

 and the

valuated

 for M :=

 > T or k

- 38 -

When this occurs, one seeks to increase k through successive doublings of its value, which decreases P

as long as P remains P > T. This value of k is used for the next expansion. Once ñ = 0 again, the cycle is

repeated.

Fig. 6 shows the evolution of P for the same parameters as in Fig. 5: p = 0.8, T = 0.8, and kmin = 1. As

one could expect, there is some access performance gain with respect to the results for fixed k = 4.

Especially, for M ≥ 4K one has I = 6 instead of I = 8 which represents in general 7 messages per insert

instead of 9. These gains are obtained at the expense of the storage for the file. For M ≥ 8K, since k = 1,

one now needs the parity records, which are in fact the replicas, up to 6 times the storage of F0. For fixed

k = 4, the additional storage needed was only 2 times that of F0. See the Appendix for a brief discussion of

another example.

For some applications, the 3 times difference in the storage, as above, may not justify the gain of two

messages per insert, i.e., of 25 %, to access performance. Especially, since these gains correspond only to

inserts and updates. In this case one should set up kmin > 1. One can find also useful the strategies where

kmin increases during the scale-up, so to increase the relative importance of the storage cost. We leave these

strategies for future analysis. Fig. 7 illustrates the simple case of fixed kmin > 1, set in this example to

kmin = 4, for p = 0.01, and T set to T = 0.95. Since p is much lower than in the previous example, k

changes also much more, between 4 and 32. Such a high variance would make somehow more difficult the

user’s choice of a fixed k. The overall result is interesting, and, in particular, more efficient than for the

corresponding uncontrolled case. To allow for the same availability up to M = 64K, one would need to

choose k = 16, and I would reach I =6, instead of I = 3. The uncontrolled reliability would lead therefore to

the same storage for the parity files, but to about twice as many messages per insert.

6 Related work

To the best of our knowledge, there were no scalable availability schemes proposed until now. There

were in contrast many proposals of 1-availability schemes, and a few providing statically the n-availability

with n > 1. There were also numerous schemes targeting the scalability without high-availability. These are

most of the SDDS schemes referred to in this paper, as well as in [SDDS], aimed at horizontal scalability,

at network and switched multicomputers, [KLR96], as well and some others, e.g., [SPW90], and [JK93]

among the earliest, targeting multiprocessor supercomputers. Other proposals seek vertical scalability, over

a fixed and rather small size multicomputer, e,g,, 16 nodes, [B&al95], [FBW97], [M97a] and [P97]. Some

of the implementations provide support for high-availability through mirroring, [B&al], [H96]. Others

propose a more or less delayed replication for disaster recovery, and lower level capabilities, e.g., for fail-

over recovery [M96], [M97].

Fig. 7 Contro

In fact, many schemes using

however high search performan

storage cost. This limits the appr

mirroring to scalable multicom

[LN96a], for LH* files specifical

M P k J

4 0.957 32 1

8 0.957 32 1

16 0.957 32 1

32 0.957 32 1

64 0.952 16 1

128 0.946 8 1

256 0.963 32 2

512 0.977 16 2

1024 0.954 16 2

2048 0.971 8 2

4096 0.980 4 2

8192 0.961 4 2

16384 0.965 16 3

32768 0.987 8 3

65536 0.975 8 3

100
- 39 -

lled reliability with variable k, for p = 0.01 and T = 0.95

mirroring were investigated in the seventies and eighties. Their go

ce rather than high-availability. Their prime disadvantage is th

oach in practice to files providing 1-availability at best. The applica

puter files was studied in [ChS92], and, through the LH*m sche

ly.

0

1

10
4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

P

k

iJ
NM
al was

e high

tion of

ma in

- 40 -

The research in the nineties on 1-availability schemes was centered on variants of RAID schemes

[PGK88]. These schemes were much more storage efficient than mirroring, at the expense of access

performance. Neither the scalability, nor the multicomputer environment was the target for that work.

There were nevertheless attempts towards the latter goal, e.g., [SS90], [MLC93]. An on-going research

project, the DIY-RAID system, addresses the scalability of RAID schemes more specifically [A&al97].

The goal is a thousand-node RAID configuration. Nevertheless, the system aims to provide 1-availability,

or 2-availability at best, using the “orthogonal RAID” approach [A&al97].

The need for n-availability schemes for RAID systems with n > 1 was observed early. In [G&al89] it

was suggested that basic RAID schema could be made n-dimensional (orthogonal) for this purpose. As

Fig. 2 shows, LH*sa
 is somehow rooted in this approach, every k2 sites forming a rectangle with horizontal

and vertical parity. In [BM92] one proposes an efficient n-availability scheme using the MDS codes. The

EvenOdd schema in [BBM93] provides particularly efficiently for 2-availability. Some linear coding

techniques, for 2-availability, or possibly for 3-availability, are also addressed in [H&a94]. In [NW94],

there are complementary proposals for cases of correlated disk failures that may generalize to LH*sa bucket

failures. In [T98], there is an overview of several RAID oriented schemes seeking for 2-availability.

Recently, the DATUM RAID scheme provides for n-availability in an optimal amount of redundant storage

[ABC97]. All these schemes address the static n.

The already mentioned LH*m, as well as LH*s and LH*g schemes, [L&a97], [LR97], were first to

address the high-availability requirement in the context of horizontal scalability. One basic difference to the

traditional and distributed RAID schemes is a more elaborated logical and software addressing schema, for

both data and parity records. RAID schemes basically use physical mappings, like the round-robin

addressing. Such schemes, behind the controller, or in software on a multi-disk PC, e.g., with Windows NT,

are simple but cumbersome for scalability. In the LH* schemes, the data and parity records have keys, and

dynamic addresses calculated at the client and servers using the LH* access method. This feature is crucial

for scalability. As it appeared in particular for LH*sa, both data and parity records may incrementally move

to an increasing number of locations.

LH*s applies the striping and provides for 1-availability. Its disadvantage is that record scans become

more expensive than in LH*. LH*g uses record grouping, as does LH*sa, making the scans as efficient as

- 41 -

for LH*. It provides basically for 1-availability with the split cost lower than that of LH*sa. It is also shown

in [LR97] how this schema can be expanded to provide for 2-availability.

The discussion of LH*m in [LN96a] points out to some basic types of high-availability LH* schemes. A

scheme with the structurally similar data and parity files groups in one bucket the parity records of data

records in the same bucket group. A schema with structurally dissimilar data and parity files, hashes in

contrast these parity records over the parity file. Both types of schemes have advantages and

inconveniences. The structurally similar schemes tend to be more efficient during normal and degraded

use. The structurally dissimilar schemes typically loose less data if a catastrophic failure occurs, e.g. of

more than I buckets simultaneously. The difference can be the loss of a few records only, instead of a whole

bucket. The LH*sa schemes above are of the structurally similar type. LH*g schema is of the structurally

dissimilar type. Design of a structurally dissimilar LH*sa schema remains a future work.

7 Conclusion

Scalable distributed or parallel storage systems have become a major trend in research and industry.

These schemes require high-availability and it is desirable to make this feature scalable as well. LH*sa

schema provides this property that cannot be achieved by any static n-availability scheme. It opens new

perspectives for high-availability applications and the use of large scalable files in general. Future work

should explore deeper scalability analysis of the uncontrolled and controlled LH*sa variants, through

formal calculus, and simulation. One should also analyze more in depth LH*sa variants. One should

furthermore experiment with the implementations. Finally, one should design other s-availability schemes.

More generally, one may observe that the traditional data structures were designed for efficient data

addressing and storage. High availability was a feature of lower levels of a storage system. This dichotomy

appears inefficient for building the storage systems for the scalable and distributed world. High-availability

should be a feature of the data structures, as important as the traditional ones.

- 42 -

References

[A&al95] Agerwala & al. SP2 System Architecture. IBM Syst. Journal, 34, 2, 1995. 152-184.

[ABC97] Alvarez, G., Burkhard, W., Cristian, F. Tolerating Multiple-Failures in RAID Architecture with Optimal Storage and

Uniform Declustering. Intl. Symp. On Comp. Arch., ISCA-97, 1997.

[A&al97] Asami, S. & al. The Design of Large-Scale, Do-It-Yourself RAIDs. CS Tech. Rep. UC Berkeley, 1997.

[B&al] Boloski & al. The Tiger Video Server. www.research.microsoft.com

[BBM93] Blaum, M., Bruck, J., Menon, J. Evenodd: an Optimal Scheme for Tolerating Double Disk Failures in RAID

Architectures. IBM Comp. Sc. Res. Rep., (Sep. 1993), 11.

[BM92] Burkhard, W., Menon, J. MDS Disk Array Reliability. UCSD Res. Rep. CS92-269, 26.

[B&al95] Baru, W., C., & al. DB2 Parallel Edition. IBM Syst. Journal, 34, 2, 1995. 292-322.

[C&al95] Cabrera, L. et al. ADSM: A Multi-Platform, Scalable, Backup and Archive Mass Storage System. IEEE-COMPCON-95,

IEEE Press, 1995, 420-427.

[ChS92] Chamberlin, D., Schmuck, F. Dynamic Data Distribution (D3) in a Shared-Nothing Multiprocessor Data Store. VLDB-92,

1992.

[FBW97] Freedman, C., Burger, J., DeWitt, D. SPIFFI -- A Scalable Parallel File System for the Intel Paragon. Trans. on Par. and

Distr. Syst.

[G&al89] Gibson, G & al. Coding techniques for handling failures in large disk arrays. Intl. Conf. On Arch. Support for Prog. Lang.

And Op. Syst., 1989, 123-132.

[H&a94] Hellerstein, L, Gibson, G., Karp, R., Katz, R. Patterson, D. Coding Techniques for Handling Failures in Large Disk

Arrays. Algorithmica, 1994, 12, 182-208.

[H96] Haskin, R. Schmuck, F. The Tiger Shark File System. COMPCON-96, 1996.

[I98] Inktomi Corporation. http://www.inktomi.com/

[JK93] Johnson, T. and P. Krishna. Lazy Updates for Distributed Search Structure. ACM-SIGMOD Int. Conf. On Management of

Data, 1993.

[K98] Knuth, D. THE ART OF COMPUTER PROGRAMMING. Vol. 3 Sorting and Searching. 2nd Ed. Addison-Wesley, 1998,

780.

[KH98] Kumar, V., Hsu, M. (Ed.). RECOVERY MECHANISMS in DATABASE SYSTEMS. Prentice Hall, 1998, 989.

[KLR96] Karlsson, J. Litwin, W., Risch, T. LH*lh: A Scalable High Performance Data Structure for Switched Multicomputers. Intl.

Conf. on Extending Database Technology, EDBT-96, Avignon, March 1996.

[L80] Litwin, W. Linear Hashing : a new tool for file and tables addressing. Reprint from Intl. Conf. On Very Large Databases,

VLDB-80 in READINGS IN DATABASES. 2-nd ed. M. Stonebraker , M.(Ed.). Morgan Kaufmann Publishers, Inc.,

1994.

[L96] Lomet, D. Replicated Indexes for Distributed Data IEEE Intl. Conf. on Par. & Distr. Systems, PDIS-96, (Dec. 1996).

http://www.inktomi.com/

- 43 -

[LNS96] Litwin, W., Neimat, M-A., Schneider, D. LH*: A Scalable Distributed Data Structure. ACM-TODS, (Dec., 1996).

[LN96a] Litwin, W., Neimat, M-A. High-Availability LH* Schemes with Mirroring. Intl. Conf. on Cooperating Information

Systems. Brussels, (June 1996), IEEE-Press, 1996.

[L&a97] Litwin, W., Neimat, M-A., Levy, G., Ndiaye, S., Seck. T. LH*S : a high-availability and high-security Scalable

Distributed Data Structure. IEEE Workshop on Res. Issues in Data Eng. (RIDE-97), 1997.

[LR97] Litwin, W., Risch, T. LH*g : a High-availability Scalable Distributed Data Structure by Record Grouping. Res. Rep. U.

Paris 9 & U. Linkoping, (Apr., 1997). Submitted.

[MLC93] Montague, B., Long, D., Cabrera, L. SWIFT/RAID A Distributed Raid System. IBM Res. Rep. RJ 9501, 1993, 25.

[M94] Menon, J. Performance of RAID5 Disk Arrays with Read and Write Caching. Distr. & Par. Databases, 2, 1994, 261-293.

[MRW95] Menon, J., Riegel, J., Wyllie, J. Algorithms for Software and Low-cost Hardware RAIDs. IEEE-COMPCON-95, IEEE

Press, 1995, 411-418.

[M96] Microsoft Windows NT Server Cluster Strategy: High Availability and Scalability with Industry-Standard Hardware. A

White Paper from the Business Systems Division. Microsoft, 1996.

[M97] Microsoft SQL Server Scalability. A White Paper from the Desktop and Business Systems Division. Microsoft, 1997, 27.

[M97a] Clustering Support for Microsoft SQL Server. White Paper, May 1997, 16.

[M97b] Two Commodity Scaleable Servers: A Billion Transactions per Day and the Terra-Server. White Paper, Desktop and

Business Syst. Div. May 1997, 27.

[M97c] SQL Server VLM. Microsoft Scalability Day. http://204.203.124.10/backoffice/scalability/coverage.htm [P97] Patel, J

& al. Building A Scalable GeoSpatial Database System: Technology, Implementation, and EvaluationACM-Sigmod,

1997, 336-347.

[M98] Menon, J. A Performance Comparison of RAID5 and Log-Structured Arrays. In RECOVERY MECHANISMS in

DATABASE SYSTEMS. Kumar, V., Hsu, M. (Ed.). Prentice Hall, 1998, 989.

[NW94] Newberg, L., Wolfe, D. String Layouts for Redundant Array of Inexpensive Disks. Algorithmica, 1994, 12, 209-224.

[SS90] Stonebraker, M, Schloss, G. Distributed RAID - A new multiple copy algorithm. 6th Intl. IEEE Conf. on Data Eng. IEEE

Press, 1990, 430-437.

[PGK88] Patterson, D., Gibson, G., Katz, R., H. A Case for Redundant Arrays of Inexpensive Disks (RAID). ACM-Sigmod, 1988.

[RM96] Riegel, J. Menon, J. Performance of Recovery Time Improvement Algorithms for Software RAIDs. IEEE Conf. On

Parallel and Distr. Database Systems (PDIS-97). IEEE-Press, 1997, 56-65.

[R97] RAMAC™ Scalable Array Storage 2. www.almaden.ibm.com/storage/hardsoft/diskdrls/scalable/sca2spec.htm

[R98] Ramakrishnan, K. Database Management Systems. McGraw Hill, 1998.

[SDDS] SDDS-bibliography. http://192.134.119.81/SDDS-bibliograhie.html

[SPW90] Severance, C., Pramanik, S. Wolberg, P. Distributed linear hashing and parallel projection in main memory databases.

VLDB-90.

[T95] Tanenbaum, A., S. Distributed Operating Systems. Prentice Hall, 1995, 601.

http://www.almaden.ibm.com/storage/hardsoft/diskdrls/scalable/sca2spec.htm
http://192.134.119.81/SDDS-bibliograhie.html

- 44 -

[T95a] Torbjornsen, O. Multi-site Declustering Strategies for Very High Database Service Availabiity. Thesis Norges Techn.

Hogskoule. IDT Report 1995.2, 176.

[TZK96] Tung, S, Zha, H, Kefe, T. Concurrent Scalable Distributed Data Structures. ISCA Intl. Conf. on Parallel and Distributed

Computing Systems. K. Yetongnon and S. Harini, (ed.) Dijon, (Sept., 1996). 131-136.

[T98] Thomasian, A. RAID5 Disk Arrays and Their Performance Evaluation. RECOVERY MECHANISMS in DATABASE

SYSTEMS. Kumar, V., Hsu, M. (Ed.). Prentice Hall, 1998, 989.

[VBWY94] Vingralek, R., Breitbart, Y., Weikum, G. Distributed File Organization with Scalable Cost/Performance. ACM-SIGMOD

Int. Conf. On Management of Data, 1994.

[U94] Ullman, J. New Frontiers in Database System Research. Future Tendencies in Computer Science, Control, and Applied

Mathematics. Lecture Notes in Computer Science 653, Springer-Verlag, 1994. A. Bensoussan, J. P. Verjus, ed. 87-101.

[W96] Wilkes, J. & al.. The HP AutoRAID hierarchical storage system. ACM-TCS, 14, 1, 1996.

Appendix

The curves below complete Fig. 4 and show the uncontrolled reliability P (k) of LHsa for various

practical values of p and of k and for a file scaling up to M = 32K buckets (sites). The scale of M-axis is

logarithmic. Larger p requires smaller k to keep the availability scalable. For p = 0.05 k = 8 suffices if the

availability P > T = 0.85 suffices. For a higher T, k = 4 should be chosen. For k > 4, P tends towards zero

and the availability is not scalable anymore. For smaller p, especially for p =0,001, more and more values

of k under analysis, which are k = 4,8,16,32,64,128 provide the scalability, at least to some practical

M < 32K. For instance, for p = 0.005, if T = 0.85 suffices, then k = 128 suffices up to M = 512 buckets. This

is already a large value by today’s needs.

The curves show also the utility of the reliability control. For instance, assume that T = 0.85 for

p = 0.01. Then it suffices to start the file with k = 64. If M exceeds M = 256, k should be halved. If M

exceeds further 8K, it should be halved again. The uncontrolled reliability requires k = 16. It leads thus to

up to four times more storage for smaller M’ and to a higher insert and split costs, as i progresses faster as

well.

0.000

0.200

0.400

0.600

0.800

1.000

4 16 64 25
6

10
24

20
48

81
92

32
76

8

p

P(4)

P(8)

P(16)

P(32)

P(64)

P(128)

p = 0.05

0.000

0.200

0.400

0.600

0.800

1.000

4 16 64 256 102
4

204
8

819
2

327
68

P(4)

P(8)

P(16)

P(32)

P(64)

P(128)

p = 0.01

NM
- 4

5 -
N M
pP

P

- 4

0.000

0.200

0.400

0.600

0.800

1.000

4 16 64 25
6

10
24

20
48

81
92

32
76

8

N

p

P(4)

P(8)

P(16)

P(32)

P(64)

P(128)

p = 0.005

Fig. 8 Uncontrolled reliability of LH*

M

P
6 -

sa files for various values o

0.930
0.940
0.950
0.960
0.970
0.980
0.990
1.000

4 16 64 25
6

10
24

20
48

81
92

32
76

8

p

P(4)

P(8)

P(16)

P(32)

P(64)

P(128)

p = 0.001

P

NM
f k and of p.

- 47 -

Glossary of terms and symbols

a – LH address for a key in an LH* file. Also called correct address.

a’ – client image of a (may be different from a)

b – bucket capacity

B – parity bit

c – record key (identifier), hashed by LH-functions

Cs – high-availability storage cost

Cb – bucket recovery cost

Cr
 – record recovery cost

f – grouping function

F – LH*sa file comprising the data file F0 and the parity files F1…FJ

F0 – LH*sa file with (user) data records

Fi – LH*sa i-th parity file

g – bucket (availability) group number

(g, r) – record with rank r (availability) group number

h – LH-function

i – bucket availability level, also called grouping level

î – LH* or LH*sa file level

i’ – client image of LH* or LH*sa file level

I – LH*sa (current) availability level, making the file I-available

IAM – image adjustment message

J – (current) number of parity files in an LH*sa file, making it J-available, or (J – 1)-available

k – maximal size of LH*sa bucket and record availability groups

LH – Linear Hashing

LH* – (Linear Hashing)*

LH*sa
 – LH* with s-availability

M – LH*sa number of data buckets (in F0 file)

- 48 -

n-availability – file capability to remain available despite unavailability of any n buckets

N – initial number of buckets in an LH or LH* file.

ñ – split pointer

n’ – client image of split pointer

p – probability that a bucket is unavailable (failed)

P – probability that (entire) file is available (file reliability)

r –record rank in a bucket

RAID –Redundant Arrays of Independent Disks (originally: of Inexpensive Disks)

s-availability – scalable availability

T – threshold for an LH*sa file with controlled reliability

