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Abstract 
LH*g is a high-availability variant of the LH* Scalable Distributed Data Structure. An LH*g file scales up with 

constant key search and insert performance, while surviving any single-site unavailability (failure). High-
availability is achieved through record grouping. A group is a logical structure of up to k records, where k is a file 
parameter. The group members always remain at different sites, regardless of moves due to splits while the file 
scales up. Every group contains a parity record allowing the reconstruction of an unavailable member. The basic 
schema may be generalized to support unavailability of any number of sites, at the expense of storage and 
messaging. Other known high-availability schemes are static, or require more storage, or provide worse search 
performance. 
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1. Introduction 
Multicomputers are collections of autonomous work stations or PCs over a network (network 

multicomputers), or of share-nothing processors with a local storage linked through a high-speed 
network or bus (switched multicomputers) [T95]. Many organizations have multicomputers with 
hundreds or thousands of nodes, whose distributed RAM reaches dozens of GBytes, and disks reach 
TBytes. Multicomputers offer best price-performance ratio and are potentially capable of computational 
performance superior to that of supercomputers [T95], [M96]. Research on multicomputers is 
increasingly popular [C94], [G96].  

Multicomputers need new data structures where scalability is vital. The Scalable Distributed Data 
Structures (SDDSs), [LNS93], are intended specifically for multicomputers; other avenues to scalability, 
especially for parallel supercomputers, are also being explored, [SPW90], [JK93]. An SDDS scales up 
over the distributed storage, in particular the RAM storage3. The first SDDS proposed and becoming 
well known, was LH* [LNS93], [LNS96], [K98], [R98]. Today, several SDDSs are known. They 
provide hash based, ordered, or multi-attribute distributed access orders of magnitude faster than to 
traditional files [D93], [KW94], [LNS94], [VBWY94], [KLR96], [LN96], [TZK96]. SDDS files may 
also be much larger than centralized files.  

It is well known that some applications require the high-availability (fault-tolerant) schemes, 
delivering data despite site failure. Many static high-availability schemes are known, some for 
multicomputers [T95a], [M96]… The LH*m schemes with record mirroring are first high-availability 
schemes specifically for scalable files [LN96a]. Another high-availability SDDS scheme, LH*S, stripes 
every record into k stripes (fragments) at different sites, [LN97]. An additional parity stripe is created 
per record and allows for the recovery of any single stripe.  

LH*g proposed below is also a high-availability SDDS. The high-availability is obtained through the 
new principle of record grouping. A record group with up to k members is a logical construct over LH* 
file, called primary in an LH*g schema. Groups are invisible to the user. They are formed dynamically 
from records inserted into different buckets (sites). Group members may move through splitting buckets 
while the file scales up. The scheme guarantees nevertheless that every member remains always in a 
different bucket. Every group is provided with a parity record. The parity records are stored in a separate 
parity file. One can always recover any single record from all the others in the group and from the parity 
record. A whole failed bucket is recovered in a hot spare.  

A failure-free search in an LH*g file costs no more than this in the LH* file. This includes the 
parallel search. The storage overhead for parity records for an LH*g file is about 1/k. Also, the fault 
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tolerance can be added, or enhanced, without reorganizing the existing file. The conjunction of all these 
factors, and of scalability, is unique advantage of LH*g.   

The basic LH*g schema generalizes to schemes recovering from many multiple bucket failures, or 
guaranteeing the recovery from any n-bucket failure, for any given n > 1. Greater n requires higher the 
storage overhead and recovery costs 

The next section presents LH*g. Section 3 discusses performance. Section 4 addresses design 
variations optimizing selected features. Section 5 positions LH*g within the related work. Section 6 
contains the conclusions. 

2. LH*g schema 
2.1 LH* schema 

We first recall the general LH* scheme. The file is stored at server computers (nodes), and is used by 
applications at client nodes. Clients are autonomous and can be mobile. The file consists of records 
(tuples, objects...) identified by (primary) keys, or OIDs, usually noted c in what follows. We denote 
record R with key c as R or R(c) or simply c if its non-key part is unimportant in the context. A client can 
(key) search for R given c, or may insert R, or may delete R given c. Records are stored in buckets with 
a capacity of b records, b >> 1. We number the buckets of M-bucket file as 0,1,2…M-1. There is one 
bucket per server, although different files may share servers.  

The physical (network) addresses of the servers are in allocation tables. These static or dynamic 
tables are at the clients and the servers. Addresses of new buckets get propagated according to rules we 
recall later on. 

An LH* file scales up through splits. The splitting and addressing rules follow those of linear 
hashing (LH) [L80]. Every split moves about half of the records in a bucket into a new one. The splits 
are done in the deterministic order 0…N-1; 0,1…2N -1; 0,1…2j N -1,0…; j = 0,1… The value of N, 
usually, N = 1, is the initial number of buckets. 

The splits are triggered by bucket overflows. A bucket that overflows reports to a dedicated node 
called the coordinator of the LH* file. The coordinator applies a load control policy to find whether it 
should trigger a split. The split pointer with value usually denoted n indicates the next bucket to split. 
This bucket is usually different from that reporting the overflow. 

Every LH* bucket contains in its header a bucket level j. Every initial bucket gets j = 0. Access to 
buckets is calculated through a linear hashing function H that is dynamically defined from a family of 
hash functions hl : c → c mod 2l N ; l = 0,1… Initially H = h0. Then, every split replaces hj used at bucket 
n with hj + 1. The latter assigns new address n + 2 j N to about half of the records in bucket n. The 
coordinator appends to the file the new bucket n + 2 j N and moves there those records. The new bucket 
gets level j + 1. 

At any time, for some i that we call file level ; i = 0,1… ; all the buckets have level j = i, or some 
buckets have j = i and some j = i + 1. The couple (n, i) constitutes the file-state data or the file-state in 
short. The file-state is maintained at the coordinator's node. It defines the correct address a = H(c) of 
key c to which c should be hashed and where R should be. The following LH addressing algorithm, 
computes a: 

(A1)   a ← hi (c) ;  
  if a < n then a ← hi + 1 (c) ; 
To avoid a hot spot, LH* clients do not have access the file-state. Instead, each client has its own 

image of the file-state denoted (n', i'), initially set to i' = n' = 0. These values may vary among clients 
and may differ from the actual n and i. The client uses its image and (A1) to calculate the address a' = 
H (n', i'). It then sends a request to server a'.  

It may happen that a' ≠ a if the image is incorrect. Hence, any bucket m receiving a request first tests 
whether m = a. It can be proven that m = a iff m = hj (c). If the test fails, the server forwards the request 
to another server. For the test and forwarding, each LH* servers uses the following algorithm.  

(A2)  a' ← hj (c) ; 
   if a' = a then accept c ; 
   a'' ← hj - 1 (c) ; 
   if a'' > a and a'' < a' then a' ← a'' ;  
  forward c to bucket a' ; 
As for any SDDS, the correct server receiving a forwarded message sends to the client an Image 

Adjustment Message (IAM). For LH*, an IAM contains the j value of server a'. It may also contain its 
physical address, as well as physical addresses of some buckets preceding bucket a'. The value of n is 
not in an IAM, as unknown to the server. The client executes then the IA-Algorithm, : 



- 3 - 

 (A3)   if   j  >  i'     then  i' ← j - 1,   n' ← a +1 ;  
  if  n'  ≥  2i'     then  n' = 0,   i' ←  i' +1 ; 
 
As the result of (A3), both i' and n' are closer to the actual values and the same addressing error 

cannot happen twice.  
(A3) makes LH*-images converge rapidly. Usually, O (log M ) IAMs to a new client (the worst case 

for image accuracy) suffice to eliminate the forwarding. In practice, the average key insert cost is one 
message, and key search cost is two messages, regardless of the file size. A major property of (A2) is 
also that it delivers every request to the correct address in at most two hops. The worst access 
performance of an insert into or search in an LH* file is thus four messages, regardless of how much the 
file scales up. 

These figures translate to access times depending on the network and CPU speeds. Experiments with 
the LH* RAM files on a Windows NT multicomputer using 100 Mbit/s Ethernet, show the key search 
time of 200 µs [B96], close to the theoretical value of 186 µs in [LNS94]. On a Gbit/s network, key 
search times should be in general under 100 µs, the CPU speed then becomes a bottleneck. These times 
are orders of magnitude faster than for disk based files. Note that the distributed RAM of a modern 
multicomputer can easily hold many GB files that traditionally had to be on disks. Arbitrarily large disk-
based LH* files can be created as well. 

Another major advantage of LH* files over the centralized ones are the scan searches, or scans in 
short, where one searches in parallel every bucket for records with selected non-key values. The client 
ships a scan using a multicast message whenever the multicast service is available. Otherwise, it uses 
unicast messages. The client's image may however not show all the buckets. Every bucket should 
nevertheless get the scan and only once. An efficient algorithm for this purpose is in [LNS96].  

Once a scan is sent, the client should determine when all replies arrived. A probabilistic termination 
(protocol) consists of setting a time-out, after the reception of every new record. Only servers with 
selected records reply. Alternatively, the client sets up for the deterministic termination, checking for all 
the selected records. For LH*, every buckets replies then with at least its address m and its level jm. The 
client terminates when it has received, in any order, m = 0 and m = 1…and m = 2i + n where i = min (jm), 
and n = min (m) with jm = i.  

Variants of LH* differ with respect to the load control, details of splitting process and the interior 
bucket structure. In-bucket indexes can be created to speed-up scans through access paths to non-key 
data. There are LH* schemes without coordinator, as well the already mentioned high-availability 
variants. The diversification provides best performance for specific applications.  

2.2 LH*g file structure 
An LH*g file F is a pair of LH* files called primary and parity files F1 and F2 with a single 

coordinator managing the file-state for both files at bucket 0 of F1. File F1 has initially k > 1 buckets. 
Every bucket m in F1, regardless of how much F1 scales, belongs logically to some bucket group g, with 
k buckets and g = Int (m /k), Fig. 1a. Records in F1 are primary records. A primary record c contains the 
original record c provided by the application to the LH*g client and record group number g introduced 
below. 

Every bucket m in F1 has an insert counter r with values 0,1,2... The primary record c is inserted into 
bucket m when the original record c comes for storage within bucket m. A record inserted into bucket 
gets associated with next value of r. A record that moves into a new bucket through a split, keeps its 
original r value. 

Every record c in F1 belongs to a logical record group g = (g, r). The value of g is assigned to record 
c when it is inserted. It remains invariant while the file scales and record c perhaps moves. The value g is 
the bucket group number of the server where c is inserted. This bucket also assigns the value r.  The 
server adds g to the original record c, Fig. 1b.  

For each record group g, hence for all the records in F1 currently bearing the record group number g, 
a parity record exists in F2. Its key is g, and its non-key data are shown in Fig. 1b. Parity buckets are at 
servers different from those of primary buckets. Parity record g contains the keys c1…cl ; l ≤ k ; of all the 
records in group g. It also contains the parity bits computed from the non-key data of all the records in g. 
There is one parity bit pi computed for every i-th bits bi from each non-key part; i = 0,1… The even 
parity is used in what follows which means that pi is XOR of bi's.  If non-key data in primary records in 
g have different lengths, the shorter ones are assumed padded with bi = 0. The content of parity record g 
suffices to recover any record within group g, provided that all other records in group g are available. 

Fig. 1a shows how records inserted into buckets forming bucket groups of size k = 3 are mapped into 
parity records, represented with small circles. The number of primary records in any group g is always at 
most k, and records in g always remain each in a different bucket. A bucket group usually maps to 
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several parity records, shown as circles. Bucket group 0 with buckets 0, 1, 2, has 5 parity records, hence 
5 record groups, while bucket group 1 has 4 record groups and parity records. The dashed arcs in Fig. 1a 
show primary records that splits move. The dashed straight lines illustrate that every such record keeps 
its original record group number g. Splitting a primary bucket in an LH*g file does not require therefore 
to update the parity records. This property is unique to LH*g at present and has obvious advantages. 

It appears from the figure that every member of a record group is inserted into a different bucket.  It 
also appears that members that move continue to remain in separate buckets. For instance, a record in 
bucket 0 can move into bucket 3, but only records from bucket 1 may move into bucket 4. Later on, 
other records from bucket 0 may move into bucket 6, but only records from bucket 1 may reach bucket 
7, etc. This property is essential, and Proposition 1 will prove it formally. The parity record g allows 
indeed the recovery of a single member of g only. It would not suffice if two members of g could ever 
end up in the same lost bucket. 

2.3 Building the LH*g file 
To store a record R in an LH*g file, the application provides R to an LH*g client. The client sends R 

to the primary bucket whose address is computed from c according to the LH* principles for F1. This 
bucket is the correct bucket m for R, or R reaches bucket m after some forwarding. The server of 
bucket m sets then r to r := r + 1, and adds to R the record group key g = (g, r). The resulting primary 
record R is finally inserted into bucket m.  

Bucket m then sends R into F2, acting as an LH* client and using g as the key. After perhaps some 
forwarding, R reaches the correct parity bucket m'. If there is no parity record R' (g) in bucket m', then R' 
is created from R. R' is constituted from g, c and from the parity bits pi = bi. If R' is found, then existing 
parity bits are updated, through bi XOR pi for every bi in R, including perhaps the padding.   

 

Fig. 1 (a) Mapping of primary records in F1 into parity records in F2, 
(b) Primary and parity record structures 

When a split of F1 occurs, primary records move with group keys unchanged, as it was discussed. 
Fig. 2 illustrates more in depth the scalability of the file from Fig. 1. The primary keys c are in italics, 
the group keys (g, r) are in parentheses, and non-key data are shown as '...' or as 2-bit strings for the 
records in group (0, 1). The example bucket capacities are b = 4 for the primary file, and b' = 6 for the 
parity file. Fig. 2a shows the content of both files just before the first split, of bucket 0. The arrows 
symbolize the split pointers n, n = 0 for each file. The split is triggered by the insert of the record with 
key c = 3. After the split, the split pointer n1 of F1 moves to n1 = 1. Record 3 gets g = 0 and r = 5, despite 
being immediately moved by the split to bucket 3. File F2 in Fig. 2a contains parity records for five 
record groups with g = 0 and r = 1..5. Group (0,1) has three members with primary keys ci=12, 16, 59. 
The parity bits for these records are calculated using even parity. Group (0,2) has 3 members, group 
(0,3) has 2 members. The remaining groups have one member each. 

Fig. 2b shows the situation after the split of primary bucket 0 and three more inserts. The split has 
created bucket 3, and has set its insert counter r to r := 0. The split also moved records with keys c = 3, 
15, 21 to bucket 3. The counter r of bucket 0 remains unaffected, i.e. with value r = 5. The moved 

non-key datagc parity bitsclc1g
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210 543 876
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records keep their original record group numbers g with bucket group number g = 0, although bucket 3 
has g = 1. In consequence, the parity records did not to be updated and remain the same.  

The inserts that occurred after the split were these of primary records 38, 23 and 33. Record 38 went 
to primary bucket 2, got r = 3, and triggered an update to the already existing parity record (0,3). Key 38 
entered parity record (0,3), and the parity bits in the record (not shown) were adjusted. Record 23 was 
also inserted to bucket 2, got r = 4, and caused the update of parity record (0,4). Finally, record 33 was 
inserted to bucket 3. If it had been inserted before the split, it would have gone to bucket 0, and gotten 
g = 0. Now, it got g = 1 as it will be the case of any further inserts to bucket 3. It also got r = 1, since the 
records already in bucket 3 were only those moved from bucket 0. This started a new record group (1,1) 
and the new parity record (1, 1). 

Finally, in Fig. 2c record 42 is inserted to bucket 0. It got r = 6, although only two records remained 
in bucket 0 after the split. It also started a new record group (0,6) and caused the creation of the parity 
record (0,6). As bucket 0 of F2 was already full, this caused its split. Note that the split pointer n2 
remained n2 = 0 according to the LH principles, as next split will create bucket 2 from bucket 0. The 
current split moved all parity records with odd r moved to bucket 1. The buckets of F1 that are clients to 
F2 will be notified of this change as usual for an LH* file, i.e., through the IAMs when they send data 
incorrectly to bucket 0 of F2. 
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Fig. 2 Evolution of an LH*g file before 1st split (a), and after a few more inserts, (b), (c). 

 
Fig. 1 and Fig 2 illustrate the general behavior of LH*g files that is as follows: 

Proposition 1. Regardless of how much an LH*g file scales up, and its primary records move through 
the buckets of F1: 
1. No record group ever gets more than k members. 
2. Any two records in a record group are always mapped to separate buckets. 

Proof. 1. A record inserted into bucket m gets the record group key (gm, rm) where gm is the bucket 
group number of bucket m and rm is some value of the counter r of bucket m.  The counter r of every 
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new bucket is initialized to r = 0 and is incremented by one for every insert. It is unaffected by any split 
of the bucket. Hence, for any rm, there can be only one record inserted to bucket m with record group 
(gm , rm), although the bucket may contain other records  with r = rm, but with g ≠ gm, moved there by 
splits. On the other hand, there can be obviously up to k buckets within any bucket group. Hence, for any 
gm  and any rm, there can be up to k records inserted into buckets in bucket group gm  getting the record 
group key (gm , rm). Finally, splits do not change record group keys of the records that move. So, there 
can be at most k records anywhere in the file with any record group key (gm , rm). 

2. The principles of LH* imply that any two records inserted to two different buckets m and m' such 
that bucket m' was not created by a split of bucket m or vice versa, remain in different buckets regardless 
of moves because of splits. In addition, it follows from the proof of (1) that in an LH*g file, any two 
primary records c and c' , c ≠ c’, within the same record group (g, r), are always inserted to different 
buckets, let them be n and n'. Both properties prove (2) for any n and n' such that bucket n' is not created 
by a split of bucket n or vice versa. It remains to be proven that otherwise, assuming n < n', a record 
moved from bucket n by the split creating bucket n' must have the record group number different from 
that of any record that might be inserted to bucket n'. Assuming that the record that moves has number 
(gn , r) for some r and the record inserted into bucket n' has number (gn’ , r') for some r', it suffices for 
(2) to hold that gn'  > gn . This is indeed the case, since if j is the level of bucket n when it splits, then the 
principles of LH* imply that n' = n + 2j k. Hence: 

gn'  = Int (n'/k) = Int ((n + 2j  k) / k )  ≥  Int ((n +  k) / k ) = Int (n / k  + 1) > Int (n / k ) = gn . 

2.4 High-availability of LH*g files 
We call high-availability the continuous capability to deliver stored records despite unavailability 

(inaccessibility, failure, fault, loss…) of a part of the file storage. For LH*g, we consider the 
unavailability of data in one or more buckets. An unavailability of a part of a bucket is considered as the 
unavailability of the entire bucket. A file supporting the unavailability of up to any n buckets will be said 
to provide n-availability. Other facets of availability management, e.g., concerning the recovery of the 
code running at servers and clients, as, are beyond the scope of the LH*g design. See [T95a] for instance 
for the discussion of related issues. 

It was outlined in Section 2.1 that the LH* scheme allows the file to scale up to any size without 
access and storage performance deterioration. However, the availability of the file deteriorates 
progressively. Consider indeed that the probability p that a bucket is available is, e.g., p = 99 %. The 
probability P that the whole file F with M buckets is available is P = pM, under the usual assumption that 
bucket failures are mutually independent. Even if F scales up moderately, let us say to 100 buckets, then 
P falls to 37 %, i.e., most of the time some data in F are not available. For M = 1,000, it falls to 
P = 0.00004. Both figures prohibit many applications, as those scanning the file. 

The basic LH*g scheme provides 1-availability through the rules that follows. Variants for n-
availability are overviewed in Section 4.5. 

The unavailability of bucket m, at some physical address s, is detected by a client or a server 
attempting to access bucket m. It can also be detected by the coordinator, while requesting a split. 
Finally, it can be self-detected by bucket m, when it restarts itself from an unavailability during which no 
access to bucket m was requested. The client or the server notifies the coordinator. The coordinator 
recovers bucket m at some spare server at address s' ≠ s. The address s' becomes the new physical 
address for bucket m. If the unavailability occurs during a key search, the coordinator may also attempt 
to recover only the requested record to complete the search faster. It either delivers then the searched 
record or determines that no such record existed in the file.  

The location change of bucket m is sent to a client only when an IAM is issued. It may happen that 
an unrelated forwarding occurs and its IAM brings to the client the address s', among other physical 
addresses [LNS96]. It may also happen that the client is unaware of the new address when it attempts to 
access bucket m. It sends then the query to address s. If server s is still unavailable, the client resends the 
message to the coordinator. If server s is up it is either a new hot spare or it carries a new bucket. In both 
cases, the query is forwarded to address s', as discussed in Section 2.8. The client is finally made aware 
of the displacement of bucket m by an IAM sent by the server s’. 

2.5 Bucket recovery 
The bucket to recover may be a primary bucket, or a parity bucket.  The recovery of primary 

bucket 0 includes the file-state data n and i of both files. Self-detected recovery triggers specific actions. 
The following sections deal with all these cases. We omit easy formal proofs of correctness of (A4) and 
of (A5) that are in [LR97].  
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2.5.1 Primary bucket recovery 
The coordinator needs to recover every record in the unavailable bucket m and the value of counter r. 

It uses for this purpose Algorithm (A4). Through Step 1 of (A4), the coordinator finds all the parity 
records with keys of records that ever were inserted into bucket m, i.e., were there when it failed, or 
moved away earlier. Step 2 and Step 4 recover the value of counter r. Step 3 finds for every record c that 
was in bucket m all the records that were in the record group of record c at the time of the failure. It then 
reconstructs every record c in the new bucket m. Step 2 followed by Step 3 are executed in parallel at 
every bucket where there was a parity record with a key of a record in bucket m.  

(A4)  Primary bucket recovery 
1. The coordinator issues scan Q1 of file F2 with deterministic termination. Given the file state (n, i) of 

F1 and the hot spare s, Q1 requests from every bucket in F2: 
2. The count  of parity records with g = Int (m/k), and with key c such that hl (c) = m for some l ≤ i + 1. 
3. If some bucket m' has in particular a parity record g such that for some c in record g, m is the LH* 

address for c in F1 according to (A1), then bucket m' should: 
-      issue the key search in F1 for every record c' whose key c' is in record g and is not c. 
- reconstruct the (missing) record c using the parity bits in record g  
- send record c to server s. 
4. The coordinator sums the counts received in Step 1 and sends the final count r' to server s, as well 

as m and jm (determined trivially). Counter r in new bucket m is set to r’, its number to m, and level to jm. 

2.5.2 Parity bucket recovery 
This is done through Algorithm (A5) where the unavailable bucket m is now a parity bucket. Step 1 

finds all the primary records whose parity record was in bucket m.  Step 2 reconstructs bucket m. 

 (A5)  Parity bucket recovery 
1. The coordinator chooses a hot spare as new recipient of bucket m, and instructs it to set up 

scan Q2 of file F1, with deterministic termination. Given the split pointer n and file level i of F2, Q2 requests 
every record with record group number g whose address is m in F2. 

2. For every set of records with the same g, the spare reconstructs the parity record.  

2.5.3 File-state recovery 
The file-state data n and i for files F1 and F2 have to be recovered into the new primary bucket 0. 

This is done through Algorithm (A6). It precedes the recovery of primary bucket 0 through Algorithm 
(A4) that requires the file-state data. Step 1 retrieves bucket numbers and the corresponding levels from 
the available buckets. Step 2 reconstructs n and i for F1 and F2, under the condition that the split pointer 
is among the available buckets. Otherwise, the file-state is found through Step 3.  

 (A6) LH*g file-state recovery 
Store in the hot spare n and i computed as follows: 
1. A scan Q3 with deterministic termination is sent to all available buckets of F1 and of F2. Q3 requests 

address m and bucket level jm from each bucket m.  
2. If there is some m received such that jm - 1 = jm + 1, then assign n to n := m and i to i := jm.  
3. If no such m is found assign M to the largest m retrieved and i to i := j1. If M = k 2 j1 - 1, then assign 

n := 0; otherwise assign n := 1. 

Proof. Q3 will always terminate, since primary bucket 0 is the only one unavailable. For each file, if 
n > 0, then there must be some bucket m such that  

 jm - 1 = jm + 1. 
In this case n = m and i = jm.  

If n > 1, then Q3 must retrieve the m respecting the above condition. This proves Step 2. Otherwise, 
one can have n = 0 or n = 1. Observe that for every LH* file, the largest bucket m in the file is bucket M 
such that : 

(E1)  M = n + k 2i -1. 
Again, M must be among the values of m received. Therefore, one can determine the value of n using 
(E1). It follows from the LH* scheme that in case of n = 0, all buckets have the same level; hence one 
can set i = j1. Also in case of n = 1, one still has i = j1. 

2.5.4 Self-detected recovery 
Bucket m can self-detect its unavailability through a local test determining data corruption that 

cannot be recovered locally. It can also detect that it was restarted with the correct data from some 
temporary unavailability. In both cases, bucket m contacts the coordinator before serving any file 
manipulation. In the first case, it requests the bucket recovery with new bucket m at its own address. In 
the second case, it asks the coordinator whether it is still bucket m or whether its unavailability was 
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reported in the meantime and the coordinator has recreated bucket m elsewhere. If it was recreated, then 
the coordinator declares it a hot spare. It informs the bucket accordingly, and sends to it the address of 
the new bucket m The hot spare m needs the address of its replacement to update its physical node 
allocation table. 

2.6 Record recovery 
The record recovery is performed using Algorithm (A7) when a key search requests a record c in an 

unavailable bucket m. It provides record c to the client or determines that the search would be 
unsuccessful. It does not restore the record in the file. Its sole purpose is to deliver record c during the 
degraded mode, while the recovery of bucket m is in progress. The latter has to recover b >> 1 records 
and to create a new bucket. It takes usually much longer than a record recovery. 

Step 1 retrieves the parity record from F2. In Step 2, if no parity record is found, there was no record 
c in the file and the key search terminates unsuccessfully. In Step 3, record c is reconstructed if it was 
the only record in its group. Step 4 addresses the case of more records in the group. The easy proof of 
correctness of the algorithm is in [LR97]. 

Algorithm (A7) Record recovery 
1. The coordinator sends scan Q3 with deterministic termination to F2, requesting parity record g 

containing c. 
2. If the scan is unsuccessful, the search for c is terminated unsuccessfully.  
3.  If c is the only key in record g, then record c is reconstructed from the parity bits in record g only.  
4. Otherwise, for every other key c’ in record g, the coordinator issues a key search for record c’.  

Then, record c is reconstructed from all the received records c’ and from the parity bits in record g. 

2.7  Multiple bucket unavailability 
 Algorithms (A4) - (A7) provide the 1-availability only. The unavailability of two or more buckets in 

the same bucket group makes indeed the recovery of a record with another record group member also in 
an unavailable bucket impossible. There are however good cases where some or even all records in  
failed buckets are recoverable. A primary record sole in record group (g, r) is recoverable even if all k 
buckets in bucket group g fail. A record group (g, r1) with less than k members may have a single 
member in all the failed buckets of group g, unlike perhaps, unfortunately, another record group (g, r2). 
For instance, in Fig 2b, if buckets 2 and 3 fail, the records in groups (0,1), (0,2), (0,5) and (1,1) are 
recoverable, but not the others.  

A record of group (g, r) in a failed bucket within group g may be also not recoverable in presence of 
multiple failures even if all these failures are outside group g. Splits could indeed move a member of its 
record group to an unavailable bucket.  

Algorithms (A4) to (A7) are designed so that a scan, key search, or a request to the coordinator 
terminate abnormally if they encounter an unavailable bucket. A scan with deterministic termination 
becomes then unable to get the reply from some buckets it addresses. A key search also blocks on the 
absence of any reply. On the other hand, if these operations terminate, they provide correct recovery 
even if there are multiple failures. Hence, multiple failures in an LH*g file cannot lead these algorithms 
to a silent loss of data.  

Further discussion of multiple failures is in Section 4.5. 

2.8 LH*g file manipulations 
An application manipulates an LH*g file as an LH* file. Internally, each manipulation is enhanced 

for the unavailability management. For an insert of record c, as described in Section 2.3, this includes 
the creation of the record group number g, the message with the primary record c to parity bucket g and 
the creation or update of a parity record g.  For an update of non-key data D of a record within record 
group g to new value D', it includes the message to parity bucket g with D'  XOR D to update through 
XOR the parity bits of record g. Every manipulation includes procedures for access to an unavailable 
bucket. As the general rule, the coordinator handles the manipulations following the detection of an 
unavailable bucket. In case of an insert, the client sends the new record c to the coordinator. The 
coordinator tests whether c already exists in the parity file. If so, it informs the client that the insert 
would be erroneous, assuming that no duplicates are allowed. If not so, it informs the client that the 
insert was successful and stores record c.  In both cases, the client terminates the insert for the 
application. The coordinator performs asynchronously the appropriate recovery, and completes the insert 
of record c. 

As it was outlined in Section 2.4, an LH*g client may send a key search or insert to a former server 
of a displaced bucket. To resolve the addressing given this constraint, the client always includes in the 
message the intended bucket number m.  The rule applies to clients of F1, and to servers of F1 acting as 
clients of F2.  
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Assume that the client sends the message to server s. If s is unavailable, the client resends the 
message to the coordinator, as it was discussed in Section 2.4. Otherwise, server s either (i) carries 
bucket m, or (ii) carries another bucket or (iii) has become a hot spare. In case (i) and (ii), server s 
matches m against the bucket number that it carries. If it succeeds, the request is processed as usual 
through Algorithm (A2). If the matching fails, and in case (iii), the server resends the query to the 
coordinator which delivers it. It sends the IAM to the client with the new address of bucket m in cases 
(ii) and (iii). 

A query can also encounter the unavailability of a forwarding bucket. The sender of any such query, 
a client or a server, resends the query to the coordinator. The coordinator delivers the query to its correct 
bucket, bypassing the forwarding through the use of the file-state data and of Algorithm (A1). It always 
succeeds under the single bucket unavailability assumption. 

Under these rules, an LH*g key search for a record in an available bucket does not generate access to 
F2. If each forwarding bucket is also available, and the correct bucket is not displaced, the search 
performs as in the LH* file. Scans translate to parallel searches in F1. If all primary buckets are 
available, scans perform also as in the LH* file. 

A request for deletion of record c from an LH*g file causes the logical or physical deletion of a 
primary record and of its key from the parity record. The corresponding parity record is updated, if it 
contains other keys. Otherwise, it is deleted.  

A deletion of a record in the record group (g, r1) decrements the size of the record group and frees 
value r1 of counter r.  This increases the relative overhead of the storage for the parity record. A 
logically deleted record consumes also space at the bucket. Nevertheless, it is well known that in 
scalable files, and modern databases in general, deletions are rare as compared to inserts and updates. 
Cheap storage creates tendency to store all the historical data. The deterioration of the overall storage 
efficiency of LH*g due to deletions should thus be usually negligible. If it is not so, one may recollect 
the storage of the deleted records. Section 4.3 outlines such a variant.  

3. Performance 
3.1 Storage 

Additional storage for F2 is about 1/k of that for F1, provided that the LH* hash functions hi hash 
uniformly (as assumed generally below). The additional storage for F1 due to g values in each record is 
negligible in practice. 

The storage efficiency for an LH* file, as measured by the average load factor, is in practice 70 % if 
there is no load control, and up to 85 %, with the load control. For the practical values of k we will 
determine later on, e.g., k ≥ 10, this leads to good average load factor of an LH*g file of about              
64 - 77 %.  

3.2 Messaging costs in absence of failures 
We evaluate the LH*g access performance as usual for an SDDS, i.e., basically through the required 

number of messages. This measure is network-speed invariant. If a manipulation does not detect a 
failure, and there was no recovery, search and scan performance is unaffected by the high-availability 
features of LH*g.  Since F1 is an LH* file, and the g value in each record does not need to be sent to the 
client, the performance is simply that of LH* files, as discussed in Section 2.1. If there was a recovery, 
displaced buckets may induce additional addressing errors, leading to two or three more messages per 
search or insert, including the IAM. Displaced buckets may also increase the scan cost by a few 
messages. As failures are rare, the impact of all this on the access performance should be negligible. 

An insert to an LH*g file requires typically one more message than for LH*, to update or create the 
corresponding parity record. This brings the insert cost to typically two messages. In the worst case, 
obviously almost impossible in practice, it can take up to fourteen messages, assuming two hops per file, 
and the displacement of all the buckets involved.  

Assuming the bucket capacity in F1 and F2 equal, the number of splits to create the LH*g file and the 
corresponding split cost increase typically by the factor 1/k.  

3.3 Maintainability 
We recall that the maintainability is a general measure of the service restoration cost [L85]. We 

evaluate the messaging costs, to get a network invariant formulae. Below, b denotes bucket capacity in 
F1, and in F2, again considered equal. M is the number of buckets in F1, hence, there are about M / k 
buckets in F2. Finally, we assume no load control, and therefore we assume 0.7 as the average load 
factor of an LH* file [LNS94]. 

The record recovery Algorithm  (A7), requires first one message from the client to the coordinator, 
signaling the unavailability. Then, there is the scan of F2 searching for record c. There are about M / k 
buckets in F2. A successful search costs then (M / k) +1 messages assuming that the scan is sent using a 
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multicast. An unsuccessful search costs (M / k) + 2 messages, including the message to the client 
reporting the negative result. 

A successful search for P makes the coordinator sending to F1 between 1 and k, usually k, key search 
messages for the records whose keys are in the parity record. The coordinator sends finally the 
reconstructed record to the client. Hence, the typical total record reconstruction cost is M / k + 2k + 2 
messages. 

 In case of a primary bucket recovery using Algorithm (A4), the spare creation results in about 
0.7 b (2k - 1) + M / k messages. First, Q3 is sent using a multicast. Then, all M / k buckets of F2 should 
reply to the coordinator. There are about 0.7b lost records, hence, the same number of parity records. 
Each bucket with a parity record retrieves then for every record all other members of the group,  up to 
(k - 1), according to Proposition 1. Note that this phase is done in parallel at the corresponding buckets. 
Finally, each bucket sends all the reconstructed records to the spare. This takes at most 0.7b messages, if 
the reconstructed records are all at different nodes of F2. 

If the failed bucket is a parity bucket, then there is first a multicast message to all buckets in F1. 
Then, there are M messages with the selected records or an acknowledgment to provide the deterministic 
termination. One performs then the reconstruction and sends the records to the spare in one message. 
This brings the total to 2 + M messages. 

Finally if the file-state has become unavailable, to recover it using Algorithm (A6) costs M (1+ 1 / k) 
messages. 

4. Design variations 
4.1 Group size and record recovery 

The larger k is, the smaller is the storage for F, relatively to F1. The downside is that the 
maintainability costs increase. Nevertheless, as the search performance is independent of k, unlike in 
striping schemes, larger values of k appear practical, towards k ≥ 10. Generally, the higher is the file 
availability4, the larger should k be. 

Larger bucket capacity b' for F2 leads to more messaging when an F2 bucket is recovered in the hot 
spare. In contrast it decreases the number of splits to create F2, hence is decreases the corresponding 
messaging. One practical choice is simply b' = b.  

The deterministic search Q3 for parity record P, in Algorithm (A7), can be replaced by a time-out 
search, followed by a deterministic search in the case of no reply. A successful search cost decreases 
then substantially to 2 messages only, from M / 2k on the average. An unsuccessful search cost becomes 
M / k + 1, instead of M / k, hence remains practically the same. 

To recover record c during the degraded mode, Algorithm (A7) uses a scan on parity buckets, as g of 
record c is unknown. It follows the scan by key searches for primary records required for the 
reconstruction, using the keys found in the parity record. There are (k - 1) keys at most, hence the latter 
time is O (k -1)  at worst and is constant regardless of the file growth. The scan time is O (b'), also 
independent of the file size. It should dominate the recovery time as b' >> k.  It should be usually 
acceptable, as it is the typical time of any other scan that applications may request. The degraded mode 
in the LH*g file is also short lasting, as the bucket recovery is immediately initiated at the spare. If the 
record recovery time is nevertheless an even more stringent concern, a secondary index internal to each 
parity bucket can be created, as in general for LH* files. The LH index (c, g) shortens then the bucket 
search time drastically, to about the in-bucket key search time. Key size is usually negligible with 
respect to the record size, hence the bucket storage overhead should be inconsequential.  

4.2 Record group structure 
The high-availability can to be added to an LH* file after it was created. This file becomes then file 

F1. One may wish then avoid adding g to each original record. This can be achieved. One should create 
instead a dedicated link file, let it be F3. File F3 should have records (c, g), containing for each key c its 
g. If needed, its entire content can be recovered from F2. Note that the use of link files makes also 
cheaper the tuning of F2, e.g., choice of a larger k if the bucket availability appears higher than expected. 
Indeed, records in F1 do not need to be updated. A further advantage with the link file is that the records 
in F2 can have fixed length. The disadvantage is more messages to maintain the link file, and the 
additional storage for this file. 

4.3 Deletions 
 If many deletions occur, then the LH*g deletion rules can be enhanced to keep the storage overhead 

from deteriorating in the long run. One has to physically remove then the logically deleted records. Also, 

                                                           
4As measured for instance by the already discussed probability P that the entire file is available. 
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the counter value used by the deleted record should be reused. Otherwise, the average record group size 
decreases.  

Logically deleted records can be removed locally in primary buckets. The implementation dependent 
details are beyond the scope of LH*g design. The counter values can be reused as follows. Assume that 
the record c with group number (g1, r1) is deleted in bucket m1. First, one (trivially) calculates from g1 
the address m2 where c was originally inserted. If m2 ≠ m1, then the message with r2 is sent to bucket m2. 
Next, in both cases, if bucket m2 is not empty, then the record c' with the largest value of r, let it be r2, 
gets r1 instead. The record counter in bucket m2 is set back by one. Assuming g2 the group number of 
bucket m2, the parity records (g2, r2) and (g1, r1) are finally updated. That is key c' is removed from 
record  (g2, r2), and record deleted if it was the last key, or its parity bits are refreshed to include record 
c'.  Likewise, key c' is added to record (g1, r1), and its parity bits are updated accordingly. The whole 
process costs thus 3 additional messages per deletion at worst. This may appear a fairly cheap price for 
the improved storage use. 

If deletions heavily decrease the number of records, one may also shrink the file. This can be done 
through the inverse operation to splitting, usually called bucket merge for a dynamic data structure. In 
the case of LH*g, one specific property is that the parity record of a record that moves backwards 
through the merging primary buckets, may remain unaffected for any such record that was not in the 
bucket it was originally inserted. The move of the other records in contrast require the change to their 
record group numbers, to prevent the average size of the record group from decreasing, and related 
updates to the parity records. Finally, as decreasing number of primary records triggers the decrease to 
the number of parity records, bucket merge should be applied to the parity buckets as well. Note that the 
merge of parity buckets occurs asynchronously to that of the primary buckets. 

4.4 Overall availability 

The discussion in Section 2.7 showed that an LH*g file may not support a multiple unavailability. 
The worst case occurs when all the n unavailable buckets are in the same bucket group. About 0.7nb 
records are then lost. 

It is possible to increase the availability P of an LH*g file by making recoverable every n-bucket 
failure of buckets in a different group. These are the modifications to the basic schema. 

1. When bucket n splits, a new group key g = (g, r) is attributed to every record R that moves to the 
new bucket M. The value of g is set to Int (M / k). The r values are set successively in the order of moves 
to bucket M, i.e., the i-th R gets r = i. Thus, in difference to the basic algorithm, records moved to a new 
bucket always get new record group numbers.  

2. For every R, a new record group g is created in F2, including the parity bits. The key of R is also 
removed from the former group of R, and the parity bits are adjusted. 

3. The counter r of the split bucket is adjusted to the highest value r in the record groups remaining 
in the bucket. A new insert to bucket n either reuses any value of counter r left free by records that 
moved, or gets new successive values of r. 

We call the resulting schema LH*g1. The new property of LH*g1 is that a record with bucket group 
number g can be only in a bucket among those forming g. Hence, any n-bucket unavailability with all n 
buckets in different groups, is recoverable. The worst case remains the same for LH*g and LH*g1 which 
are failures of buckets in the same group. Hence, the availability of an LH*g1 file is strictly higher than 
that of the LH*g file. The price tag with respect to LH*g are 3 messages to F2 buckets per record moved, 
i.e., about 1.5 b additional messages per F1 split on the average. 

LH*g1 has other interesting properties. First, it is no longer necessary to store the bucket group keys 
in records of F1. Also, the bucket reconstruction algorithms may become more efficient. All the primary 
records needed for the reconstruction are indeed in the same bucket group. One can thus apply bulk 
(stream) transfers to bring entirely the corresponding (k - 1) buckets to the hot spare. Next, there is no 
need to compute the lost value of r using a scan of F2, unlike for LH*g in Algorithm (A4). It suffices to 
find the maximal r in the recovered records, which is a cheaper operation. Higher availability, and all 
these advantages, may justify for many applications, the increased primary bucket split cost of the 
LH*g1 file.  

4.5 LH*g schemes with n-availability 
Some commercial applications, especially with large files, already provide 2-bucket availability 

[I97]. LH*g schema can be generalized to n-bucket availability with n > 1 as well. One approach is 
multigrouping that is to make every primary record belonging to n different record groups, [LR97]. 
These groups are formed so that they intersect at a most one record. This property already characterized 
so-called multidimensional schemas, e.g., those overviewed in [SS90] or [H&al94]. In these schemes, 
stripes are organized into an n-dimensional cube. However, the scalability of LH*g files, with the 
infinite bucket address space, precludes any trivial transposition of such schemes. One has to ensure in 
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particular that no split ever brings records in the same record group into the same bucket. One solution is 
to structure the bucket address space into an infinite series of squares k x k along the diagonal in 2-
dimensional (x, y) space. Groups of size k are formed along x and y-axis and along the diagonal, if n > 2 
is required. See [LR97], and [LMR98] for details.  

It can be observed that the problem of moving records is easier to solve in practice for LH*g1.  One 
attractive property, new for high-availability schemes, that appears is that n may itself gradually scale 
with the file. This is necessary to preserve the overall availability of a scalable file from deteriorating 
while the file grows [LMR98].  

Another avenue yet to explore is to keep each record in a single group, but to expand the parity 
schema to tolerate multiple failures within the group. Again the scalability requirement precludes a 
trivial application of earlier well-known proposals, e.g., in [H&al94] or [ABC97]. At present, Reed-
Salomon codes, already in commercial use for data storage systems where scalability is not yet a 
concern, [I97], appear the best candidate. One potential hurdle, when scalability is taken into the 
account, is the efficiency of related operations in a tower of Galois fields [LS98]. 

5. Related work 
High-availability schemes for the centralized environment are known for many years. They are based 

on mirroring or striping, e.g., RAID schemes [PGK88]. No scheme using the concept of record grouping 
was known. 

Unlike the grouping, basic striping schemes usually deteriorate search performance, [W96]. Insert 
performance is also affected. To overcome this drawback, many variants were proposed, e.g., combining 
mirroring and striping [W96]. Progressively, the high-availability in distributed environment became 
also important, [M96]. Overviews of the historical evolution of the domain, and of many schemes, are in 
[HO95] and [T95a].  

Known high-availability schemes are classified into physical or logical schemes [T95a]. The 
physical schemes provide high-availability through some redundancy of physical units of storage: bits, 
bytes, sectors, segments or pages. RAID schemes are among best known physical schemes. The logical 
schemes manipulate data elements identified by a key or an OID and usually structured: records, tuples, 
relation fragments or replicas, objects... The additional semantics seems to make logical schemes 
intrinsically more efficient for a distributed environment [T95a]. Up till now, such schemes are used 
mainly for parallel or distributed database systems. The LH*g schema is a logical scheme.  

When a node failure is detected, some existing schemes redistribute data over available nodes (e.g., 
[HST91], see also [T95a] for more references). In contrast, others replace the unavailable node with a 
spare node where the unavailable data are reconstructed. The latter principle seems more efficient for 
high-availability, [T95]. One reason is that chances for a 2-node failure are typically greatly reduced. It 
also appears the best approach when distributed data need to scale [LN96a]. LH*g falls into this class of 
schemes as well. 

Among earliest research investigations of schemes for the distributed environment, was the RADD 
(Redundant Arrays of Distributed Disks) schema [SS90]. This was an application of the RAID-5 schema 
to disks distributed over some sites. Unlike LH*g, the RADD schema was physical and static, designed 
for slow networks, and was rather inefficient for parallel selections since it used striping. A similarity to 
multigrouping in LH*g for n-unavailability was the suggestion of a multidimensional generalization of 
RADD, into so-called nD-RADD schemes to support n-site availability [SS90].  

Among recent high-availability prototypes using a physical schema, there is the Zebra system, 
[HO95]. Zebra files are not SDDSs since, e.g., a centralized directory is required for the address 
computation. The system uses striped log-structured files with possibly large segments. It is not efficient 
for operating on individual records, e.g., in the database context, [HO95]. In particular there is no 
provision in the Zebra architecture for parallel scans. 

The logical schemes proposed for distributed or parallel database systems, e.g., Gamma, Tandem or 
Teradata machines, were based on static partitioning of relations into fragments, using the locality of 
reference, key ranges, static hashing, etc.. High-availability is provided by the mirroring of the entire 
relations, or of fragments, or of the tuples. The replica are placed on different sites or nodes of a 
multiprocessor machine, using various allocation schemes often called declustering schemes, [HD90], 
[T95a]. All known declustering schemes target a single machine or a cluster of a few machines, and are 
not designed for scalability as SDDSs in general and LH*g in particular. They basically, or exclusively, 
support 1-bucket (site, node) availability. The use of replica leads these schemes to higher storage 
requirements than for LH*g, basically k times higher. 

Specifically for SDDSs, in [LN96a] one discusses high-availability schemes for LH* using 
mirroring, LH*m. These schemes also require about k times more additional storage, than LH*g for a 
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practical k value5. In turn, they may make the spare production and record reconstruction faster, i.e., 
their maintainability costs may be lower. They may finally allow for a higher search throughput, as 
searches may be distributed over n  mirrors. 

In [LN97], one defines high-availability scheme using striping, called LH*S. LH*S provides 1-bucket 
availability. It also increases data security. An intruder to a site may see only a stripe of a record, usually 
meaningless, since containing only one of every k >> 1 bits of each record. 

The storage requirements of LH*S are about those of LH*g and decrease for larger k.  The value of k 
affects, however, search performance for LH*S, while it does not for LH*g. Hence, larger values of k 
can be chosen in practice for an LH*g file leading to smaller storage. Search performance differences of 
LH*S with respect to LH*g are affected especially for scans. To evaluate the search clauses, one may 
need to reconstruct somewhere every record from its segments, as for any schema based on striping. 
Maintainability of LH*S is somehow more efficient than that of LH*g since less data have to be 
transferred over the net for a bucket or record recovery.  

 
 Search Insert Storage H-availab. Maintainab. Throughp. Security 
LH* 1 1 1 N N 2 2 
LH*m 1 2 4 1 1 1 4 
LH*s 2 4 3 2 2 4 1 
LH*g 1 3 2 1 3 3 3 

Table 1 Ranking the high-availability LH* schemes 

Higher data security remains an inherent advantage of LH*S over all other schemes. The overall 
security of LH*g and LH*m is in addition somehow lower than that of LH*. One can indeed break the 
security of a site looking into other sites. For LH*m, these are n mirror sites with entire records. For 
LH*g, these are buckets from which the record could be reconstructed. Note that this requires breaking 
the security of k sites usually for LH*g, while to break into a single mirror site may suffice for LH*m. In 
this sense, LH*g is intrinsically more secure than LH*m.  

Table 1 ranks the discussed algorithms, including LH*, along their various features discussed above. 
LH* does not provide high-availability, so it has no rank. LH*g is ranked assuming k > 1, to distinguish 
it from LH*m.  If one sums up the basic factors, i.e., the search, insert and storage ranks, LH*g overall 
rank of 6, makes it best among the high-availability schemes, before LH*m with the rank 7 and LH*S 
with the rank 9. Application specific requirements should ultimately help to choose the most adequate 
scheme. 

6. Conclusion 
LH*g provides the high-availability to scalable files at no additional search cost and with moderate 

storage overhead. It should be attractive to applications where both the high-availability and the search 
performance, in particular of scans, are of prime importance. Modern database systems make the 
scalability, high-availability and parallelism their major features. LH*g should be particularly useful in 
this context. 

Future work should address various design issues of LH*g. The scheme should be implemented in 
popular environments. The prototype implementation in Java confirms that it is simple to set up and 
provides expected performance [L97]. Experiments with actual applications should follow. For the 
database use, transaction and concurrency management should be addressed. The idea of high-
availability through grouping should finally be ported to other SDDS schemes, e.g., RP* for ordered 
files [LNS94].  
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