
Case for Explicit and Implicit LIST Aggregate Function for Relational Databases

Witold Litwin1

Abstract

We argue for a new aggregate function we termed the LIST function. It aggregates a set of
values of one or more attributes into a single value that is internally a list of these values,
perhaps ordered. The principle may seem a formal twist, but should be useful in practice. It
overcomes important limitations of the current relational systems, due to the use of relations
in first normal form, and the separation between the aggregate and the individual data values
in the standard SQL. LIST function can be made often implicit, making its use even less
procedural. The function should be basically simple to implement. The relational systems
already provide most of the capabilities it requires to the existing aggregate functions.

1 Introduction
A relational database system (RDBS), e.g., MsAccess, SQL Server, DB2 or Oracle basically

uses today relations in 1st normal form (1 NF), [K0], [IBM], [LGG2], [MS], [S], [LGG2]. The
attribute values are supposed atomic. An aggregate function in an RDBS takes a selected set
of values and produces a single one, e.g., the sum. In the classical example of Supplier-Part
database S-P, described in many books, one calculates in this way, using the GROUP BY
clause, the sum of quantities per supplier S# from the table SP (S#, P#, QTY), Figure 1, [D2].

S#

P# Qty
s1 p1 300
s1 p2 200
s1 p3 400
s1 p4 200
s1 p5 100
s1 p6 100
s2 p1 300
s2 p2 400
s3 p2 200
s4 p2 200
s4 p4 300
s4 p5 400

SELECT SP.[S#], Sum(SP.Qty) AS [Total Qty]
FROM SP
GROUP BY SP.[S#];

S# Total Qty
s1 1300
s2 700
s3 200
s4 900

Figure 1 The classical (i) SP table from the Supplier-Part relational database and (ii) query with GROUP BY
clause calculating the total quantity of parts per supplier

In the era of data mining, an application may also often need the individual quantities
contributing to the sum for each supplier. The way to do it in standard SQL is to issue a
separate query SELECT * FROM SP. One cannot indeed mix this result with the aggregated
one in a single standard SQL query, although SQL dialects in some commercial RDBSs offer
non-standard extensions for it, as we discuss later on. The result repeats S# value in each tuple
of the same supplier as many times as there are parts P# it provides. For instance, six time for
supplier S1 in S-P. The repetition results from the 1st NF relational calculus. Both constraints:
the need for two queries and the S# redundancy in the result may be annoying for applications

- 1 -

1 Université Paris 9 Dauphine, mailto:Witold.litwin@dauphine.fr

and found awkward by users, despite the wide acceptance of the 1st NF for the base table SP.
The typical solution at present is to either use a 4GL, e.g., the forms for MsAccess, or a
programming language, [LGG2]. Both options are beyond SQL. They require additional
capabilities from the user and the RDBS does not optimise them, unlike an SQL query,
[GUW2].

SELECT P.[SS#], P.Name, F.Friend, R.Rest, H.Hobby
FROM ((P INNER JOIN F ON P.[SS#] = F.[SS#])
INNER JOIN H ON P.[SS#] = H.[SS#])
INNER JOIN R ON P.[SS#] = R.[SS#]
WHERE P.[SS#] ="ss1" ;

Figure 2 Result of MSAccess SQL query requesting the name, friends, preferred restaurants and hobbies of

person identified with ‘SS1’.

Similar situation occurs for other needs. We will show some through the motivating
examples in next section. At present, notice only that the result is especially awkward if data
to store present the multivalued dependencies, as very often. For instance, consider a person
identified with SS# who may have several hobbies, friends, and preferred restaurants. The
good relational database scheme would separate these data adequately in 4th NF tables, [F77] ,
[BB79], [D2], [GUW2]. They could be four tables: P (SS#, Name), H (SS#, Hobby), F (SS#,
Friend) and R (SS#, Rest). Ten tuples in each table H, F, and R for a person, e.g., (SS1,
Witold), would lead to the total of 31 tuples for Witold. However, the application may still
need all the data together for SS1, including the name ‘Witold’. The SQL query would lead to
1000-tuple relation. Figure 2 shows the query and about top 30 tuples, i.e., 3 % of the result
produced by MSAccess. It appears hardly useful for anyone.

The fundamental reason is that any current RDBS, the MSAccess used here being just one
example, would create, according to the relational calculus rules in use, all the tuples with all
the combinations of a hobby, a friend and of a restaurant. It would also repeat 1000 times that
the person’s name is Witold. Basically, the query output would be a denormalized relation
fragment of the 4th NF relations stored, with the well-known anomalies characterizing a non
4th NF relations, [F77], [D2], [GUW2]. The only solutions at present are basically to either
issue four separate SQL queries, missing thus the goal of all the desired data together, or,
again, to use a 4GL interface, or a programming language.

In the above examples, one may observe that the problem disappears if one aggregates the
values non functionally dependent on others in the query output. This aggregation cannot be
done to a single value in the classical sense for an RDBS, such as an integer or real or a few
byte long character string. However, one can still aggregate into a single value being a list.
Internally, the list may be multi-valued, or include a value expression, or a DISTINCT or
TOP predicate, or refer to an aggregate function computed elsewhere in the query, or include
a scalar function… One can nevertheless assimilate it to a character string. The string can be

- 2 -

possibly longer than a classical one for an RDBS, but it is still a single value for the RDBS2.
Hence the table remains flat, i.e., in 1 NF at least. This is precisely the intention in the LIST
aggregate function we will discuss here.

In our 1st example, the QTY values should be aggregated in that way into the single list of
six values. Only one tuple per supplier will result from. Likewise, in 2nd example, one should
be able to have only one tuple for our person to show, with its SS# and name once only, and
three comparatively short lists of ten elements each. This, instead of the 1000 tuples in
Figure 2.

We proposed the LIST function in [L3]. In what follows, we argue further for it through an
expansion of its capabilities. We start by recalling the motivating examples from [L3], and the
features of the LIST function they implied there. On this basis, we extend this features with
the implicit LIST we introduce here. We refer backward to the core form of LIST as explicit.
We show that a query can mix both forms.

Section 2 recalls the explicit LIST. Section 3 describes the implicit LIST, and motivates it
through the analysis of the recalled examples. We show in particular the utility of coupling
this capability with that of the implicit equijoins and the implicit FROM clause we propose as
well.

Section 4 briefly discusses the implementation of LIST that appears rather easy, and the
related work. We conclude in Section 5.

2 The LIST Aggregate Function
We first analyse the need for the function and the specific capabilities it should provide

through additional motivating examples. We then propose its basic syntax and semantics. We
finally build upon the capability of the implicit LIST.

2.1. Examples

Example 1

Consider again the SP relation. The LIST function should be invoked similarly to the
classical query calculating the total quantity per supplier in Figure 1. Thus the query for the
total quantity and contributing individual ones together could be:

(Q 1) SELECT S#, SUM (QTY) AS [TOTAL QTY], LIST (Qty) AS Histogram FROM SP GROUP BY S#;

S#

Total Qty Histogram
 s1 1300 300, 200, 400,200;100, 100

s2 700 300, 400
s3 200 200
s4 900 200, 300, 400

Figure 3 The expected result of (Q1) with LIST aggregate function requesting together the total quantity and the
histogram of parts supplied per supplier.

The expected result would be the table in Figure 3. There is one tuple per S# with the 4th
column of character string type with lists, e.g. of six values for S1. The lists are presented
here horizontally. Longer lists could appear at the screen as a combo boxes, as usual today for
MSAccess.

2 Notice that RDBSs routinely manage longer text attributes, e.g. even the “small” MsAccess accepts 255-byte
long strings. This is more than enough for any motivating example below. See also Section 4.

- 3 -

Incidentally, we did not find any way to formulate this query as a single one in SQL dialect
of MSAccess, even considering the non-standard extension, e.g., the Pivot and Transform
clauses. Any hint is welcome.

Example 2
In our 2nd example above discussed, the LIST function should serve as usual in an SQL

query:
(Q2) Select P.SS#, Name, LIST (DISTINCT (Friend)), LIST (DISTINCT (Rest)),

LIST (DISTINCT (Hobby))

(Q2
Q2

from P, F, R, H
where P.SS# = F.SS# and F.SS# = R.SS# and R.SS# = H.SS# and P.SS# ="ss1"
group by P.SS#, Name ;

The output should be similar, e.g. one tuple with three lists of ten elements each for our
example person, Figure 4. Compare this output to the usual one at present of 1000 tuples in
Figure 2. Although the table above could appear visually as 0 NF (unnormalized relation with
non-atomic attributes, [D2]), it is not. In fact, again, each list is an atomic attribute of
character string type as any other such attribute in a currently used RDBS. Hence, this table is
also in 1 NF at least. We stay in the usual framework of the relational calculus. The
presentation of the string is supposed chosen by RDBS here. At Figure 4a, it uses the text
boxes for a printout fitting best the available width of the paper sheet. In Figure 4b, it was
intended for a screen, each box being a combo box. As usual for MsAccess, only the 1st few
values of each list would appear, one in our case3, till one click into the box, opening it
completely.

Figure 4 Intended result of (Q2) with three LIST functions, to compare with the result in Figure 2, presented with
text boxes (a) and with combo boxes for a screen (b)

Figure 4

(b)

(a)
P Name Friend Rest Hobby

SS1 Witold Alexis, Christopher, Ron,
Jim, Donna, Elisabeth,
Dave, Peter, Per-Ake,
Thomas

Bengal, Cantine Paris 9,
Chef Wu, Ferme de Condé,
Miyake, Louis XIII, Mela,
North Beach Pizza, Pizza
Napoli, Sushi Etoile

Bike, Classical Music,
Good food, Hike, Movie,
Science Fiction, Ski, Swim,
Tennis, Wine

P Name Friend Rest Hobby
SS1 Witold Alexis Bengal Bike

Some SQL dialects, e.g., MsAccess, do not offer the DISTINCT predicate within an
aggregate function. One way around today is to use the nested FROM clause. If LIST function
should only reuse the current implementation of DISTINCT, the following query to MsAccess
gives the (Q2) result4, as in Figure 4:
SELECT P.[SS#], Name, Fr as Friend, Re as Rest, Hb as Hobby From Pers as P,
 (SELECT F.[SS#], List (F.Friend) AS Fr, Re, Hb from F,
 (SELECT R.[SS#], List (R.rest) AS Re, Hb from R,
 (SELECT H.[SS#], List (H.Hobby) AS Hb FROM H where [ss#] = 'ss1' GROUP BY H.[SS#])
 where R.[ss#] = H.[ss#] group by R.[SS#], Hb)
 where F.[ss#] = R.[ss#] group by F.[SS#], Re, Hb)

3 The output was simulated using the Min aggregate function instead of List in)
4 The query was simulated using the Min aggregate function instead of List in (), producing the output in

b. We recall that MsAccess SQL requires [] around attributes ith spaces or special characters like #.

- 4 -
 w

where P.[SS#] = F.[SS#] ;

Example 3

In above examples, one needed to list values of a single attribute only. This example
motivates the multi-attribute LIST function.

a. A user wishes the ID and the total quantity of each part in the warehouse and a 2-d
histogram with quantities per contributing supplier. One can satisfy the need as:
(Q3) Select P#, SUM (Qty) as [TOTAL QTY], LIST (S#, Qty) as [Per supplier] from SP group by P#;

The result of (Q3) is in Figure 5. Each element of each list is now constituted internally
from two values. Each element is presented on a new line. However, as before, the whole list
remains for the RDBS an atomic character string. In particular the use of LIKE clause
remains legitimate. For instance, the following query would limit the output to parts supplied
by ‘s4’ among other suppliers, i.e., to lines 2,4,5 only in Figure 5:
(Q4) Select P#, SUM (Qty) as [TOTAL QTY], LIST (S#, Qty) as [Per supplier] from SP

group by P# having [Per supplier] like ‘*s4*’;

P# Total Qty Per supplier
p1 600 s1 300

s2 300
p2 1000 s1 200

s2 400
s3 200
s4 200

p3 400 s1 400
p4 500 s1 200

s4 300
p5 500 s1 100

s4 400
p6 100 s1 100

Figure 5 Intended result of (Q3) with the multi-attribute LIST function

b. Consider that S-P user wishes to see for each supplier S its data S (S#, SNAME,
STATUS, CITY) and all its supplies. While most users of an RDBS are convinced that 1 NF
is a great idea for the stored form of data, it is Polishinel’s secret that most of them are also
annoyed with the traditional 1 NF output of:

Select S.*, P#, Qty From S, SP where S.S# = SP.S# ;

The reason is that all supplier’s data are uselessly repeated in each tuple of the supply, e.g.,
again, six time for S1. The LIST function responds to the need simply as follows:
(Q5) Select S.*, List (P#, Qty) From S, SP

where S.S# = SP.S#
group by S#, SNAME, STATUS, CITY;

The intended result is in Figure 6.

Observe interestingly in (Q5) that GROUP BY clause enumerates all the attributes of S.
The enumeration of all but S# is in fact useless here as they are all functionally dependent on
S#. Since the enumeration is a quite long list besides, it should be typically be annoying to the
user. The constraint steams from the general property P that (i) in SQL at present any attribute

- 5 -

in SELECT clause that is not aggregated has to be a grouping one, and (ii) SQL does not
accept at present ‘*’ in the GROUP BY clause.

A clever use of LIST function may avoid the constraint. One needs to formulate the query
so that every attribute A, single or composite, included ‘*’, not aggregated by any other
function, is declared as LIST (A) in SELECT clause. The query would respect the property P
and it is no more necessary to declare A as the grouping attribute. The obvious reason is that
in this case LIST (A) = A. For (Q5), the alternative would be as follows :
(Q6) Select List (S.*), List (P#, Qty) From S, SP

where S.S# = SP.S#
group by S#;

Figure 6 Intended output table of query (Q5)

S# SName Status City p# Qty
s1 Smith 200 London P1

p2
p3
p4
p5
p6

300
200
400
200
100
100

s2 Jones 10 Paris p1
p2

300
400

s3 Blake 30 Paris p2 200
s4 Clark 20 London p2

p4
200
300

s4 Clark 20 London p4
p5

300
400

c. We continue with the idea in (b), but switch to the context perhaps more common to
the real life than the Supplier-Part database. We will also illustrate the use of the ORDER BY
clause with the LIST function. Consider the following DB fragment similar to tables in PUB
database provided with SQL Server:

 Book (ISBN#, Title, Publisher, Year)
 Author (ISBN#, Name, First Name, Rank)

The application needs to show 2003 books. We can respond to the need with :
(Q7) Select B.*, List (First Name, Name) from Book B, Author A
 where B.ISBN = A.ISBN and Year = 2003
 Group By ISBN, Title, Publisher, Year
 Order by Title, Rank ;

The result should be one tuple per book listed with the list of the authors. Without our
function, using the standard SQL, all the book attributes would be repeated with each author,
definitively surprising any real-life user. The tuples produced by (Q7) should be in ASC order
by title. Each list should also be in ASC order by the rank of the author. This intended
behavior models that of MsAccess, in its (non-standard SQL) crosstab queries. Finally, like
for (Q4.1), one may shorten the GROUP BY clause to ISBN only, by in turn aggregating B.*
to LIST (B.*). Here the alternative does not have much importance. In real life however it
might. A book scheme typically has many more attributes.

- 6 -

Example 4
We now illustrates the potential new capabilities of LIST function applying value

expressions and scalar functions. We use only the possibilities that current SQL dialects
provide already to the other aggregate functions, e.g., in MsAcces dialect, most used by (very)
far. Consider again Supplier-Part database and the user who wishes for each part its total
quantity on hand, and its distribution into quantities supplied by different suppliers, as above
in Example 1. In addition the user wishes to know (i) the integer average quantity per
supplier, and for each supply (ii) the fraction in % that it represents of the total quantity, and
(iii) its positive or negative deviation from the average. Finally, the user wishes to order the
result so that larger total quantities appear first, as well as larger contributing supplies.

The first formulation of this query one may think about in MsAccess SQL dialect could be:
(Q8) SELECT SP.[p#], Sum(Qty) AS [total Qty], int(Avg(Qty)) AS [Avg Qty],

List (qty AS Distribution, Int(qty / [total Qty] * 100) AS [% of Total],
(qty - [Avg Qty]) AS [Deviation from Avg]
FROM SP
GROUP BY SP.[p#]
ORDER BY [total Qty] DESC, qty DESC;

Unfortunately, some popular dialects, e.g., MsAccess, and perhaps all at present, do not
accept the reference to a dynamic attribute, e.g., [total Qty], in an aggregate function in the
same Select list, nor in the Order By clause of the expression. The general way out is again
the nested FROM clauses. This would lead in MsAccess SQL dialect to the following query5:
(Q9) SELECT SP.[p#], Sum(Qty) AS [total Qty], int(Avg(Qty)) AS [Avg Qty],

LIST (qty AS Distribution, Int(qty / t1 * 100)) AS [% of Total],
(qty - t2) AS [Deviation from Avg])
FROM SP,

(select sum(qty) as [t1], [p#] as p1, int(Avg(Qty)) AS t2 from sp group by [p#])
WHERE sp.[p#] = p1
GROUP BY SP.[p#]
ORDER BY Sum(SP.Qty) DESC, qty DESC;

The expected result, showing only the first line of each assumed combo box, would appear
on MsAccess perhaps like in Figure 7. We do not know about any way to obtain a similar
result using current SQL dialects.

2.2. Core Syntax and Semantics of LIST function
The motivating examples should make the intended syntax and semantics of the LIST

function clear enough. If A is an attribute, perhaps composite, i.e., A = (A1,…,Ak), then
LIST (A) produces for each group G of m tuples, resulting from the GROUP BY and possibly
HAVING clauses, a character string T formed by concatenating tuples t from the projection
of G on A, i.e.; T = t1 &…& tm. The tuples may be ordered according to ORDER BY clause.
The projection is the SQL one, i.e., is the k-d bag with the duplicates, and, perhaps, nulls. The
RDBS may allow for the DISTINCT predicate in an aggregate function, as discussed for (Q2)
above. One should be able to invoke then the LIST (DISTINCT (A)), eliminating the
duplicates.

Likewise, one should be able to invoke the popular TOP n predicate, limiting accordingly
each T to at most the min (n, m) top concatenated tuples with respect to the ORDER BY
clause6. The variant: TOP N percent should apply as well. One should also be able to invoke

5 Simulated for List clause using Max aggregate function
6 Unless, as usual, the tuples n, n+1… are duplicates with respect to the values of attributes invoked in ORDER
BY.

- 7 -

the scalar functions and value expressions within LIST, as for the other aggregates accepted
by the RDBS. The default separator between the concatenating values is ‘ ‘. In practice, a
more elaborated syntax for LIST than used above could easily allow for the definition of other
separators. For instance, following upon the related actual syntax of SQL Server and of
MsAccess dialects, the expression:

LIST (A1 & ‘, ‘ & A2 & ‘, ‘ & A3 & ‘ ;’),

could mean that ‘, ‘ separates each t1, t2 and t3 and that each list terminates with ‘ ;’.

p# total Qty Avg Qty Distribution % of Total Deviation from Avg
p2 1000 250 400 40 150
p1 600 300 300 50 0
p5 500 250 400 80 150
p4 500 250 300 60 50
p3 400 400 400 100 0
p6 100 100 100 100 0

Figure 7 Expected result of (Q9) assumed displayed as combo boxes for the result of the LIST function.

The result of LIST of a single value, i.e., for m = 1, reduces simply to that value. The
concatenation of a tuple with a null value within, keeps the null in T. Likewise, the
concatenation should keep a null tuple, if the SQL dialect of the RDBS used has chosen to
generally do it as well. By the same token, the currently used aggregate functions nest in a
subquery in WHERE or FROM clauses. Hence LIST should as well. Finally, one should be
able to refer to LIST in ROLLUP and CUBE clauses. We recall that these well-known clauses
generalize, the GROUP BY in new dialects, [M99]. Again, the reason for this semantics is
that the other aggregate functions are already in use in this way. We discuss more in the
section below that it should thus be rather simple to reuse the capabilities existing in an
RDBS for those functions for LIST as well.

We do not elaborate the formal definition of the LIST function grammar here. It does not
seem necessary and would vary anyhow with the SQL dialect intended to support it.

3 Implicit LIST

Observe that in an SQL query at present, any attribute in SELECT clause should be either
aggregated or a grouping one, referred to in GROUP BY. One can explore this property to
enhance the SQL non-procedurality. The idea is to allow for non-aggregated and not grouping
attributes referred to in the query, but to consider that some LIST implicitly aggregates any of
them. More precisely, the following rule for the implicit LIST appears the most useful at
present:

• Let A be an attribute, perhaps composite, grouping all the attributes from the same base
table or view, referred to in SELECT clause and neither (explicitly) aggregated nor a
grouping one. Then, any such A is considered as aggregated by the implicit LIST defined as
LIST (DISTINCT A).

We call implicit any such LIST. The query where every implicit LIST is made explicit
becomes conform to the present SQL syntax, hence acceptable to the RDBSs. The
introduction of DISTINCT that may surprise at first glance, steams from the wish to apply the
implicit LIST idea to (Q2). This application and similar ones, seem more practical than those
of interest otherwise, i.e., if implicit LIST was defined so o preserve the duplicates. The idea

- 8 -
t

also means that the implicit LIST capability naturally targets in the first place an RDBS,
accepting DISTINCT in an aggregate function.

One also needs some convention on the default attribute naming with respect to the result of
an implicit LIST. Below, we consider that any atomic A simply keeps its name. The name
generated for a composite A is a concatenation of the names of atomic attributes of A, with
the space as separator. We also consider that other clauses that may syntactically refer to the
attribute created by an implicit LIST, e.g., the HAVING clause, may still refer to the original
attribute names within composite A.

To review our examples, observe first that the implicit LIST, nicely simplifies query (Q2)
to more familiar:

(Q10) Select P.SS#, Name, Friend, Rest, Hobby
from P, F, R, H
where P.SS# = F.SS# and F.SS# = R.SS# and R.SS# = H.SS# and P.SS# ="ss1"
group by P.SS#, Name ;

In contrast, (Q 1) should remain the same. An implicit list would remove indeed the
duplicates of QTY. This could lead to a different result, probably typically unintended.

Queries (Q3) and (Q4) would get respectively the familiar formulation, provided we do not
care about the [Per supplier]:

(Q11) Select P#, SUM (Qty) as [TOTAL QTY], S#, Qty from SP group by P#;

(Q12) Select P#, SUM (Qty) as [TOTAL QTY], S#, Qty from SP group by P# having S# like ‘*s4*’;

Query (Q7) simplifies as well, in both the SELECT and GROUP BY clauses. But implicit
LIST is of no use for (Q8) and (Q9), obviously.

To couple the implicit LIST with the use of implicit joins and of implicit FROM clause,
further enhances the non-procedurality of SQL queries. We recall that major RDBSs offer the
former capability, as we discuss more in Section 4 below. The implicit FROM is not yet in
practical use, as far as we know. The basic idea is however well-known through the research
on the universal relation interface. To apply this idea to our needs, we consider simply that
FROM clause may contain an implicit table name T for any attribute T.A in the query that
either (i) is uniquely qualified with its proper name A, or (ii) is referred to in an implicit or
explicit inner equijoin clause in WHERE or FROM clause, or (iii) has already another
attribute referred to in the query. In the latter cases, T can be any of tables with A. The result
will remain unaffected.

With these capabilities available, our sample queries may become almost ideally non-
procedural. Thus (Q2) and (Q10) lead to even simpler:
(Q13) Select SS#, Name, Friend, Rest, Hobby where SS# ="ss1"

group by SS# ;
Likewise (Q3) without [Per supplier] and (Q11) lead to :

(Q14) Select P#, SUM (Qty) as [TOTAL QTY], S#, Qty group by P#;

It may also be useful and quite non-procedural to apply both forms of LIST in the same
query, e.g. the following one, expanding (Q 1):
(Q 15) SELECT S#, SNAME, SUM (QTY) AS [TOTAL QTY], LIST (Qty) AS Histogram GROUP BY S#;

And so on. The overall result is the conceptual separation between the high-level query
formulation, and the actual decomposition of the relational schema to best avoids the design
anomalies. The latter can change without affecting the query formulation. For instance, when
a single valued property becomes a multivalued one. A popular case is that of users starting

- 9 -

having multiple phone numbers (mobile, home, work). Many similar often occurring needs
are well-known. The end result is that not only the interactive user becomes happier, but one
may also avoid the related nightmare changes to the application programs.

As the bemol, notice that the implicit LIST and the other bells and whistles discussed, help
basically with the non-procedurality of typical queries. Even only this gain however is in the
line with the fundamental goal of non-procedurality the relational data model [D2]. Notice
also a new conceptually interesting role of GROUP BY. It was intended as a dynamic
aggregator of tuples for a computation of some function. Here it servers also as a dynamic
constructor of objects identified by the values of the grouping attribute(s) that becomes the
OIDs.

The construction makes the relational model somehow naturally more object-oriented. A
practical consequences is that the distinction between single-valued and multi-valued
attributes necessary at the relational database schema level, becomes transparent for the user
formulating the query. All this shows that introducing the LIST into RDBSs as fully as
discussed here should reveal highly useful.

4 Implementation Issues and Related Work
The motivating examples have shown that the use of LIST function is intended to basically

reuse the capabilities an RDBS already offers for other known aggregate functions. Hence, the
implementation of LIST largely exists. Any SQL query processor creates the single-attribute
lists for the GROUP BY based computation of, e.g., the SUM function, [GUW2], [YM98].
Usually, theses lists result from a two pass hash algorithm, e.g., the linear hash LKRHash
algorithm, [LKR99], [L88], [L81], largely in use in MS products, including the SQL Server.
The 1st pass creates in each bucket the list of all the selected tuples sharing the values of the
grouping attribute(s). This is in fact an invisible core implementation of the LIST function
already. The 2nd pass explores the list to compute the requested function(s). One has to
enhance this processing with the list casting as a single character string, This should be a
rather fast task for an experienced programmer [L3].

Another facet is the necessary extension to the SQL parser grammar to make it accepting
the LIST verb with its implicit form. Although, the specific LIST function grammar depends
on the SQL dialect used, both, its definition and efficient implementation seems also a rather
routine task for a skilled folk.

Nonetheless, the “good” implementation of LIST function is an open research problem at
present. The interface for the user-defined aggregates in an RDBS with this capability, e.g.,
Oracle 8i or 9i, or DB2 7.2, may perhaps help. There are proposals in the ‘gray” on-line
literature for the developers, for codes of user-defined aggregates that could be the basis for at
least the simplest single attribute LIST, [T1], [T2], [B3]7. See [L3] for more on this subject.

The analysis of the related work showed of course that existing RDBs do not offer the
function offered yet, e.g., [MS], [S], [IBM], [O], [S]. It also showed one explicit user request,
from Bonny Junior on Feb., 16, 2002, in DbForums [S]. We did not find any reply listed. We
cannot say of course also whether our proposal really matches his question.

The RDBSS offer at present different tools, dealing less or more specifically with some but
not all needs we have discussed. These are 4GL forms, and limited non-standard extensions to
SQL. The latter are quite awkward to use with respect to LIST as proposed. See [L3] for
deeper analysis.

7 Located by Jim Gray (Microsoft Research, BARC)

- 10 -

As we mentioned already in Section 3, the LIST function becomes even more attractive if
combined with the implicit joins, also called for some systems auto joins [LWS91]. We recall
that these usually avoid the need to explicitly write some joins in the WHERE or FROM
clauses. One avoids especially the equijoins (inner or outer) along the primary-foreign key
structural constraints. The multirelational queries, e.g., (Q2), (Q5), (Q7) and the related ones
with the implicit LIST, become substantially less procedural.

Implicit joins are now available in popular RDBSs. One can invoke the capability in DB2
and SQL Server through its visual interface to SQL. They are also credited for contributing to
the mammoth popularity of MsAccess through its generalized QBE interface8. This one is
mapped internally to SQL, although, as for SQL Server, one can invoke the SQL interface in
MsAccess also directly. Notice incidentally that while not all SQL MsAccess capabilities are
expressible in MsAccess QBE, the aggregate functions are. There should not be any major
trouble thus to add LIST to this QBE as well.

Besides, the basic capabilities for the manipulation of lists were proposed for the object-
oriented OQL language intended for an OODBS, [YM98]. Research proposals were
consequently formulated for the object relational systems. These proposals concerned new
data models, or substantial extensions to the relational model at least, with all interesting but
heavy implications of any such approach. Among active outcomes, notice the popular
AMOSII mediator system, [RJK3], supporting through its object-functional approach the
vector data type intended for 1-d ordered bags. Notice also the sorted relations, and the
related algebra, enhancing consequently SQL to the “Sorted Relational Query Language, or
SRQL”, [R&al98]. There is also a sequel to SRQL which is the concept of arrables in [LS3].

The bulk of this work will perhaps influence future dialects of SQL, may be steaming from
SQL:1999 proposal, [M99], If so, it will affect the internals of an RDBS, with respect to the
GROUP BY, ORDER BY, and selected new clauses proposed by these languages. It may
then impact the use, the implementation, or the performance of the LIST aggregate function
as well.

Finally, list manipulation capabilities should also characterize XML oriented systems, DBS
especially, [LRK2]. Having the LIST function within RDBS should facilitate these goals as
well. Again look into [L3] for more on all the mentioned issues.

5 Conclusion
The LIST aggregate function is simple and should be highly useful. It creates an integrated

framework for queries to both aggregated and individual data values. These are harder to
formulate or yet inexistent in an RDBS at present, although potentially highly useful for the
popular data mining. The user may also naturally present and manipulate data normalized to 4
NF. These are particularly awkward to deal with in practice at present.

The implicit LIST should often simplify the query with respect to that with the explicit one
only. It is further desirable to couple it with the implicit joins and the implicit FROM clause.
The overall capabilities of LIST that result from alleviate long standing wishes of the
relational database users.

We backed the semantics of the LIST function with the choice of the details, so to make the
implementation of LIST function technically easy. The future work should focus on the
experimental proof of this claim, by prototyping the implementation in the first place.

8 See the shelves with the database books in the nearest tech. bookstore.

- 11 -

- 12 -

Acknowledgements
For the help with early ideas on the LIST function, we thank Ron Fagin for suggestions with respect to the

motivating examples, Jim Gray for the example code for the SQL Server’s Northwind DB, and the related
pointers to the gray literature, as well as Tore Risch for the comments on the related work. This work was partly
supported by the research grants from Microsoft Research, and from the European Commission project ICONS
project no. IST-2001-32429.

References
[B3] Bowden, B. Increase code reuse with Oracle user-defined aggregate functions. Builder.Com. 2003.
http://builder.com.com/5100-6388-1058914.html

[BB79] Beeri, C., Berstein, P. Computation Problems Related to the Design of Normal Form Relational Database Schemes.
ACM Trans. On Database Systems, ACM-TODS 4(1), 30-59.

[D2] Date, C., J. An Introduction to Database Systems. Addison-Wesley, 2002.

[F77] Fagin, R. Multivalued Dependencies and a New Normal Form for Relational Databases. ACM Trans. On Database
Systems, ACM-TODS 2(3), 262-278.

[GUW2] Garcia-Molina, H. Ullman, J., D., Widom, J. Database Systems: the Complete Book. Prentice Hall, 2002.

[K0] Kreines, D., C. Oracle SQL: The Essential Reference. O’Reilly, 2000.

[IBM] IBM Manual for DB2. ibm.com/software/data/db2/library.

[L88] Larson, P.-Å. Dynamic hash tables, Communications of the ACM, Vol. 31, No 4, 1988, 446–457.

[LKR99], Larson, P-Å., Krishnan M., and Reilly, V., G. LKRhash: Scaleable Hash Tables. Res. Rep., 1999
http://www.microsoft.com/

[LGG2] Litwin, P., Getz, K, Gilbert, M. Access 2000 Developpers Handbook. Volume 1 & 2. Sybex, 2000.

[LRK2] Lin, H., Risch, T. Katchanounov, T. Adaptive data mediation over XML data. Special Issue on Web Information
Systems Applications of Journal of Applied System Studies (JASS), Cambridge Intl. Science Publ., 3(2), 2002.

[L81] Litwin, W. Linear Hashing : a new tool for file and tables addressing. Reprint from VLDB-81. Readings in Databases.
2-nd ed. Morgan Kaufmann Publishers, Inc., 1994. Stonebraker , M.(Ed.).

[L3] Litwin, The LIST Aggregate Function for Relational Databases. CERIA Research Report 2003-06-09, 2003,
http://ceria.dauphine.fr/.

[LS3] Lerner, A., Shasha, D. AQuery: Query Language for Ordered Data, Optimization Techniques, and Experiments. Intl.
Conf. on Very Large Databases, VLDB 2003.

[LWS91] Litwin, W., Wiederhold, G., Suk Lee, B. Implicit Joins in the Structural Data Model. IEEE-COMPSAC, Kyoto,
(Sep. 1991).

[M99] Melton, J. Advanced SQL:1999 Understanding Object-Relational and Other Advanced Features. Morgan Kaufmann
(publ.), (Sep., 2002).

[MS] Microsoft SQL Server Home Page. http://www.microsoft.com/sql/

[RJK3] Risch, T. Josifovski, V., Katchaounov, T. Functional Data Integration in a Distributed Mediator System. In P.Gray,
L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional Approach to Data Management - Modeling, Analyzing and
Integrating Heterogeneous Data, Springer, ISBN 3-540-00375-4, 2003

[O] Oracle SQL* Plus. http://technet.oracle.com/tech/sql_plus/content.html

[R&al98] Ramakrishnan, R. Donjerkovic, D., Ranganathan, A. Beyer, K., Krishnaprasad, M. SRQL: Sorted Relational
Query Language. Intl. Conf. on Scientific and Statistical Database Management, SSDBM98.

[S] Sybase Transact-SQL User's Guide. http://manuals.sybase.com/onlinebooks/

[S3] Berkeley DB XML. Sleepycat Software. http://www.sleepycat.com/products/xml.shtml

[SLR94] Seshadri, P., Livny, M., and Ramakrishnan, R. Sequence query processing. ACM SIGMOD Conference on
Management of Data, 1994, 430–441.

[T1] Tropashko, V. Program Your Own Aggregate Functions. Tip for Week of May 20, 2001. Oracle Publishing Document.
http://www.oracle.com/oramag/code/tips2001/index.html?052001.html

[T2] Tropashko, V. Matrix Transposition in SQL. Dbazine.com, 2002. http://www.dbazine.com/tropashko2.html

http://builder.com.com/5100-6388-1058914.html
http://www.microsoft.com/
http://user.it.uu.se/~torer/publ/jass01.pdf
http://www.unipi.gr/jass
http://ceria.dauphine.fr/
http://www.microsoft.com/sql/
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-00375-4
http://www.springer.de/cgi/svcat/search_book.pl?isbn=3-540-00375-4
http://technet.oracle.com/tech/sql_plus/content.html
http://manuals.sybase.com/onlinebooks/
http://www.sleepycat.com/products/xml.shtml
http://www.oracle.com/oramag/code/tips2001/index.html?052001.html
http://www.dbazine.com/tropashko2.html

