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Abstract 
LH*S  is high-availability variant of LH*, a Scalable 
Distributed Data Structure.  An LH*S  record is  
striped onto different server nodes.  A parity segment 
allows to reconstruct the  record  if  a segment fails. 
The insert or key search time is about a msec on a 
10 Mb/s net, and about 100 µs at 1 Gb/s net,  
assuming the segments in the distributed RAM.  The 
file size depends only on the distributed storage 
available, i.e., a RAM file can reach dozens of GB in 
practice. Data  security is enhanced,   as every site 
contains only partial and typically  meaningless data.  
The price to pay is 20 - 50 %  more storage for the file 
than for an LH* file, and some additional messaging, 
especially for the scan search. 

Introduction 
Multicomputers are collections of autonomous WSs or 
PCs over a network (network multicomputers), or of 
share-nothing  processors with a local storage linked 
through a high-speed network or bus (switched 
multicomputers) [T95].  It is well known that 
multicomputers offer best price-performance ratio 
[T95], [M96]. Research on multicomputers becomes 
popular [C94], [G96]. The Scalable Distributed Data 
Structures (SDDSs), like LH* [LNS93], are new data 
structures designed for multicomputer files. An SDDS 
gracefully scales up with inserts over available 
distributed storage, the distributed RAM storage 
preferably. One problem that a designer of an SDDS 
may face is a site failure. Some applications require 
high-availability schemes, allowing data to remain 
available despite a site failure [M96]. Distributed data 
are also vulnerable to an unauthorized local or remote 
intrusion. This makes useful the high-security SDDS 
schemes, making an unauthorized access to the data 
difficult. 
The LH* schemes with mirroring in [LNS96], called 
here LH*M, are first SDDSs designed for high-
availability. The schema proposed below, termed 
LH*S, responds to the high-availability and  the high- 
 
 

 
 
security needs.  A record in LH*S  file is striped into k 
> 1 segments (stripes) put on different nodes, and into 
distinct LH* files. There is also a segment with the 
parity bits, as in RAID schemes and others [PGK88], 
[HO95], [R94], [SS90]. The striping is basically 
performed at bit level, putting consecutive bits of the 
record into different segments. The schema supports 
any single bucket (server site) unavailability. It also 
supports any single-site intrusion without disclosing a 
record content. One can read at best one segment, 
typically meaningless, as containing 1 bit from every k 
in the record. 
With respect to an LH* file, the LH*S  file with the 
same records requires more storage, usually about 
15 ÷ 25 %,  because of the parity segments. Access 
performance of LH*S, in terms of  network transfer 
time per insert or key search, is close to this of LH*. 
There is some deterioration for an insert, as the parity 
segment has to be sent out. Similarly the key search 
for a record can be somehow slower than for LH*, as 
it has to be sent out by the client to k buckets. There is 
also more CPU time involved as any record travels in 
at least two messages. Nevertheless, this price should 
be acceptable for many applications. 
The bit-level striping affects more the scan search, 
where all the records are searched for some non-key 
values.  A scan search in an LH* file is dealt with 
using a parallel query to every bucket. It requires in 
general a more costly processing in an LH*S file with 
the bit-level striping, as records have to be 
reconstructed on-the-fly. For applications where scan 
performance is of prime importance, LH*S allows for 
striping at the attribute-level.  A segment contains then 
entire attributes of the record.  Scan search 
performance becomes better, at the expense of the 
high-security, as an intruder to a site disposes at least 
of some attributes of a record. 
Next section presents LH*S. Section 3 discusses the 
performance of  file manipulations. Section 4 
discusses the security issues. Section 5 overviews the 
related work. Section 6 concludes the paper. 



 

Overview of LH*S 
Principles  of  LH* 
We now recall the principles of LH* schemes 
[LNS93]. An LH* file resides on server computers 
(nodes), and is accessed by applications on client 
nodes. A server is always available for access from the 
clients. A client in contrast is autonomous, perhaps 
mobile, hence guaranteed to be accessible only when it 
is an initiator of the connection. The file consists of 
records identified by (primary) keys. Records are 
stored in buckets with a capacity of b records ; b >> 1. 
Buckets are numbered 0,1,2..N. There is one bucket of 
a file per server, although different files may share 
servers. Buckets are assumed in RAM. The file starts 
with bucket 0, and scales up with inserts, through 
bucket splits.  
Bucket addresses are mapped to the network addresses 
of the servers using  physical allocation tables at the 
clients, and the servers.  Each element of a table 
contains an address. A table, let it be  T, can be static 
or dynamic. In the latter case, the address for bucket n 
can be arbitrarily chosen, especially by the 
coordinator, and stored in T (n). Different sites may 
have different tables.  The coordinator refreshes T  at 
every bucket, when it sends the request to split. The 
message contains then all the new addresses added to 
the file since the previous split of the bucket.  The 
servers send  T to clients with every IAM. A dynamic 
table can scale potentially  to any length. Also, it 
allows for easier bucket  migrations than if a static T. 
The splitting and addressing rules of LH* are based on 
those of linear hashing (LH) [L80]. Every split moves 
about half of the records in a bucket into a new bucket 
at a new server, appended to the file. The splits are 
done in the order 0; 0, 1; 0, 1, 2; 0, ..., 2i; 0, ... The 
next bucket to split is denoted bucket n, and is also 
called the split pointer.  
The splits are triggered by bucket overflows. In LH*, a 
bucket that overflows reports the overflow to a  
dedicated node called the coordinator. The coordinator 
applies the load control policy to find whether the 
overflow should trigger the split. If so, the coordinator 
initiates the split of bucket n. 
To perform the splits and the addressing, an LH* file 
uses a family of hash functions hi,  i = 0,1.. Each hi 
hashes a key c into bucket address hi  (c) = c mod 2i. A 
split results from the replacement of function hi 
currently used for bucket n with function hi + 1. The i 
value is called the bucket level. At any time, an LH* 
file can only have buckets with level i or i + 1, i 
= 0,1,.. The coordinator is the only node in the file that 
knows the current values of n and i. The correct 
address, denoted a, of key c in an LH* file is the 
address where c should be, given n and i, i.e., where it 

should be dynamically hashed. The address a is 
defined by the LH addressing algorithm [L80]: 

(A1)  a ← hi (c) ;  
 if a < n then a ← hi + 1 (c) ; 

To avoid a hot spot, LH* clients do not access the 
coordinator for the address computation. As for any 
SDDS, an LH* client has therefore its own image of 
the file. For LH*, it consists of values noted i' and n' ; 
i' = n' = 0 for a new client. These values may vary 
among clients and may differ from the actual n and i. 
The client uses its image to calculate the address a' = 
A (n', i') for key c, while issuing a (point-to-point) 
request for the search of c, or for an insert or a delete 
of the record identified by c. It then sends the request, 
and perhaps the record to server a'.  LH* supports also 
multicast and broadcast queries addressing through 
one message all N buckets, [LNS93]. 
It might happen that a' ≠ a. Hence, every server s 
receiving a request first tests whether s = a. For this 
purpose, every server keeps the current value of i. It 
can be proven that s = a iff s = hi (c). If the test fails, 
the server forwards the request to another server. The 
LH* test and forwarding algorithm is as follows, 
[LNS93] : 

(A2)  a' ← hi (c) ; 
 if a' = a then accept c ; 
      a'' ← hi - 1 (c) ; 
 if a'' > a  and  a'' < a'  then  a' ← a'' ;  

          forward c to bucket a' ;  
The forwarding process could a priori create many 
hops. The major property of LH* is however that 
every request to an LH* file is delivered to the correct 
address after at most two hops, [LNS93]. 
As for any SDDS, the correct server finally sends a 
message back to the client, called an Image 
Adjustment Message (IAM). For LH*, an IAM 
contains the i value of server a'. The value of split 
pointer n is unknown to the servers, hence is not in 
IAMs. The client executes then the IA-Algorithm, 
[LNS93] : 
(A3)   if  i > i'  then  i' ← i - 1,   n' ← a +1 ;  
  if  n' ≥ 2i'   then  n' = 0,   i' ←  i' +1 ; 
 
 The result of (A3) is a better image, with both i' and n' 
closer to the actual values. Also, as long as there is no 
new split, the same addressing error cannot occur. 
(A3) makes LH*-images converge rapidly [LNS93]. 
Usually, O (log N ) IAMs to a new client (the worst 
case for image accuracy) suffice to about eliminate the 
forwarding. If a client already has a good image, but 
the file starts to scale-up, algorithm (A3) suffices to 
keep the incidence of forwarding on the access 



 

performance about negligible. In practice, the average 
key insert cost is one message, and both a successful 
and unsuccessful key search cost is two messages, 
regardless of the file size. The worst access 
performance of an insert or search corresponds to the 
case of two hops. These costs for LH* are of four 
messages, also regardless of the number of nodes of 
the file. 
The principles of LH* led to many variants [LNS93a], 
[KLR96]. The schemes offer various trade-offs 
adapted to particularities of applications.  
Principles of  LH*S 
We now discuss the basic LH*S  using the bit-level 
striping (segmentation, scattering..).  A record R is a 
key, usually denoted c, and a sequence of  bits B, 
numbered from left to right 
B = b1,...,bkbk+1...b2kb2k+1...bmk .  The size of B is mk, 
last bits being padded if needed in practice. When an 
LH*S  client should store R, then it proceeds as 
follows, Fig. 1: 

•  It produces k segments, k > 1. The i-th segment si   
consists from c and from all the bits s'i : 

 s'i  =  bi bk+i b2k+i ... 
•  It produces the parity segment sk+1  that also contains 
c and the parity bits s' k +1, let us say for the even parity: 

 s' k +1 =  b'1 b'2.. b'm 
where bit b'j   is the parity bit for the string with the j-th 
bit of each segment ; 1 ≤ j ≤ k.  If some segment s of R 
cannot be read, the parity segment, allows to 
reconstruct  s. 

R

s4
s3s2

s1

53 011011001110........0101110

LH*s client

53 0001.... 53 1101.... 53 1110..... 53 0010....

Parity
segment

 

Fig. 1 LH*s  scattering of a record  into k = 3 
segments 

An  LH*S  file is created as a family Φ of  k+1 LH* 
segment files S1..Sk+1.  File Si   stores  all the segments 
si. The address of segment si is calculated from its key 
c that is, we recall, also the key of R.  As in LH*M , 
[LNS96],  two segment files can be structurally-alike 
(SA). They have then the same parameters : the bucket 
size, the functions hi,  etc.  They can also be 
structurally-different (SD) which means that these 
parameters differ. SD-files are loosely-coupled if they 
share functions hi.  Otherwise, they are minimally-

coupled [LNS96]. Fig. 3 shows the relationship 
between SA and SD files.  
The basic constraint on  Φ  is that for every record R, 
all its segments are mapped to different nodes, or at 
least buckets. One way to achieve it is to provide each 
S with the physical allocation table TS  spanning over 
distinct nodes of the multicomputer. In other words, no 
node carries  then a bucket of Si  and of Sj  when i ≠  j.   
For SA segment files, every segment of the same 
record  R is usually in the bucket with the same bucket 
address m within its segment file, as in Fig. 3. For 
instance, after some inserts into F, the segments of R 
with key c = 100, may be all in buckets 57 of their 
files. The client keeps a single LH* image with the 
(guessed) file level i' and the  split pointer value n' for 
every S.  For SD segment files, the segments' bucket 
addresses typically differ, Fig. 3. Hence, there is one 
image per S on the client and these images usually 
differ as well. 
As usually for an LH* file, every S expands through 
splits, tolerates addressing errors, and sends IAMs to 
its clients. Splits among segment files are not 
synchronized, i.e., each S  split autonomously. Hence, 
even in SA segment files, it may happen that  bucket m  
in a segment file Si  splits before another bucket m in 
the segment file Sj ; j ≠ ι .  One reason may be that Sj   
failed when it should split after a new insert.  A 
segment of record R may then be in new bucket in Si  
while another segment of R is still in bucket m in Sj. 
Hence, the addresses of the segments of a record 
within their SA segment files may sometimes differ as 
well.  
The whole set Φ of LH*S segment files S has a 
common component at some server called the segment 
file coordinator,  SC in short. Its address is known to 
every server and every client. SC takes care of the 
LH* coordination for each S. This includes all the 
allocation tables, assumed dynamic, since easier to 
manage  for a spare production. In addition, it has 
capabilities for the fault-tolerance of the whole 
collection that we'll introduce.  
In particular, SC gets alerted when a bucket failure is 
detected.  The alert may come from a client that failed 
with a file manipulation. It may also come from  a 
server that could not forward a message or could not 
split. If a failure is confirmed, SC coordinates the 
creation of the spare. 
 File manipulation 
Inserts 
To insert record R, the client first produces the (k + 1) 
segments.  Then.  it sends each segment si  ; i = 1..k + 1 
; using a unicast message to bucket mi ,  where mi  
results from the LH* address computation (A1) 
executed on the client for each segment file Si. Unlike 



 

for LH*, each message carries the value mi  for the 
reasons discussed more in depth in Section 0.  The 
server addressed by the message usually carries bucket 
mi.  It might rarely happen that it carries another 
bucket.  This occurs when bucket mi  failed and was 
recreated at another location. If it happens, the server 
that got the message forwards it to SC.  SC determines 
from the allocation tables where bucket mi   actually is, 
and resents the message. An IAM comes later to the 
client, from bucket mi, with its actual address. 
Once bucket mi  gets the message, a forwarding may 
occur as usually for an LH* file.  The forwarded 
message also carries the number, let it be m, of bucket 
m  the message is intended for. If another bucket is 
found at the destination site instead, the message is 
resent to SC, as above, etc.  Since in LH* there are at 
most two forwardings, SC can get the messages at 
most three time as well. Same process may occur for 
each segment file. It is however very unlikely that all 
this happens simultaneously for all the segments of the 
same insert.  The typical case is that every segment is 
inserted without any forwarding. 
Assuming nevertheless that a forwarding occurs at a 
segment file, the client receives an IAM. Up to (k + 1)  
IAMs may therefore be triggered by an insert.  The 
client of  SD segment files adjusts each image. The 
client of  SA segment files, has to proceed differently, 
since it has only one image.  The basic strategy is that 
the client performs the  IA-algorithm for an address a' 
only when all the (k + 1) IAM messages with a' and 
(same) i' are received. 
A client or a forwarding server may also find a bucket 
unavailable. It then alerts SC and forwards the 
segment to it.  The client considers the insert 
successful if it encounters at most one failed bucket. 
Otherwise, the client waits for a message from SC, 
advising whether the insert is finally successful or not. 
The failed bucket can be indeed the correct bucket for 
the segment, or the intermediate bucket that should 
forward the segment. The insert basically fails if the 
SC finds unavailable more than one correct bucket for 
a segment. There can be in contrast several forwarding 
buckets unavailable. SC may bypass such  buckets, as 
it has the actual image of the file. If only one bucket is 
unavailable, the segment that was passed to SC is 
finally inserted during the recovery  procedure 
discussed below. 
LH* supports also bulk inserts. A message with 
several records is then multicast to all the servers. 
Each server stores then the records whose keys 
correspond. LH*S file also supports the bulk inserts. A 
record can be sent entirely in a bulk message. 
Alternatively, one may spread its segments into 
several bulk messages. This strategy enhances the 

transfer security. Note that  one should send also then 
the parity segment, computed by the client. 
Splits 
Splits of segment files are basically performed as for 
LH*. Especially, if the new bucket fails during the 
split, i.e., before the split is committed, the split 
restarts with a new target bucket.  The new case is that 
a bucket can fail failure during the split. The split is 
stopped.  The spare is created as for any failed bucket, 
using the other segment files to reconstruct all the 
unavailable segments, as described below.  Then, the 
split is restarted from the beginning.  Alternatively, the 
new bucket sends to the spare all its keys. The spare 
moves only the segments that should move and whose 
keys are not among the received ones. 
Deletes 
To (physically) delete R (c), the client sends the key to 
all the corresponding (k + 1) buckets. Every bucket 
deletes the corresponding segment, as discussed in 
[LN95]. Physical deletion being rare in practice, we do 
not discuss them more in what follows. 

Search 
Key search 
The search for record R, given its key c,  is performed  
basically through sending c to k servers, S1, S2... Sk .  
The client uses k  unicast messages to the buckets 
whose addresses result from the LH* address 
computation for each segment file.  For the SA 
segment files, the bucket address is computed once for 
every segment file. For SD segments, there are k 
calculus and the results may differ. If all the segments 
come,  the clients synthesize the record. 
As for the inserts, each message carries its intended 
bucket number. The servers may forward the 
messages, as usually for LH*, or to SC, if the actual 
bucket does not match the intended one. If a reply is 
missing, despite perhaps several attempts to get it by 
the client, the client alerts SC. If only one reply is 
missing, the client issues a message to Sk+1.  If this 
segment comes,  the client synthesize the record.  
Otherwise, the search fails. 
The search can be unsuccessful. In this case, it is not 
necessary to have all the servers to reply.  The buckets  
perform then the hashing  m = c mod k. Only the 
bucket within Sm   replies.  An alternative strategy is 
that no bucket replies and the client declares the search 
unsuccessful by time-out. It is highly unlikely that if 
the search was successful, the replies from all k 
buckets were lost on the way, and the client incorrectly 
understood that the search was unsuccessful. 



 

Scan search 
LH* supports also the scan search, or the scan in 
short,  where all records are searched for some non-
key values. For  records that are collections of 
attributes, the scan search criteria usually consist of a 
selection predicate on the attribute values. An LH* 
scan search is realized through a parallel search over 
each bucket using the selection expression got from 
the client. The results are returned to the client also in 
parallel. A  scan may terminate using a probabilistic 
(time-out) termination where only the buckets that 
have sent records reply.  One may alternatively request 
the deterministic termination, where any bucket 
replies, with its address, and selected records or a null 
message if the search is unsuccessful. The client may 
compute whether all the buckets currently existing in 
the file replied. If only a few records are to be selected 
and the file is large, then the time-out termination is 
much faster than the deterministic one. 
A scan is sent by the client using either unicast 
messages or a multicast message. In the former case, 
the client may not know all the corresponding 
addresses. An algorithm propagating then the search to 
all the servers of the LH* file is defined in [LNS93a].  
The drawback of a multicast message is that it is 
received by all the sites on the net. Hence it disturbs 
also those not serving the file. 
A scan in an LH*S file  is typically a more complex 
operation than in an LH* file with the same records. 
Each bucket contains indeed only some non-
consecutive bits of each record.  Such a content 
provides the high-security, but is about meaningless 
for evaluating selection predicates.  The only practical 
way to proceed is to reconstruct all the records at some 
servers, where the parallel scan is performed as for an 
LH* file. The reconstruction is essentially a multiway 
equi-join on the key value between all the segments. 
The servers where it is performed are called join 
servers. It should be worth using all the available 
segment file servers as join servers and uniformly. 
This rationale leads to the following algorithm.  
(A4)  LH*S  scan  search 

1. Using unicast or multicast, the client sends the scan 
search Q in parallel to every  bucket m in its image(s) 
of each segment file Si   ; i = 1,2..k.  
2. If unicast is used, then each  server  applies the LH* 
parallel search propagation algorithm.  
3. For every segment si   (c)  with key c  at every  
server, perform the hashing h (c) = c mod k +1.  
Consider the server of segment sh (c) (c) as the join 
server of  the record R (c).  If  i = h (c), then prepare 
for the reception of other segments of R. Otherwise, 
send si  (c) to the corresponding address i n file Sh (c ). 

4. For every  server, perform the join of all the 
segments received with the corresponding segments 
stored  locally, to reconstruct every R. 
5. If any  expected segment is missing, alert SC and 
search Sk + 1.  Reconstruct remaining R's. 
6.  For each server, perform  Q  and  send the result to 
the client. 
Details of  (A4)  are discussed in [LN95]. The basic 
way for sending the results of Q back to the client is to 
simply to send all the selected records by every join 
server. Another possibility is to send from the server 
of a selected record the messages to the buckets with 
the corresponding segments requesting them  to be 
sent to the client.  Finally, the join server may send to 
the client only the keys.  The client searches then the 
corresponding segments itself. The latter approaches 
are more costly in CPU and messages, but offer higher 
security. 
The client may wish the parallel search to terminate in 
a deterministic or probabilistic way, i.e., by time-out.  
The deterministic termination is costly, as every 
bucket has to send a result, perhaps null.  For a 
probabilistic termination it suffices that one sends only 
the selected records or segments. There is no guarantee 
that the client gets all the records that it should. 
Failure management 
Overview 
We consider the following kinds of failures : 
1. A search at an available server  does not find a 
segment si   ;  i ≤ k ; while the client gets all other 
segments. 
2.  A bucket is unavailable for access. 
In case (1), si    is simply reconstructed by the client on 
the fly, after additional search of sk + 1. Then, si    is 
reinserted, by the client or SC. If more segments are 
missing, the record  and the segments cannot be 
reconstructed from sk + 1.  The corresponding recovery 
is considered application dependent and beyond the 
scope of the basic LH*S.  
In case (2), the lack of access is due to the bucket 
failure, or to the network failure. Once the access is 
reestablished, the bucket restarts the service by 
contacting SC. The clients are served again by the 
bucket only if SC  informs the server that no spare was 
produced in the meantime.  
If a bucket fails, two strategies exist : 
1.  One continues, using the available segments, until 
the bucket recovers by itself. If k >> 1, the difference 
in the workload on these segments should be 
negligible.  If updates occur, the corresponding 
segments are reconstructed when the bucket is up 
again. 
2. A spare is produced, replacing instantly the failed 
bucket.  



 

The choice between strategies (1) and (2) is 
application dependent. Strategy (2) clearly offers 
higher availability. This strategy is the basic one for 
LH*S.  The spare production algorithms depend on the 
structure, SA or SD,  of the segment files.  They are 
based on those for the LH* with mirrors [LNS96].  
Creating a spare 
Let it be bucket n1 that failed in its segment file, let it 
be S1. To create the spare, one should find the segment 
buckets of S2..Sk  + 1 that contain the remaining 
segments of every record R whose segment s1 was in 
the lost bucket. For each lost segment, the remaining 
segments of R have to be joined at some join server. 
The lost segment may then be recomputed at the join 
server, and inserted to the spare being created. 
To determine the addresses of the buckets with the 
remaining segments, we consider at first the SA or SD 
segment files, except for the minimally coupled files. 
Let j1 be the level of bucket n1. Every Si  uses the same 
hash functions. Hence, for each Si   ; i > 1 ; two cases 
may happen: 
1. The segments are all in one bucket. This will 
happen if there is not yet bucket n2 in Si   such that n2 = 
n1 or level j2 of bucket n2 is j2 ≤ j1. In particular, if j2 < 
j1, then bucket n2 may contain more records than 
bucket n1.  
2. The records are in several buckets. This will happen 
if  j2 > j1. 

In case (1), n2 is at the largest address n2 such that: 
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In case (2), buckets to be read are bucket n1 itself, its 
children, children of children, etc. Hence these buckets 
are : 
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The first line corresponds to the addresses of the 
children of n1. The next line corresponds to the 
children of the first child of n1 (in some cases this line 
may if fact be a copy of the first line since one may 
have n1 = n1,1). Then, there are the children of the next 
child, etc.  Fig. 2 illustrates the formulae. 
Let bi  denote the bucket capacity of Si. Let us assume 
that the load control policy is the same for both files. 
Then, typically, case (1) occurs if bi  > b1 and case (2) 
occurs if b1 > bi  .  If b2 = b1, one has the case of  SA 
segment files. 

 The following algorithm is executed by SC and the 
buckets' servers, to produce a spare for SA and SD 
files. 
(A5)  Spare creation for an LH*  S file 

Consider that the lost bucket is bucket n in  file S1.  
1. For every segment file Si ; i = 2..k + 1 ;  SC  
determines as above the addresses mi  of buckets that 
could have the remaining segments of the record R 
whose segment s1  was in bucket n. Let l be the total 
number of these buckets. 
2. SC allocates a server for  the spare and an empty 
new bucket n is created. This server receives from SC 
all the bucket addresses computed in Step 1. 
3. For every mi,   SC sends the query with level  j  of 
bucket n. It requests every key c such that segment s1  
of R (c) was in bucket n, i.e., it requests to test for 
every c whether n = hj  (c). 
4. Every bucket server  computes for each c found 
through Step (4)  the hashing function h (c) = 2 + c 
mod l.  The server of bucket m with the segment sh (c)  
is assumed the join server for  the record R (c).   
5. For every segment s (c)  from step (4), if  bucket m 
is not at the server computing the function, then the 
server sends segment s (c) to bucket  m. To allow for 
that, the query of step (4) contains also the actual 
addressing parameters (i, n) of each segment file, and 
the physical addresses of all the buckets found through 
step (2). 
6. For every bucket m, there is a terminating message 
with the number segments sent, expedited by every 
bucket from which bucket m expected or got segments. 
7. Every record corresponding to the lost bucket is 
reconstructed  on the join server. The lost segment is 
computed and sent to the spare bucket. 
8. The spare server expects a termination message 
from each join server, containing the number of 
records that it should receive.  
9. SC sends the physical address of the spare to the 
server with the parent of the lost bucket. The server 
updates its allocation table. 
10. Through Step 4, the algorithm distributes the 
computation of the lost segments.  A naive approach 
would be to centralize this computation on the spare, 
making it much less efficient. The goal of the 
terminating messages in Steps 6, 9, is the deterministic 
termination. Details of Step 5 - 9  are implementation 
depended. For slower nets, it may be advantageous 
send segments to the join server and from a join server 
to the spare in bulks.  The parent allocation table is the 
only one that points to the spare, as the parent might 
need to perform a forwarding, except for that of SC. 
Hence, it is the only bucket sever table that needs an 
update when the spare is built.  Once SC  commits the 
split, any query to the server of the failed bucket will 



 

be directed to the new one. This, after being forwarded 
by the server or the client to SC, as discussed in 
Section  0. The expected bucket number is necessary 
in every query to recognize the situation when the 
server of the failed bucket became a spare in turn and 
eventually got a new bucket.  See [LN95] for further 
discussion of the algorithm. 
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Fig. 2 Children and other descendants of bucket 1 
in LH* file with level j = 5 

Performance 
Load factor 
The load factor α of a file is defined as  α = x Rs  /bS N, 
where x is the number of records, Rs the record size, bS  
the bucket size, and N is the number of buckets in the 
file. For an LH*  file, one has in practice  α ≈ 70 % - 
80 % [LNS93a]. For LH*S   file, assuming the load of 
α for every segment file, one can show that the 
approximate value α'  of the overall load factor is : 
 α' =  α  k  / (k + 1)  -  O [k f ]. 
Assuming k = 4, one ends up with a' ≈ 55 - 64 %, i.e., 
15-25 % of more storage with respect to the LH* file, 
as  the price for the high-availability. 
Inserts 
Splits, and forwarding should be infrequent with LH*S 
, and the failures even more rare.  An insert to an LH* 
file typically costs one message. Hence the typical, 
and the best, messaging cost of an insert into LH*S file 
is  (k + 1) messages. Small buckets for segment files 
make splits, and forwarding more frequent. This 
increases the average insert cost while  building a file, 
up to 1.5 (k + 1)  messages per insert [LN95]. The 
insert cost increases on the other hand usually by three 
messages if  a segment is sent to a bucket that failed in 
the meantime hence a spare was created. It may even 
triple in the worst case, thought about impossible in 
practice, a discussed in depth in [LN95]. 
The messaging cost of an insert measured in the 
number of messages, is at least (k + 1) times higher for 
an LH*S  file than for an LH* file. Another 

performance aspect is the volume of data sent over the 
net.  To insert a record of some length lR, with the key 
length lC , one transfers (lR  - lc   ) / k + k lc ) ≈ lR  / k   
more bytes  over the net for an LH*S  file than for an 
LH* file. For instance for k = 4, it represents only a  
25 % increase. 
The insert time is determined basically by the CPU 
time to send-out and receive the message, and by the 
transfer time.  For longer records, over Kbytes, or 
slower nets, e.g., Ethernet, the transfer time almost 
entirely dominates [LNS94]. LH*S  typical insert time 
should then be only 20 - 25% longer than the LH* 
insert time.  For a 10 Mb/s net, and 1 KB record, this 
leads to the insert time of about 1.25 ms [LNS94]. For 
faster nets or shorter records, the CPU time begins to 
dominate. The insert time of LH*S  becomes then 
closer to (k + 1) /2 times LH* time, as the servers work 
in parallel, but the client basically serializes the 
received messages. The exact figures depends on the 
network speed and topology. For a 1 Gb/s net, 100 
Mips CPU, and 1 KB record, the CPU time for an 
insert into an LH* file may be 51 µs and the transfer 
time 20 µs, leading  71 µs per insert [LNS94]. The 
same net would lead to the insert time of 140 µs for 
the LH*S file, i.e., two times greater, for, we recall k = 
4. Note that this evaluation still neglects  the time to 
segment the record that will add some µs. 
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Fig. 3 Types of LH*S   segment files :    
(a) SA-segments, (b) loosely-coupled SD-segments,  

and (c) minimally coupled SD-segments 

Observe finally that segment files can be on different 
nets, connected to the client through different 
controllers. The transfer time decreases accordingly.  It 
can become faster than for LH*. 
Key search 
The calculus similar to the one for inserts, shows that 
the typical successful key search costs 2k messages. 



 

An unsuccessful search costs typically 2 messages. In 
the theoretically worst case without a failure the cost 
of successful search is 9 k + 1 messages. A bucket 
failure costs typically an additional  message to  sk + 1, 
and the reply. It might cost up to 10 additional 
messages for a very unlucky client. If a failure is 
discovered during the search, it costs typically 2 
additional messages to Sk + 1 and 1 message to SC. 
With respect to the transfer  time, it is about that of 
LH* assuming lc  << Rc , as only k segments are sent 
back. Hence for large records or slower nets, LH*S 
search time is about that of LH*. Otherwise, the 
successful search time grows towards  2 k tm  , where tm  
is the time to process a message at the client site. In 
the case of a Gb/s net dealt with for the inserts, the 
successful search time should be 4 * 56 + 31 = 255 µs, 
instead of 87 µs for LH* [LNS94]. The unsuccessful 
search time is clearly about half of it, plus, perhaps the 
time-out.  
Scan search 
First component of a scan search price is the cost of 
query propagation the, let it be m1 . One has m1  = 1, if 
the multicast is used. Otherwise, regardless of the 
client's image, one has m1  = NS, where NS  is the total 
number of buckets of k segment files, as every bucket 
is reached by exactly one message. The number of 
rounds is greater when the client's image diverges 
more, leading to a somehow larger propagation time.  
Second component, let it be m2, is the cost of  merging 
all the records, according to Algorithm A4. This cost 
corresponds to all-to-all bucket messaging, and is for a 
segment file: 
s = 0.7 b N (k - 1)  / k, 
assuming the load factor  α = 0.7 on the average.  
Hence one has : 
m2  = Σ s 
and for SA segment files, one has : 
m2  ≈ 0.7 b N (k - 1). 
Finally the third component m3  depends on the 
termination algorithm wished.  For the probabilistic 
termination, one depends on the query selectivity and : 
0  ≤  m3  ≤ NS  . 
Hence, for SA segment files, one has : 
 0  ≤  m3  ≤ k N . 
For the deterministic termination, one simply has  m3  
= NS  , as all the buckets must reply. 
A practical value of b is b >> 1, e.g., b = 1000.  Cost 
m2  is therefore dominant by orders of magnitude. For 
k = 4 for instance, and a large file, e.g., NS  = 1000, 
and, m2  reaches  2.1M messages. Such messaging has 
to take at least a few seconds in practice.   
Cost m2  does not exist for LH*. Hence, scans in LH* 
file are cheaper and faster than in the LH*S  file. This 
cost is the main price for the high-availability and 

high-security. If one needs the high-availability only,  
LH*M using mirroring  allows for without this cost 
[LN96], but at much larger storage cost. On the other 
hand, if  one segments the records without bit-level 
scattering, giving up some security, parallel queries 
may be executed more efficiently, as it will appear 
below, at the same storage cost as above.  
Creating a spare 
A spare is created according to Algorithm  A5.  The 
messaging cost involves first a few messages between 
SC and a server where the spare is created. Let this 
cost be c1. One can assume c1  ≈ 2 in practice. Then 
RC has to contact servers where the segments  used to 
compute the lost ones could be (Step 3 of Algorithm 
A5). For SA segments, the cost, let it be c2 should 
typically be c2  = k messages.  For SD segments, it can 
be  k < c2  ≤ NS. One has k = NS for the minimally-
coupled segment files where the segments for Step 3 
has to be searched using parallel queries.  Otherwise, 
one has c2  ≤ pk, where p  is an integer  close to max 
( bs  / bi  ), where bs  denotes the bucket capacity of the 
lost bucket, and bi   is the bucket capacity of any other 
segment file, among the k +1 files.  
Next cost component, let it be c3 corresponds to the 
join of the segments. One has thus on the average : 
c3 = 0.7 b k, 
as there are on the average as many segments to 
reconstruct on join servers. Then the reconstructed 
segments are sent to the spare which leads to the cost 
component c4 = c3. Finally, the spare  commits to SC, 
and SC sends the pointer to the spare's parent. All 
together this leads to the following typical costs : 
- for SA files, one has: 
 cS  ≈  2 + k  + 1.4 b k + 2, 
- for SD files, one has: 
 2 + k  + 1.4 b k + 2  <  cS  ≤  2 + max ( bs   / 
bi  ) + 1.4 b k + 2, 
- and finally for minimally-coupled segment files, one 
has : 
2 + k  + 1.4 b k + 2  <  cS  ≤  2 + NS + 1.4 b k + 2. 
Hence the creation of a spare for minimally-coupled 
segment files can be by far the most expensive.  
Multiple bucket failure 
It is easy to see that any above discussed  LH*S  
schema supports a single bucket failure.  Resistance to 
multiple bucket failures depends on whether SA or SD 
segment files are used.  For SA segment files, with 
bucket capacity of b segments, and no load control, a 
multiple bucket failure does not create any loss of 
records, as long as no failed buckets hold segments of 
the same record. This is an unlikely event. For any two 
segment files there are indeed only two such buckets.  



 

If this happens anyhow, than one looses α b records, 
on the average, i.e., 0.7 b records in practice.  
Loosely-coupled and minimally-coupled SD segment 
files,  increase the probability of data loss in the case 
of a multiple failure, but decrease the amount of lost 
data. See [LN95] for the corresponding performance 
trade-offs. 

High-security 
Bit-level striping 
The bit-level striping as used in an LH*S file provides 
naturally the high-security in the sense that no record 
becomes known to an intruder to a site or to a network. 
For every record R of the LH*S file striped at bit-level, 
each bucket has one of each k bits of R. If l  is the 
length of R  in bits, the key non-included, there are 
s = l (1 - 1/k) bits of R missing from the any bucket.  
An intruder to a site has 2s  possibilities to complete a 
segment to the actual content. This is at least a very 
long computation in practice.  
Next, even an intruder knowledgeable of LH*S 
principles, cannot find from the bucket where to find 
other segments.  A bucket in one segment file does 
have the addressing parameters of other files (except 
when a scan is in progress). Hence, the intruder would 
need to search the missing segments anywhere in the 
multicomputer. One can reasonably expect such a task 
at least very long in practice.  
Finally, LH*S  protects against  getting knowledge of 
the data through the  listening on the net. Every 
message naturally carries only one from every k bits of 
the record. To reconstruct the intercepted segments  
with the same key, require k! trials, assuming the 
intruder does not know the reconstruction order that is 
known implicitly only to the client.  If this protection 
is not enough, one can easily scramble the same keys 
to different values for the transfer in different 
segments. For instance, the server can add the segment 
number to the key in the message, to be subtracted by 
the client. Finally, different segments of a record may 
come to the client through different sub-networks, 
making the intrusion through the network listening 
even more difficult. 
Note that SA segment-files are somehow weaken from 
the high-security point of view than SD files. If an 
intruder to a bucket finds the addresses of other 
segments of a record, it knows the addresses of all 
other records in the bucket.  Such correspondence is 
only partial for loosely coupled SD segment-files, and 
does not exist for the minimally-coupled files. 
Note finally one more nice property of  LH*S.  Even if 
an intruder learns the addresses of all the segments of 
a record at one time, these addresses change when the 
file scales. 

Attribute level striping 
LH*S, as discussed above, enhances the high-security 
at the expense of scan performance. It makes segments 
meaningless through the scattering at bit level, in order 
to make data secure against intrusions. To make a scan 
efficient, through the parallelism, data should in 
contrast remain possibly entire. If efficient scans are of 
greater importance than the high-security provided by 
LH*S with bit-level striping, one should use the 
striping at the level of  blocks of data.  
One choice for LH*S is the attribute-level striping. 
Each of k segments of a record R (c) contains then c 
and some non-key fields of R. Each non-key attribute 
is entirely in one (and only one) segment. The 
attributes in a segment do not need to be the 
consecutive ones in R. The parity segment sk + 1 
contains the parity bits for the fault-tolerance. As the 
segments may be now of different length, sk + 1  is of 
the length of the longest one. 
The attribute level striping lowers the bucket security 
level. The intruder disposes of  a meaningful part of a 
record, thought there is still no addresses in the bucket 
of  the rest of R.  In turn, one may process some scans 
without first reconstructing the records.  This may lead 
to a substantial performance  improvement [LN95].  
Attribute-level striping also may lead to a better 
performance of updates and of the key search. An 
update to some attribute A (S ) in segment S, requires 
access only to S  and the parity segment. A search 
involving only the key and A (S ) requires access to S 
only. LH*S with the attribute-level striping is more 
discussed in [LN95]. 

Related work 
The ideas in LH*S originate in the RAID approach  
(Redundant Arrays of Inexpensive Disks) [PGK88]. 
However, LH*S  scatters data  over a distributed RAM 
of servers at a net, instead of a cabinet of disks. 
Another difference is that the LH*S  stripes at the 
logical (record, and perhaps attribute) level, instead of 
physical page (sector) level, using the key as the 
identifier replicated in each segment. This allows 
LH*S to easily scale, unlike the RAID schemes. 
The efficiency of the scan  search as discussed for 
LH*S  is not a part of RAID goals. The high-security 
goal of LH*S is not a part of RAID idea objectives 
neither. It follows the Fragmentation-Redundancy-
Scattering  (FRS) proposal for the data management 
over the networks, [R94].  One postulates in [R94] and 
its references that the FRS approach is among the most 
promising ones. 
There were other attempts to use striping for network 
files. An overview of some of the proposed schemes is 
in  [T95a]. Among earliest proposals, was the RADD 



 

(Redundant Arrays of Distributed Disks) schema 
[SS90]. The RADD schema is also physical, striping at 
page level.  It is also static, designed for slow 
networks, and inefficient for the scans.  High-security  
was not a concern for RADD design. 
Between recent high-availability prototypes using a 
physical schema, there is the Zebra system, [HO95]. 
Zebra files are not SDDSs, e.g., since a centralized 
directory is required for the address computation. The 
system uses striped log-structured files with possibly 
large segments. It is not efficient for operating on 
individual records, e.g.,  in the database application 
context, [HO95].  In particular there is no provision in 
Zebra architecture for the scans. 

Conclusion 
LH*S  appears an attractive SDDS providing  the fault-
tolerance and high-security of data. Both features are 
of interest to many applications. The price for new 
features is a fractional increase to the storage for the 
file, and some additional messaging, as compared to 
LH*. The additional cost is moderate, especially  when 
most of file operations are key searches and inserts.  
Scans may affect the access performance more, 
especially if bit-level striping is used. One may trade-
in some security for the attribute-level striping, 
improving the access performance. 
Further research should concern performance analysis 
and experiments with various design issues.  New 
ideas for RAID systems may give interesting result 
when transposed to the multicomputer environment 
[W96]. Given the commercial importance that 
multicomputers should have soon, [M96], another 
interesting alley should be to expand the Windows NT 
file striping capabilities to the LH*S capabilities. 
Finally, one should   investigate high-availability 
variants using striping for other SDDSs, RP* schemes 
especially [LNS94], [LN96a]. 
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