Forum XLV Proceedings

New Orleans Marriott October 114-14, 1987

Witold LITWIN, Philippe VIGIER

INRIA, 78153 Le Chesnay, France

ABSTRACT

MRDSM provides several functions for cooperative management of relational databases managed
independently by the well known relational database system MRDS (Multics Relational Data Store).
These capabilities allow to easily manipulate in the multidatabase environment data that are
heterogeneous with respect to names, structures or values since independently defined. One of
these capabilities are dypamic _attribytes that are temporary transforms of actual attributes,
dynamically defined in queries. In the previous version of MRDSM a dynamic attribute was known
only to the query where one defined it. Furthermore, the user had to specify the transform for the
retrievals and the inverse transform for the dynamic attribute updates. We present two extensions to
these capabilities. The first holds the definition of a dynamic attribute for several queries. The
second avoids to define the update mapping if the retrieval mapping results from a computable
formula. In this case the system automatically inverses the formula using Macsyma and sometimes
its own numerical methods. This principle constitutes in particular as far as we know the first
solution to the classical problem of view update with attribute value conversion. The database
literature generally considered such updates impossible.

1INTRODUCTION

Databases (DBs) managed by a multidatabase system /LIT82//LIT84/, /LIT84a/ are
generally autonomous. Similar data may differ with respect to value types or meanings.
Thus, for example, prices may be in dollars ($) in one DB and in French francs (FF) in
another. The differences create problems in expressing the queries. An equi-join on
different currencies is for instance meaningless. A multidatabase manipulation language,
should provide functions, making queries easily formulable in such an environment as
well.

In /LIT86/, we introduced for this purpose the concept of a Dynamic Attribute. A dynamic
atribute (DA) is a temporary attribute that is defined as a transform of some actual
atribute(s) while formulating a query. It is unknown to any schema, unlike a virtual (a
view) attribute. In a query, one may refer to the DA as if it was an actual attribute (with
eventual restrictions on updates). The definition of a DA includes usually a mapping called
retricval mapping that defines the value of the DA from the actual one(s). Another
mapping, called npd_a&.mapp_lgg defines the actual values from the dynamic ones, if a
dynamic value should be updated.

The concept was implemented within the relational multidatabase systtm MRDSM
/LIT85/, 'WONB84/, /WONB4a/. It basically allows to instantly convert actual value types
into user defined value types and to refer to these new value types as if they were actual
attributes. For instance, an actual price in FF may be instantly converted to a price in $
through a rate known to the query author only and used as if it was an actual price. In
particular, the conversion may make data comparable and the joins formulable. One may
also use it for instant homogenization of the result of a retrieval from different DBs. For
instance,actualpricesinFFi.noncDBandinsinanotherDBmay be presented all in $ or
all in English pounds, etc.

Furthermore, onc may easily guess "what if". For instance, one may dynamically
experiment various exchange rates between $ and FF. One may also instantly define an
attribute from several attributes (e.g. salary = days * day_sal). Finally, one may update

L9y

the dynamic value without having to express the corresponding actual update. One may
thus directly increase the price in $, without formulating the actual update in FF.

In MRDSM, a DA exists only for the query that defined it. The experience shows however
that several queries may need the same DA. Currently, the DA has then to be redefined
in each query. Furthermore, it appeared that the system shouid be able frequently to
determine automatically the update mapping. For instance if the retrieval mapping
corresponds to a lincar formula, like price_$ = price_FF/6, then the update mapping is
price_FF = price_$ * 6 and this formula may be found casily using the symbolic
manipulation methods.

Below we discuss two extensions to MRDSM. The first one called hold option keeps a DA
available for any number of queries in a session. The second one performs the inversion of
retrieval mappings that are computable formulae or tables. This extension required the
symbolic manipulation capabilitics that are beyond the scope of current database systems
and may require the software larger than many database systems themselves. We present
two aspects of the corresponding implementation in MRDSM. On the one hand, MRDSM
calls for service the existing symbolic manipulation system Macsyma /MAC83/ (400 K
lines of PL1). In addition, it uses its own numerical methods that were implemented easily.

The principles of mapping inversion presented below apply also to updates of views with
attribute value transformation. Up to now, it was generally believed that updates operations
cannot be supported on such views (/DEL82/, p. 182, /DAT86/, 187),... This was onc of the
fundamental limitations on usage of views.

Section 2 reviews the concept of DA and its implementation in MRDSM. Section 3

discusses the hold option. Section 4 deals with the mapping inversion. Section 5 concludes
the discussion.)

2 DYNAMIC ATTRIBUTES
Let D be a dynamic attribute of a relation R. Let N be a set of actual attributes of R that we

call source anribute(s) (for D). The values of D basically result from the retrieval
mapping, called M; M :N -> D, n/-> d ; where n = (aQ, ..., am) are values in a tuple and

d is the value of D for this tuple. In MRDSM, M may be defined by a formula, a program
or a table. The D values are updatable, if there is the mapping M’ ; M’ : D <> N ; called
update mapping. This mapping has to be user defined in MRDSM for M defined by
formulae, programs and usuaily for tables.

Dynamic attributes are one of the functions provided by the multidatabase manipulation
language of MRDSM, called MDSL. For a detailed description of MDSL and its dynamic
attributes see /LIT86-86a/. The general form of MDSL. query with a DA is as follows.

-bd (<alias> <database name>)...
-range_s <semantic_variables>
-range (<tuple_variable> <relation designator>)...

-attr_d <name> : <value type>
-define by <mapping g type>(<source>) = <mapping definition>
-updating <target> by <mapping type>(<source>) = <mapping definition>

-select <result>
-where ate>
retrieve / delete / modify <value_list> / insert <tuples>

The clause -bd is optional. It defines the scope of the query and eventually short aliases for
database names. The scope is the largest set of DBs that the query may address (the
default is the currently open databasc). The clause -range defines tuple variables over
relations. A relation designator is the relation name eventually qualified with the database
name. It may be, as usually, a unique identifier. However, it may also be a muitiple
identifier or a semantic variable defined in range_s clause. In the latter case, the tuple
variable is ranging over sets of relations. These relations may share the name (the multiple
identifier) or may have different names declared then as the domain of a semantic variable.
Such a query basically produces a set of relations that may be union non-compatibie. See
/LIT86/ for deeper discussion of these features of MDSL.

The clause -attr_d declares the name of a DA, with its value type. The type is either 'R’
(numerical) or *C’ (characters). The clause -define by defines the retrieval mapping. The
mapping type is either *T” for a table or 'F’ for an arithmetical formula, or P’ for a
program. The program may usc any of the Muitics system languages and should be
precompiled. The mapping definition is a formula or a table or a program name.

The clause -updating defines the update mapping for DA updates. The target designates
the actual attribute to be updated. The source contains for a table mapping the names of all
other actual attributes the mapping concemns, if any.

ﬂlemningofthechuscs-selectmd-wbereasweﬂasoﬁhecommmdsistheusual.
One may use the DA in any clause and may declare any number of DAs per query.

Ex. 2.1. Let michelin be a databasc modeling the famous French restaurant guide
Michelin. Let the restaurants be described as follows :

(V] r (nr*,name street,type stars,avprice,tel),

where **" indicates the key attributes and stars is the restaurant rating ; stars = Y,
*##’ >%2%"_Let tourist be a database with a similar relation, except that prices are in $ and
keys are independent from these in michelin. Assume that no two restaurants has the same
name and street name. Consider the following queries of an American tourist who has
exchanged his dollars at the rate of 6.2 F/$ he is the only to know :

(Q1) : Select the name, the address and the average price in $ of restaurants whose average
price is the same according to both michelin and tourist.

The formulation of Q1 in MDSL is as follows :

(2.1) -bd (b michelin) (c tourist)
-range (t b.r) (sc.r)
-attr_d avprice : R
-define by F(t.avprice) = avprice /6.2
-select s.name s.street s.avprice
-where (L.name = s.name) & (L.street = s.street)
& (savprice = t.avprice)

" The name avprice refers here to the actual attribute in the define by clause and to the
dynamic attribute everywhere else.

(Q2) : Select from michelin the rating of restaurants whose price is under 10 $, under the
same rate.

(144

(2.2) -bd (b michelin)
-range (t b.r)
-attr_d avprice:R
-define by F(t.avprice) = avprice 162
-select t.stars
-where (avprice < 10)

As far as we know, MDSL is the only database language that incorporates dynamic
attributes. Other languages, like SQL in particular, allow the expression of queries (Q1)
and (Q2) by using a value expression or by creating & view or a temporary relation. The
comresponding form is however always more procedural and increases the possibility of an
error. One has to repeat the value éxpression any time its result is required in the query
formuhﬂonmdavieworatemponrynlaﬁonhastobecmtedmddmpped.
Furthermore, none of languages allows to update the dynamic value.

The dynamic attribute name may in particular be a multiple identifier or a semantic
variable designating a dynamic attribute in one database and an actual attribute in another
database. The query that refers to it in the select clause is then evaluated as two queries :
one providing the value of the dynamic attribute and the other providing the values of the
actual one. This capability allows to easily homogenize heterogeneous values. Sec details
in /LIT86/.

THE H PTION
3.1 The concept
The query Q2 could be the follow-up query of Q1 in the session. Many other guerics could
further follow Q2, using avprice as defined by Q1. Currently, MDSL requires a query
using a DA to contain its definition. Thus, avprice would need to be redefined as many
times as there are queries referring to. It is therefore useful to allow one to define a DA

only once for all queries that need it in a session.

ﬂneholdopﬁonisanewop(ioninMDSLimcndedfotdmneeds.TheDA is then called
a hold attribute. If D is a DA, one declares D using the keyword hold in -attr_d clause :

-attr_d hold D : <value type>

The definition of D remains valid until the end of the session or until the command :
dadh D

(droop_ad_hold) is issued. Afterwards, the name D may be reused for another hold
attribute. In addition, the command :

ladh
(tist_ad_hold) lists all the current hold attributes.
3.2 Name confllicts

A hold AD may share the name of an actual attribute. Furthermore, the user may redefine
the meaning of D for a query, for instance to change the exchange rate. To solve the
comresponding name conflicts, the meaning of D is defined by the first condition to hold in
the following order : (i) D created in the query (ii) the hold D, (iii) the actual D. The user
may inverse (ii) and (iii) for a query, using the following clause prior to the -select
clause :

-actual D.

Ex. 3.1 : If the query (Q1) had the hold option, then (Q2) could be sihply :

(3.1) -bd (b michelin)
: -range (t b.r)
-select t.name t.street avprice
~where (avprice < 10)

If the next query was for instance :

(3.2) -bd (b michelin)
-range (t b.r)
-actual avprice
-select t.name t.street avprice
-where (avprice < 70),

oLy

it would mean that the user deals with FF. Then, the formulation :

(3.3) -bd (b michelin)
-range (t b.r)
-attr_d avprice:R
-define by F(t.avprice) = avprice /6
-select t.stars

-where (avprice < 10)

would mean that the prices refer to the new exchange rate. In contrast, if next query was
(3.1), then it would mean that the hold rate : 1$ = 6.2 FF) applies again. Finally, one
should issue the statement : :

dadh avprice
prior to any new clause :
-attr_d hold avprice:R

in the session. However, all hold meanings disappear with the end of the session and are
unknown to any concurrent session.

4 Im i v

Hold attributes are stored in a temporary relation called Hold Option Dictionary. The
dictionary and the query decomposition are managed in MRDSM by the Hold Option
Processing Subsystem (HOPS). On one hand, HOPS transforms clauses with the hold
option into these without the option and updates the dictionary if the attribute name is not
in it. On the other hand, it adds the DA definition clauses, if the attribute name is already
in the dictionary and there is neither the corresponding -actual clause nor the full
definition of the DA in the query. Finally, it suppresses from the query the clauses -actual
if any, and takes care of the commands dadh and ladh. Once HOAPS finishes the query
processing, the query is in the form known to the DA processing subsystem that is then
called. The dictionary is dropped when the session finishes.

4 UPDATE MAPPING COMPUTATION
4.1 Introduction

MRDSM requires the user to provide the update mapping, noted below M, except for
table mappings. M’ is an inversion of the retrieval mapping, M. One may try to make this
inversion automatic. When it works, the user may define only M. Two problems appear
then :

- inversion computing.

I¢is simple when M is a table. It is more difficult for linear arithmetical formulae and even
more for the polynomial formulae.It is currently usually impossible for programs.

- the choice of one inversion among several, when M is many-to-one mapping.

Let M be for instance a 2nd order polynomial, mapping values of an actual attribute A on
D. Then, for any value of A, there are two potential values of D. The M definition alone,
does not suffice for the choice. On the other hand, if M is an m-ary mapping and m > 2,
then the formula defining M may not suffice for the choice of the attribute(s) to be affected
by the update. Consider for instance the case of DA salary defined as salary = days *

_ day_sal. One cannot know from the formula whether the change to salary should
correspond to the change of days, or of day_sal or of both attributes.

There is no general solution to the above problems. The clause -updating stays therefore
in MDSL for the cases when the system is unable t inverse M or the user prefers his own
choice. In particular, one should use it for program mappings. The remainder shows
methods avoiding the clause for table mappings and usual types of symbolic formulae.

4.2 Table mappings

Let T (D, S) = T (d1, 51), T(d2, 52);-. T(dk, k), be the table defining the retrieval
mapping, where S denotes the actual attribute(s) and

Ddlecmcspa\dingDA.Th’enmppingM’:D->S,M’:dl->sisdeﬁned
asmpondingfotachdtothefustﬂdi,q)suchdmd=di.Thus,itdoesnotmdto
be bijective. If there is no such element of T, then the update is rejected.

Ex. 4.1 Consider the following DA, where the user converts the actual star rating to his
own scale of rating.(TOP, GOOD) :

-attr_d quality : C
-definie by D(stars) = (TOP, ***), (TOP,**), (GOOD,*)

" The mapping M is not bijective as both "**’ and "***' ratings lead to "TOP’ rating. As

defined, it means that the user wishes his update of quality to TOP to set stars to TS

4.2 Formulae
4,2.1 The problem

The general form of the retrieval mapping defined by a formula Fis:
@.1) D =F(S1, 52, Skx) k>0.
The update mapping computation problem is as follows :

- Jet d be the retrieved dynamic value and s the comesponding actual
source values :

(42) d=F(s1,52, 5%)-

Let d’ be the update value ford ; 4’ <> d. For each retrieved d and the corresponding d’,
find the values s’ for which :

4.3) & =F('1;5°2,,5)-

These values are then to be entered into the corresponding tuples.

10

(744

For the computations of the retrieval mapping MRDSM uses the function CALC of
Multics system. This function accepts parenthesed arithmetical formulae with the operators
i+ =% /% Below, we mainly consider only such formulae unless extensions to this
assumption arc explicitly stated. We further consider that basically one updates only S3
which by default is the first attribute enumerated in the parenthesis in define by clause.
The formula (4.3) becomes thus :

(4.4) d =F(s’1,s2,.,3%)

The c\hoxce which attribute should be Sy is user subjective. In our example of salary, if the
update to salary usually comresponds to a different number of working days, then the
define by clause should be :

~define by F(days, day_sal) = day * day sal.

MRDSM may nevertheless be asked to systematically display S3 for confirmation or the
choice of another actual attribute.

The formula (4.4) defines for each d® the equation :
@45) ¢ =F(S1,82,., %)

with the same single variable S1. Each value 8’} searched for is the root of 4.5). Two
methods appear for the solution of (4.5)

(i)' - the symbolic manipulation methods, finding the exact solution for cach d°.
(ii) - the numeric methods, computing for each d” the roots of the expression :
“4.6) 0=F(s'1,9,.,5%)-¢"

As it will appear, some cases require the combination of both approaches.

11

(444

4.2.2 Symbolic manipulati
Even only for the considered CALC function class of focmulae,:the approach (i) requires

rather complex expert system capability. The desired symbolic manipulation system
should first be able to invert the linear formulae like :

avprice$ = avpriceFF /6
into :
avpriceFF = avprice$ * 6
It then should know to distribute the multiplications over additions at all levels of the
formula. For instance, if the exchange rate is the official one plus 10 % and thus (4.1) is
written as :
avprice$ = (avpriceFF / 6) + ((avpriceFF / 6) * (10 / 100))
then it should be factorized to the form :
avprice$ = avpriceFF * 1.1/6,
whose inversion is :
avpriceFF = avprice$ * 6/ L1
Finally, since exponents are allowed, the systém should have capabilities to solve n-th
power equation. This is generally a complex task for n > 2, even only for polynomial
equations.
To implement the comesponding symbolic manipulation system seems a huge task. The
well known Macsyma system has for instance about 400 K instructions of LISP /MACS3/.

Instead of writinﬁ during many yedrs a symbolic manipulation subsystem for a
multidatabase system, it seems more practical to use services of an existing one (note that

12

MRDSM is about 40 times smaller than Macsyma). Foﬂomngthnsldea,aconnecnonfmm
MRDSM to Macsyma was implemented.

Through this connection, MRDSM passes ‘to Macsyma the formulae (4.5) and calls the
solve function of Macsyma. This function solves in general algebraic equations and returns
the list of roots. If k = 1, then solve is called once per d’. Otherwise, it is used for each
different valueofsj;1<j=<k s which is up to once per every tuple to update.

The interface was rather simple to implement, requiring the programming cffort of about a
month. This effort is without comparison to of implementing 2 symbolic manipulation
system with the required capabilitics. The solution lllowed in addition to extend the class
of the comsidered mappings to formulac with built-in Macsyma functions like the
trigonometric or the logarithmic ones etc, unknown to CALC function. The principal
limitation is that Macsyma is not able to solve all considered equations if n > 4, as it uses
the algebraic approach. If the power of the equation is greater than quartic then the soive
function tries to factor the equation into quadratic, cubic, or quartic formulae. If it does not
succeed, only a partial solution is returned or no solution at all.

4.2.4 Numerical methods

Numerical methods solve systems of non linear equations, especially factorized to the
polynomial expression of form E(x) = 0. They thus apply to (4.5), provided its
transformation to (4.6) and the factorization. MRDSM uses Bairstow method /DURG0/ that
seems the best for the case. The method computes all the real and/or imaginary roots of a
polynomial. Its principle is as follows :

- Let P(X) be the n-th power polynomial over variable X. The method seeks for the
quadratic equation By factorizing P into the expression:

P(X) = Bo(X) * Qo(X).
One may then solve Bg(X) = 0 using quadratic formulae. The roots of Bg are among the

roots of P and Qg is a polynomial of power (n-2). To find further roots of P(X), one
reapplies the factorization to Qg :

13

€Ly

Qq(X) = By(X) * Q1 (X).

The process continues until Qi(X) is a quadratic or a simple equation, depending on
whether n is even or odd.

The main problem is to find B; that divides P or Q;.] exactly. To reach this goal, each B}
has the following form:

Bi(X)=X**2-SM*X+PD

where SM and PD are respectively the sum and the product of two roots of P(X) (Qi.1)-
The computation of SM and PD is done by the Raphson-Newton method with two
variables /DURG(/.

4.2.5 Combination of the methods

The numerical method is able to solve equation that Macsyma could not solve if they are in
a polynomial form. Macsyma transforms formulae into a polynomial form even if it cannot
solve them itself. MRDSM combines therefore both methods in the following way :

- Macsyma is called for (4.5).

- It returns the roots or the polynomial it could not solve that is a factorized form of (4.6).
- If so, the Bairstow method is applied with the polynomial as P(X).

- Macsyma is called again for the computation of the roots of cach Bj.

4.3 Choice of the root

If M’ is not a bijection, then the above procedure returns several roots, given each by a
different formuta. For instance, n-th power polynomial has n real and/or imaginary roots
(Alembert’s theorem). One has to determine which root should be chosen as the new actual
value 8’1. Again, the formulation of M mapping alone does not allow to decide. The
complementary general rule for the root choice in MRDSM is as follows :

14

The root to choose is :

(i) - either this given by the formula solving (4.2), i.e which applied to the retrieved
dynamic value d, sets as the root the retrieved actual value s3.

(if) -'or the i-th root provided by the Bairstow method, if s} is i-th root while solving (4.2)
using this method.

The rule (i) comes from the property of Bairstow method to determine the roots always in
the same order for a given polynomial. The idea in the whole rule is that the existing
formula or root number express hidden functional dependencies that an update operation in
a database system should not affect.

Ex. 4.2. Consider :

-attr dQ:R
-define by F(X)=X*X

where X = 3 before the update and Q = 16 after the update. The roots are :

X1 =-SQRT(Q)
X2 = +SQRT(Q).

For X = 3,Q = 9. For this Q, X1 = -3 and X3 = +3. Thus X should be updated to X = 4.

4.4 Implementation overview
4.4.1 Usage of Macsyma

MRDSM communicates with Macsyma through the absentee mode of Multics /MULS1/.
This mode creates & process that executes commands from an input segment and puts the
results in an output segment. MRDSM creates the input segment and then waits until the
output file is created. More precisely, (i) the last command of the created process renames
the output file into a particular name, and (ii) MRDSM looks for this file using the exist
file command of Multics. The created process calls Macsyma, provides it with the
corresponding input formulae and records the Macsyma outcomes in the output file.
MRDSM reads then the output file and continues its session.

15

vy

This mode of communication was chosen as the simplest one to implement. It was also of
interest as the main mode for the cooperation of independently designed programs on
Multics. It requires however the created process to wait until previous absentee processes
end up. The waiting time acceptable for a prototype turned out to be sometimes rather too
long for practical applications. The equivalent solution may nevertheless be a good
approach for other systems, provided the possibility to create the process with high
Fmity-

Another solution could be a. LISP environment for MRDSM, written itself in PL1, that
would allow to call Macsyma's functions directly or through Macsyma LISP eavironment.
This approach could be faster on Multics, but presently Multics lacks of the capability for
calls from a compiled program to a LISP interpreter. However, Macsyma is also slow by
itsclf, especially when concurrently used. Detailed study of best performance in the
discussed context remains to be done and was not the purpose of this work.

4.4.2 Bairstow method

The implementation led to the problem of limited precision of the computer, while the
basic Bairstow algorithm considers the infinite precision. The propagation of the error due
to the difference, amplified through the successive division of Q;j.1(X) by B;j(X), makes
the polynomials Qj(X) less and less correct. The errors in roots are more and more
considerable, especially for high power polynomials.

To solve this problem MRDSM uses the optimal stopping test presented in detail in
VIG80/. The test provides the best SM and PD for the computer. The roots of the
quadratic equation Bj(X) are tested as true roots of the polynomial Q;.1(X) and if, needed,
they are improved using the Newton method to obtain the best possible roots for the
precision of the computer. See /VIG8U/ for the discussion of the Newton method.

$ CONCLUSION
The hold option and the update mapping deduction are new functions that simplify the

usage of dynamic attributes. We have described the corresponding concepts and the

16

technical solutions in the prototype system MRDSM. We showed that the update mapping

-deduction required symbolic manipulation methods. The corresponding implementation
focused on the communication with an existing system that is Macsyma, instead of
rebuilding a dedicated subsystem under MRDSM. This approach scems the most
promising for future database systems. However, if a more restricted class of functions is
considered, like only the most frequent linear formulae, then the comresponding system
should be simple enough to be built in the database system.

This study seems to be the first ever done with respect to automatic deduction of update
mapping. The presented principies apply not only to dynamic attributes, but also to updates
of views with value transformation. Up to now, it was generally believed that updates
operations cannot be supported on such views. This was one of the fundamental limitations
on usage of views, although this concept is now known for two decades. Owur results
opens the way to database system free of this limitation.

The aim in the study was a theoretical solution to the problem and the proof of its
technical feasibility. Many issues with respect to details and perfonnahcc optimization are
open. The class of the considered formulae should be enlarged, especially for new
applications of databases to engineering or scientific applications. The proposed methods
for the choice of the solution when the update mapping is not bijective may be refined, in
particular through deeper run-time analysis of the actual data. One may also obtain better
performance for more restricted classes of functions through usage of either other symbolic
manipulation and numerical methods, or of tools like TK! Solver etc. on microcomputers
/TK!84/. This is particularly important for practical applications, as a connection to
Macsyma is generally not available.

A particular extension of deductive capabilities should concern the automatic unit
conversion. The user would often need then to specify only the source and the target units.
Both the retrieval and the update mappings would be determined by the system. This
would further simplify the usage of dynamic attributes and again, of views as well, and
should reveal highly appreciated.

Acknowledgments
We thank P. Scheuermann for helpful comments.

17

SLY

REFERENCES

/ABDS3/ Abdellatif A., Multiple querics processing by a relational multidatabases system
MRDSM, (in French), Res. rep., Tunis Univ., ed. INRIA, June 1983.

JABDS4/ Abdellatif A., Outer-join and standard function in the multidatabases system
MRDSM, (in French), D.E.A. rep., Paris 6 Univ., ed. INRIA, June 1984.

/DATS6/ Date, C. An Introduction to Database Systems. Vol 1, 4th Ed. Addison-Wesley,
1986, 639.

/DELS2/ Delobel C., Adiba M. Relational Databases and Systems, (in French), Dunod,
1982, 449. :

/DURGW Durand E. , numerical solution to algebraic equation (part 1), (in French),
Masson & Cie, 1960.

/LIT82/ Litwin and all. SIRIUS, Sysiems for distributed data management, Distributed
data bases, North-Holland, 1982.

/LIT84/ Litwin W., MALPHA : a relational multidatabase manipulation language, JEEE-
COMBDEC, Los Angeles, May 1984.

/LIT84a/ Litwin W. Concepts for multidatabasc manipulation languages, JCIT-4,
Jerusalem, June 1984.

JLIT8S/ Litwin W., An overview of the multidatabase system MRDSM, ACM-85, Denver,
Oct. 1985

/LITS6/ Litwin W. Vigier Ph., Dynamic attributes in the multidatabase system MRDSM,
2nd [EEE Conf. on Data Enginecring, Los Angeles, Feb. 1986

JLIT86/ Litwin, W. Abdellatif, A. Multidatabase Interoperability. IEEE Computer, (Dec.
1986), 10-18.

/MAC83/ Macsyma reference manual, The Mathlab Group, Laboratory for Computer
Science, MIT, Jan. 1983

/MULSY/ Multics Programmer’s Manual, Commands and active functions, ClI-Honeywell
Bull, Ref. 68A2AG92 REV4, Nov. 1981,

/TK!84/ Tk!Solver User Manual. Software Art, 1984, 176.

IVIG80/ VIGNES J. , numerical algorithms analysis and implementation (part 2), (in
French), Editions Technip, 1980.

IVIG84/ Vigier Ph., Processing dynamic attributes in the multidatabases system MRDSM,
(in French), D.E.A. rep., Paris 6 Univ., Ed. INRIA, june 1984

/WON8S4/ WONG K. K., MRDSM : a relational multidatabase management system, 3rd
international Seminar on Distributed Data Sharing Systems, North-Holland, 1984, 77-85

18

