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ABSTRACT 
LH*RS

P2P is a Scalable Distributed Data Structure (SDDS) 
designed for P2P applications. It stores and processes data on 
SDDS peer nodes. Each node is both an SDDS client and, actually 
or potentially, an SDDS server with application and, perhaps, 
parity data. The scheme builds on LH*RS scheme principles.  The 
basic difference is that LH*RS

P2P key based queries require at most 
one forwarding message, instead of two for LH*RS. This makes 
LH*RS

P2P the fastest P2P and SDDS addressing scheme currently 
known. In addition, the LH*RS

P2P scan has an upper limit of two 
rounds. LH*RS

P2P parity management reuses the LH*RS Reed 
Salomon erasure correction scheme to deal efficiently with churn. 
The file transparently supports unavailability or withdrawal of up 
to any k ≥ 1 peers, where k is a parameter that can scale 
dynamically. We discuss the LH*RS

P2P design, some 
implementation issues and variants, as well as the related work. 

Keywords 
Scalable Distributed Data Structure (SDDS), P2P system, Linear 
Hashing algorithm (LH) 

1. INTRODUCTION 
The concept of a Scalable Distributed Data Structure (SDDS) 
appeared in 1993 [5]. It was intended for multicomputers and 
more specifically for networks of interconnected workstations. 
Some SDDS nodes are clients, interfacing to applications. Others 
are servers storing data in buckets and addressed only by the 
clients. The data are either application data or the parity data for a 
high-availability SDDS such as LH*RS [9]. Overloaded servers 
split, migrating data to new servers to make the file scalable. The 
first SDDS was the now popular LH* schema that exists in 
several variants and implementations [6, 7, 9]. A key search in 
LH* needs at most two forwarding messages (hops) to find the 
correct server, regardless of the size of the file. This property 
makes the LH* scheme and its subsequent variants a very efficient 
tool for applications requiring fast growing and large files such as 
distributed databases in general, warehousing, document 

repositories, e.g., for eGov, stream data repositories…  

In the early 2000s, Peer-to-Peer (P2P) systems appeared and 
became a popular topic. In a P2P system, each participant node 
functions as both a client and a data server. The earliest P2P 
systems implemented file sharing and used flooding of all nodes 
for each search.  To avoid the resulting message storm, structured 
P2P systems use additional data structures to make searches more 
efficient, [11, 1]. Structured P2P are in fact specific SDDSs under 
a new brand name. Dynamic Hash Table (DHT) based structures 
are the most popular [3, 10]. The typical number of hops is 
O (log N) where N is the number of peers storing the file. Some 
peers may be super-peers performing additional coordination 
functions. 

The coordinator in LH* is a super-peer in this terminology. 
However, a client is not a peer since it does not store any part of 
the SDDS file. It can be off-line or on-line without having an 
impact on the remaining system. In contrast, an SDDS server is 
designed to be available at all time. An LH* peer is a node that 
contains (at least potentially) both a client and a server. In 
consequence, LH* peers strive to be always online. In this 
scenario, it becomes reasonable to assume that a server forwards 
from time to time some meta-data to selected clients. It may 
always send such data to its local client, but also to a few remote 
ones. To improve the already excellent LH* routing (typically, but 
not always one hop), pushing information on bucket splits and 
merges appears especially useful. Closer analysis that will appear 
in what follows shows the possibility to decrease the worst case 
forwarding to a single message only. 

A typical P2P system suffers not only from temporary 
unavailability of some of its constituent nodes, but also from 
churn, the continuous leaving and entering of machines into the 
system. For example, a P2P system (a.k.a. a desktop grid) such as 
Farsite [2], currently in the process of being commercialized, uses 
the often underused, considerable desktop computing resources of 
a large organization to build a distributed, scalable file server.  
Even though participant nodes are under the control of the 
organization, the natural cycle of replacing old system by new 
ones will appear to the P2P storage system as random churn. 
However, a file server or a database needs the availability of all its 
data, regardless of the fate of some participant nodes. Some 
redundancy of stored data becomes then necessary. LH*RS 
responds to the database high-availability needs with a specific 
parity calculus. It is done over so-called groups of size m = 2i of 
its application data buckets. The value of m is arbitrary; thought in 
practice should be like 8 – 32. The scheme tolerates the 
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unavailability of up to any k ≥ 1 of servers per group. The value of 
k may scale dynamically, providing the k-availability to the file. 
The calculus uses a new variant of Reed Salomon erasure 
correcting coding. The storage overhead is small, in the orders of 
k / m. These properties seem attractive to deal with reasonable 
amounts of churn as well. 

All these observations are the rationale for the LH*RS
P2P design. 

We now present it more in depth. Section 2 recalls the basic 
addressing algorithms and presents our peer architecture. Section 
3 presents the LH*RS

P2P file evolution. Section 4 discusses the file 
manipulation. In Section 5 we discuss churn management. Section 
6 presents the implementation. Finally we discuss variants of 
LH*RS

P2P in Section 7 and conclude in Section 8. 

2. LH*RS 
P2P FILE STRUCTURE 

2.1 Architecture Overview 
The LH*RS 

P2P file structure is based on the LH*RS file. We assume 
that the reader is familiar with the latter [9]. The application 
manipulates an LH*RS

P2P file as LH*RS file. It uses thus the key-
based record search, insert, update or delete query, or a scan 
query performing a non-key operation on all records in the file. 
These operations are performed similarly in LH*RS 

P2P and LH*RS. 

In an LH*RS file however, the nodes that process queries are either 
the clients through which the applications access the file or the 
servers storing the (application) data or parity buckets. In contrast, 
LH*RS

P2P uses peer nodes, see Figure 1. A peer provides both 
functions. It has the client component (the client in what follows) 
and the data or parity server components.  

 

Figure 1.  LHRS
P2P Architecture Overview 

The latter components store, or are willing to, a data bucket or a 
parity bucket, as the service to the community for the file use. The 
parity data provide the k-availability to the LH*RS

P2P file. Finally, 
one peer acts as the coordinator through its coordinator 
component. This peer behaves like the LH*RS file coordinator 
with additional capabilities we will show. The coordinator may 
eventually be replicated. 

A peer with a data bucket is a (data) server peer. A peer with only 
a client component is a candidate peer. It serves as a hot spare, 
waiting for a bucket. This happens when there is no pending 
storage need for a new peer. A peer with a parity bucket is a 
parity server peer.   

As usual for an LH* file, a new data bucket is created from the 
split of an existing one. This is done by the server component of a 
peer. The coordinator assigns the new bucket to a candidate or 
multicasts a request for the storage, which is picked up by the 
fastest candidate. The splitting server component notifies its client 
component about each split. We will show soon how. It may send 
the information also to some candidate peers. We say that it acts 
as the tutor of its pupils. A pupil gets a tutor from the coordinator 
when it joins the file. It remains tutored as long as it does not get 
its data bucket. It then informs the tutor that ceases the 
notifications.  

The parity management under LH*RS 
P2P scheme is basically the 

same as for LH*RS. There are additional capabilities we will 
discuss later.  

2.2 Record Addressing 
2.2.1 Global Rule 
The addressing scheme of LH*RS

P2P is that of LH* with 
differences we will now explain.  As usual, a record of an LH*RS 
P2P file is identified by its primary key. The key C determines the 
record location (the bucket number a = 0,1,2..) according to the 
linear hashing (LH) algorithm [4]:   

Algorithm (1) : LH*RS
P2P Global Addressing  Rule 

a ← hi (C) ;  
If a < n then a ← hi+1 (C).  

We recall that (i,n) are the file state. Here, i =0, 1… is the file 
level. It determines the linear hash (LH) function hi applied. Basic 
LH-functions are hi(C)= C mod 2i. Likewise, n = 0,1… is the split 
pointer, indicating  the next bucket to split.  

2.2.2 Key-based Addressing 
As is the case for LH*RS, only the coordinator peer in the 
LH*RS

P2P file always knows the file state. Any other peer uses  its 
local image (i',n') of the file state for addressing. The image may 
be outdated showing fewer buckets than actually in a growing file. 
(Since heavily shrinking files are infrequent in practice, bucket 
merges are rare or even not implemented.) The peer uses the 
image to find the location of a record given the key for a key-
based query, or to scan all the records. We now review the key-
based addressing. The next section deals with scans. 

The primary location of a record identified by its key C is the 
bucket with the address a given by (1). However, the peer applies 
Algorithm (1), to its client image only. It sends its key-based 
query Q, accordingly to some bucket a'.  Q may search for a 
record, may insert it, update or delete. It always includes C. For 
the reasons we explain soon, it also includes its image (i', n').  

An outdated image could result in a' < a. The peer then sent Q to 
an incorrect bucket.  In every case, Q reaches the server 
component at the receiving peer a'. That one server component 
starts with the following algorithm. It first verifies whether its 
own address is the correct one by checking its guessed bucket 
level j' in the received client image against its actual level j (the 
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level of LH function last used to split or create the bucket). It 
calculates j' as i' for a' ≥ n' and as i' + 1 otherwise.   

If needed, the server forwards Q. We will demonstrate later that Q 
always reaches the correct bucket a in this step. This is not true 
for LH* in general and LH*RS in particular, which may need an 
additional hop. Finally, the failure of j' test for forwarding, 
implies (as we will show below) that the image was outdated 
because of a communication failure with the tutor or churn or 
some other error. The addressee returns then the error 
information. 

Algorithm (2) : LH*RS
P2P Server Key-based Addressing 

If a' ≥ n'  then j' = i'  else j' = i' + 1;   
If j = j' then process Q ; exit;  
Else if j' – j = 1 then a ← hj (C);  
if a > a' then forward Q to bucket a ; exit; 
Else send the "erroneous image" message to the sender; 

If forwarding occurs, the new address a has to be the correct one. 
Hence the addressee does not perform the checking (2). (This is 
not the case for forwarding in LH*RS.) As usual for an SDDS, it 
only sends the Image Management Message (IAM). The IAM 
informs the sender that the initial address was incorrect. It 
includes the level j of the correct bucket a. In LH*RS

P2P, it has to 
be also j of bucket a'. The sender adjusts then its image reusing 
the LH* Image Adjustment algorithm: 

 Algorithm (3) :  LH*RS
P2P Client Image Adjustment 

i’ = j ; n'  = a' + 1 ;  If n’ = 2i’ then i’= i' + 1; n’=0; 

As usual for LH*, the adjusted image is more accurate with 
respect to the files state. It takes to the account at least one more 
split that happened since the image creation or its last adjustment. 
In particular, the addressing error that has triggered the IAM 
cannot happen again. 

Server peer a has also physical (IP) addresses of buckets that the 
sender does not know about.  These buckets are those beyond the 
last one in the received image (i’,n’) until a, namely n' + 2i', …, a. 
Server peer a attaches the IP addresses to the IAM. 

2.2.3 Scan 
When a peer performs a scan S, it uses unicast to S to each bucket 
a in its image, namely to buckets 0,1,.., n' +2i' – 1. Every message 
contains j’.  Every bucket that receives S verifies whether S needs 
to be forwarded because of a bucket it knows about, but the 
originating peer did not.  It executes the following algorithm:  

Algorithm (4) : LH*RS
P2P Server Scan Processing 

If j = j' + 1 then a' = a + 2j-1 ; forward S to peer a' ; exit; 
If j = j' then process S; exit; 
Else send the "erroneous image" message to the sender; 

The client peer may finally wish to execute the termination 
protocol, to ensure that all the addresses have received S. This 
protocol is the same as for LH*RS.   

3. FILE EVOLUTION 
3.1 Appending a Peer 
A peer wishing to join the file contacts the coordinator. The 
coordinator adds the peer to its peer location tables and checks 
whether there is a pending request for the bucket space. This is 
typically not the case. If the peer wishes to be a file client, it 

implicitly commits to be a data bucket. The coordinator declares 
the peer a candidate and chooses its tutor. The candidate becomes 
a pupil.  To find the tutor, the coordinator uses the IP address of 
the candidate as if it was a key. Using Algorithm (1), it hashes the 
value and uses the result as the tutor's address. The coordinator 
sends the message to the tutor that in turn contacts the candidate. 
In particular, it sends its image, accompanied with the physical 
locations of the peers in the image. We recall from LH* principles 
that these are at least the locations of buckets 0… a + 2j -1 for a 
bucket a. The pupil stores the addresses, initializes its image, 
starts working as a client and acts as a spare, waiting for a bucket 
need. 

A split may necessitate finding a new parity bucket. The 
coordinator finds the peer willing to host it. This can be a 
candidate peer or a server peer. The candidate peer getting the 
parity bucket only will remain pupil until it gets a data bucket. 
Alternatively, as we have mentioned, there may be (philanthropic) 
peers willing to host parity buckets only, without being clients. 

A candidate upon becoming a (data) server informs the tutor that 
it is no longer its pupil. The tutor ceases monitoring it.   

3.2 Splitting a Peer  
When a peer splits its data bucket a, it updates its local image, 
using the j value before the split. If it has pupils, it sends them the 
information about the split, including j. The client at the peer and 
the pupils adjust the images using Algorithm (3). The image 
adjusted by Algorithm (3) reflects however the file state exactly 
this time.  

Figure 2. LH*RS
P2P peer split: (a) before, (b) after 

With the request to split, the coordinator informs peer a not only 
of the physical addresses of the new bucket, but also those of the 
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buckets that have been created since the last split of the peer. The 
latter are buckets a + 2j-1… a + 2j – 1, where the j value is the one 
before the split. The peer is not aware of their existence if it did 
not get any IAM. The peer that is a tutor forwards the addresses to 
all its pupils. If the peer or a pupil got an IAM since the last split 
of the peer, it may already have some of these addresses, possibly 
even all. It may happen that there are two different addresses for 
the same bucket. This means that the bucket became unavailable 
and was recovered since the peer got its address. The peer uses the 
address sent by the coordinator.  

The peer with the new data bucket initializes its image to the same 
values as in the after-image at the splitting peer. The splitting peer 
informs the new server of all the physical addresses of the 
predecessors of the new bucket. The images may remain 
unchanged until the next split of the tutor or until the first split of 
the newly created bucket. Alternatively, each image may get 
further adjusted by IAMs in the meantime.  

When the splitting peer is a tutor, its pupil might receive the peer 
of the newly split-off bucket as a new tutor. This happens for the 
pupil with the address hashed to the new bucket after the split. If 
this happens, then the new tutor informs all its (new) pupils of the 
change of assignment. The scheme flexibly and uniformly spreads 
the tutoring load  as more servers become available. The file can 
handle efficiently an increase in the number of pupils. As the file 
grows, we can expect this increase to occur. 

The peer getting the parity bucket during a split behaves like the 
LH*RS parity server.  

Example: Assume the file with data buckets distributed over three 
peers, as in Figure 2(a). We neglect parity buckets. Peer addresses 
are 0, 1, 2 and the file state is i =1 and n = 1. The images at the 
peers are these created with their buckets, for peers 1,2 or adjusted 
during the last split of bucket 0.  The image of peer 1 is outdated. 
Peer 0 and peer 1 are tutors, each with one pupil, numbered here 
upon the tutors. Peer 0 reached its storage capacity. Peer 1 inserts 
the record 8, i.e., with key C = 8. With its client image, it 
calculates 8 mod 21 = 0 and sends record 8 to address 0. Peer 0 
executes Algorithm (2) and inserts the record. This creates an 
overflow and the peer contacts the coordinator. Given n = 1, the 
coordinator requests peer 1 to split. The split creates data 
bucket 3. Once the split completes, peer 1 adjusts its image to (2, 
0). The coordinator does the same. 

Assume that pupil 0 gets bucket 3. It becomes (server) peer 3. It 
initializes its client image accordingly to (2,0). It informs about its 
new status the tutor which takes note that this peer is no more its 
pupil. that it is no more after this the coordinator update it image 
(i, n). The final structure is shown in Figure 2(b). 

4. ACCESS PERFORMANCE 
We now prove the following basic properties of an LH*RS

P2P file. 
They determine the access performance of the scheme, under the 
assumption that all the manipulated data buckets are available.  

Property 1. The maximal number of forwarding messages for 
key-based addressing is one. 

Property 2. The maximal number of rounds for the scan search is 
two.    

Property 3. The worst case access performance of LH*RS
P2P as 

defined by Property 1 is the fastest possible for any SDDS or a 
practical structured P2P addressing scheme.  

Proof of Property 1 
Assume that peer a has the client image (i’, n’). Assume further 
that peer a did not receive any IAM since its last split using hi +1. 
Hence, we have i’ = j-1, n’=a + 1. At the time of the split, this 
image was the file state (i, n).  Any key-based addressing issued 
by peer a before next file split, i.e., of bucket a + 1, had no 
forwarding as show in Figure 3. Let us suppose now that the file 
grew further. The first possible case is depicted in Figure 4. Some 
buckets with addresses beyond a have split, but the file level i did 
not change, i..e. the split pointer n did not come back to n = 0. We 
thus have n > n’ and i’ = i. The figure shows the corresponding 
addressing regions. Suppose now that peer a addresses key C 
using Algorithm (2). Let a’ be the address receiving C from a. If 
a’ is anywhere beyond [n’, n], then the bucket level j must be the 
same as when peer a created its image. There cannot be any 
forwarding of C. Otherwise, a’ is the address of a bucket that split 
in the meantime. The split could move C to new bucket beyond 
2i’

 - 1. One forwarding is thus possible and would be generated by 
Algorithm (2). But this bucket could not split since the last split of 
bucket a that has created its current image. No other forwarding 
can occur and none is generated by the above presented 
addressing scheme.  

 

 

 

 

 

 

 
 

Figure 3. Addressing the region with no forward 

 
Figure 4. Addressing the region with possibility of forward 

The second case of addressing regions is illustrated by Figure 5. 
Here, the split pointer n came back to 0 and some splits occurred 
using hi’ +1. However, peer a did not yet split again, i.e., n ≤ a. 
Peer a searches again for c and sends the search to peer a’. There 
are three situations: 

a. We have n ≤ a’≤ a.  A bucket in this interval did not split yet 
using hi’ +1. Hence the bucket level j(a’)  is as it was when the 
image at peer a was created. There cannot be any forwarding, 
since j(a’)= i’ + 1 while  n’ = a.  
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Figure 5. Addressing regions in 2nd case. 

 
b. We have a < a’ < 2i’ - 1. We are in case 1 above and there can 
be one forwarding message.   This is the situation shown at the 
figure. 

c. We have a’<n.  Bucket a’ split using hi’ +1 hence we may have 
a forwarding of c towards bucket a’ + 2i’ this split has created 
(one buckets at the right side of the Figure 5. That bucket could 
not split yet again. Bucket a would need to split first since 
a < 2i’. Hence, there cannot be 2nd forwarding of c. 

These are the only possible cases for LH*RS
P2P. Hence, there 

cannot be more than one forwarding during any key-based 
addressing. If peer a got any IAM in the meantime, then its image 
could only become more accurate with respect to the actual file 
state (see Property 4). That is n’ moves closer to n or ‘i’ becomes 
new i = i’ + 1 for Figure 5. No additional forwarding is possible, 
only the single forwarding becomes less likely. 

Proof of Property 2 
Assume that peer a now issues a scan search.  It sends it to every 
peer a’ it has in its image. The file situation can be as at Figure 4 
or Figure 5 above. In each case, peer a’ could split once. It 
recognizes this case through Algorithm (4) and forwards then the 
scan to its descendant. These messages constitute the second 
round. No descendant could split in turn. They have to be beyond 
bucket a itself which would need to split first.  Hence, two rounds 
is the worst case for the LH*RS

P2P scan. 

Proof of Property 3 
The only better bound is zero messages for any key addressing. 
The peer a that issues a key-based query can be any peer in the 
file. To reach zero forwards for any peer a would require to 
propagate synchronously the information on a split to every peer 
in the file. This would violate the goal of scalability, basic to any 
SDDS. The same restriction stands for structured P2P systems. 
Hence no SDDS, or practical structured P2P scheme can improve 
the worst case addressing performance than LH*RS

P2P. 

5. CHURN MANAGEMENT 
LH*RS

P2P copes with the churn through the LH*RS management of 
unavailable data and parity buckets.  In more detail, it recovers up 
to k data or parity buckets found unavailable for any reason, in a 
single bucket group. Globally, if K is the file availability level, 
K = 1, 2… then k = K or K = k +1. In addition, LH*RS

P2P allows a 
server or parity peer to quit with notice. The peer notifies the 
coordinator and stops dealing with incoming record manipulation 
requests. The data or parity bucket at the peer is transferred 
elsewhere. Any bucket in the bucket (reliability) group gets the 
new address. The quitting peer is finally notified of the success of 

the operation. The whole operation should be faster than recovery, 
but the quitting peer now has to wait. 

A pupil may always leave without notice. When its tutor, or the 
coordinator, does not receive a reply to a message, it simply drops 
it from its data structures. A special case arises if a network 
failure or similar happenstance disconnected the pupil from its 
tutor, but the pupil did not discover this disconnection.  It will 
therefore no longer receive any updates.  Without the benefits of 
these updates, a query by this pupil is essentially an LH* query 
and might therefore take two forwarding messages. 

A similar situation may happen to a server peer that – not aware 
of being unavailable or having left – comes back and issues a 
query. Our solution for this situation does not fall back on LH* 
addressing with potentially two forwarding messages, but instead 
includes the value of j’ in each query (Section 2).  The addressee 
executing Algorithm (2) tests in fact whether j’- j  ≤  1. If not, the 
peer concludes the query had to come from the peer that is not up 
to date, most likely because it was unavailable. It refuses the 
query and informs the sender about. This one contacts in turn the 
coordinator. The coordinator processes the sender as a new peer. 
The resent query will be dealt with as usual, with one forwarding 
at most. The peer may learn in the process that its data or parity 
bucket was recovered somewhere else as well.  

It may finally happen that a peer appears to be unavailable for a 
while, e.g., because of a communication failure or an unplanned 
system shutdown, and that its data is recovered elsewhere. The 
new address is not posted to other existing peers. When the peer 
becomes again available, another peer might not be aware of the 
recovery and send a search to the “former” peer. To prevent this 
somewhat unlikely possibility of an erroneous response, we 
consider two types of search. The usual one, as in [9] in particular, 
does not prevent the occurrence of this type of error. In contrast, 
the sure search, new to LH*RS

P2P, prevents this scenario. A sure 
search query triggers a message to one of the parity servers of the 
bucket group. These have the actual addresses of all the data 
buckets in the group. The parity server getting the sure search 
informs the outdated peer about its (outdated) status. It also 
provides it with the correct peer address. The outdated peer avoids 
the incorrect reply, resending the query to the correct peer.  Again, 
we have only one hop needed to complete the query. This one 
replies instead, with the IAM piggybacked. 

6. IMPLEMENTATION 
Our current implementation consists of the existing LH*RS 
prototype, [8], augmented with the capabilities of LH*RS

P2P 

scheme. We add thus the capability of having the LH*RS client, 
and data server on the same node, able to adjust locally the client 
image during the split.  We further add the tutoring capabilities to 
the LH*RS servers and the coordinator, those of being pupils to the 
clients, as well as the related messaging.  Finally, we plan to add 
the sure search to the schema.  

A specific issue is the k-availability of the tutoring data at a server 
peer. Our approach is to create dedicated LH*RS

P2P records within 
each data and parity bucket, called the tutoring records, with a 
(unique) key and the pupils' addresses in the non-key part of the 
tutoring data record. These addresses may get split during the 
bucket split. The keys of the tutoring records form a subset in the 
key space that is forbidden to applications. For instance, for the 
integer key space 0…232-1, the key for the tutoring record at data 
bucket l could be 232 – l-1. A 1M node file would need about 
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0.5/1000 of the key space for tutoring records. All the tutoring 
records have furthermore the same rank r that is r = 0 at present.  
We recall that r is the key of all the k related parity records under 
LH*RS scheme, with our version of Reed-Salomon based erasure 
correcting encoding [9]. The tutoring records are recovered 
together with any data or parity records under LH*RS. 

7. VARIANTS 
Up to now we have sketched the basic version of LH*RS

P2P. The 
first interesting variant is where a peer joins the file only when the 
coordinator creates the data bucket.  Then, every peer is from the 
beginning a server. Some have also the parity buckets. There are 
no candidate peers and hence no need for tutoring. 

Another simplified variant uses an LH*RS file extended only with 
the basic capabilities of LH*RS

P2P peer nodes. A server node 
becomes thus able to have also the client component, and both 
become able to adjust the client image during the split. Optionally, 
the server component is able to perform the sure search. No 
tutoring, in contrast. The peers are rewarded with faster worst case 
addressing performance. The (LH*) clients continue with the 
slower, basic LH* performance. That is, to recall, of two 
messages per key based addressing at most and possibly several 
rounds per scan.  

We can also improve the accuracy of the client image after an 
IAM. The server peer then sends the image at its client 
component, in lieu of the j value at its server component, as in the 
basic scheme. This image may be more accurate, because of IAMs 
received by the sender, than what the client may guess from j 
only. The client then simply takes this image instead of its own. 
The received image must be more accurate. This variant requires a 
tighter integration of the client and server components at a peer 
and derives more advantages from the existence of peers. We 
chose not to implement this variant in order to reuse our existing 
LH*RS prototype. The metadata of each peer component remains 
then internal to the component and the server component does not 
have access to the image of its local client when composing an 
IAM. 

In the basic scheme, the coordinator sends 2j-1 – 1 physical 
addresses of buckets to a peer with a split request.  This can be a 
large number and the peer might already received most or even all 
of these addresses through IAM.  In the integrated variant just 
mentioned, we could choose the splitting peer to request only 
missing bucket addresses from the coordinator. If (i'', n'') is the 
before-image at the client of the splitting peer, then the only 
missing addresses are of buckets n'' + 2i''… a + 2j-1 – 1. However, 
in this version, the peer will not receive any addresses of 
recovered buckets.  The practical implications of both variants 
remain for further study. 

Yet another interesting variant concerns parity management. 
Ideally, each peer should uniformly provide data access, data 
storage, and parity management.  As described, LH*RS

P2P allots 
only parity buckets to some peers.  However, parity buckets have 
at least as many records as the biggest data bucket in the bucket 
group and an update to any data bucket in the bucket group results 
in an update to the parity bucket. However, in the absence of 
unavailability, parity buckets do not receive lookup requests.   

In [9], we sketched a variant of LH*RS free of these shortcomings.  

We allocate parity buckets for a bucket group with the data 
buckets of the following group. The parity for the last bucket 

group is temporarily stored with the buckets of the first bucket 
group.  This scheme insures that parity records of a record group 
cannot be stored on the same node as some records in the group, 
provided that the number of parity records is less than the 
maximum number of records in a record group. Additionally, 
recovery is up to almost n times faster, since performed at n nodes 
in parallel. The scheme could be the basis for an interesting 
variant of LH*RS

P2P as well. 

8. CONCLUSION 
We have intended the LH*RS

P2P scheme for the P2P files, where 
every node both uses data and serves its storage for them, or is at 
least willing to serve the storage when needed. Under this 
assumption, it is the fastest SDDS & P2P addressing scheme 
known. It should in particular protect the file efficiently against 
churn. Current work consists in the implementation of the scheme 
over the existing LH*RS prototype [8]. We add the capability of 
having LH*RS

P2P peer nodes, of the sure search, and of the k-
available tutoring functions. 
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