
LH*RS
P2P: A Scalable Distributed Data Structure for

P2P Environment
Witold Litwin

Université Paris-Dauphine
Place Marechal de Lattre de

Tassigny 750016 France
(0033)1 4405-4880

Witold.litwin@dauphine.fr

Hanafi Yakouben
Université Paris-Dauphine

Place Marechal de Lattre de
Tassigny 750016 France

(0033)1 4405-4047

Hanafi.yakouben@dauphine.fr

Thomas Shwarz
Santa Clara University
500 El Camino Real

Santa Clara, California 95053-0566
(408) 551-6064

tjschwarz@scu.edu

ABSTRACT
LH*RS

P2P is a Scalable Distributed Data Structure (SDDS)
designed for P2P applications. It stores and processes data on
SDDS peer nodes. Each node is both an SDDS client and, actually
or potentially, an SDDS server with application and, perhaps,
parity data. The scheme builds on LH*RS scheme principles. The
basic difference is that LH*RS

P2P key based queries require at most
one forwarding message, instead of two for LH*RS. This makes
LH*RS

P2P the fastest P2P and SDDS addressing scheme currently
known. In addition, the LH*RS

P2P scan has an upper limit of two
rounds. LH*RS

P2P parity management reuses the LH*RS Reed
Salomon erasure correction scheme to deal efficiently with churn.
The file transparently supports unavailability or withdrawal of up
to any k ≥ 1 peers, where k is a parameter that can scale
dynamically. We discuss the LH*RS

P2P design, some
implementation issues and variants, as well as the related work.

Keywords
Scalable Distributed Data Structure (SDDS), P2P system, Linear
Hashing algorithm (LH)

1. INTRODUCTION
The concept of a Scalable Distributed Data Structure (SDDS)
appeared in 1993 [5]. It was intended for multicomputers and
more specifically for networks of interconnected workstations.
Some SDDS nodes are clients, interfacing to applications. Others
are servers storing data in buckets and addressed only by the
clients. The data are either application data or the parity data for a
high-availability SDDS such as LH*RS [9]. Overloaded servers
split, migrating data to new servers to make the file scalable. The
first SDDS was the now popular LH* schema that exists in
several variants and implementations [6, 7, 9]. A key search in
LH* needs at most two forwarding messages (hops) to find the
correct server, regardless of the size of the file. This property
makes the LH* scheme and its subsequent variants a very efficient
tool for applications requiring fast growing and large files such as
distributed databases in general, warehousing, document

repositories, e.g., for eGov, stream data repositories…

In the early 2000s, Peer-to-Peer (P2P) systems appeared and
became a popular topic. In a P2P system, each participant node
functions as both a client and a data server. The earliest P2P
systems implemented file sharing and used flooding of all nodes
for each search. To avoid the resulting message storm, structured
P2P systems use additional data structures to make searches more
efficient, [11, 1]. Structured P2P are in fact specific SDDSs under
a new brand name. Dynamic Hash Table (DHT) based structures
are the most popular [3, 10]. The typical number of hops is
O (log N) where N is the number of peers storing the file. Some
peers may be super-peers performing additional coordination
functions.

The coordinator in LH* is a super-peer in this terminology.
However, a client is not a peer since it does not store any part of
the SDDS file. It can be off-line or on-line without having an
impact on the remaining system. In contrast, an SDDS server is
designed to be available at all time. An LH* peer is a node that
contains (at least potentially) both a client and a server. In
consequence, LH* peers strive to be always online. In this
scenario, it becomes reasonable to assume that a server forwards
from time to time some meta-data to selected clients. It may
always send such data to its local client, but also to a few remote
ones. To improve the already excellent LH* routing (typically, but
not always one hop), pushing information on bucket splits and
merges appears especially useful. Closer analysis that will appear
in what follows shows the possibility to decrease the worst case
forwarding to a single message only.

A typical P2P system suffers not only from temporary
unavailability of some of its constituent nodes, but also from
churn, the continuous leaving and entering of machines into the
system. For example, a P2P system (a.k.a. a desktop grid) such as
Farsite [2], currently in the process of being commercialized, uses
the often underused, considerable desktop computing resources of
a large organization to build a distributed, scalable file server.
Even though participant nodes are under the control of the
organization, the natural cycle of replacing old system by new
ones will appear to the P2P storage system as random churn.
However, a file server or a database needs the availability of all its
data, regardless of the fate of some participant nodes. Some
redundancy of stored data becomes then necessary. LH*RS
responds to the database high-availability needs with a specific
parity calculus. It is done over so-called groups of size m = 2i of
its application data buckets. The value of m is arbitrary; thought in
practice should be like 8 – 32. The scheme tolerates the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
8th annual international conference on New Technologies of Distributed
Systems. June 23-27, 2008. Lyon, France
Copyright.

unavailability of up to any k ≥ 1 of servers per group. The value of
k may scale dynamically, providing the k-availability to the file.
The calculus uses a new variant of Reed Salomon erasure
correcting coding. The storage overhead is small, in the orders of
k / m. These properties seem attractive to deal with reasonable
amounts of churn as well.

All these observations are the rationale for the LH*RS
P2P design.

We now present it more in depth. Section 2 recalls the basic
addressing algorithms and presents our peer architecture. Section
3 presents the LH*RS

P2P file evolution. Section 4 discusses the file
manipulation. In Section 5 we discuss churn management. Section
6 presents the implementation. Finally we discuss variants of
LH*RS

P2P in Section 7 and conclude in Section 8.

2. LH*RS
P2P FILE STRUCTURE

2.1 Architecture Overview
The LH*RS

P2P file structure is based on the LH*RS file. We assume
that the reader is familiar with the latter [9]. The application
manipulates an LH*RS

P2P file as LH*RS file. It uses thus the key-
based record search, insert, update or delete query, or a scan
query performing a non-key operation on all records in the file.
These operations are performed similarly in LH*RS

P2P and LH*RS.

In an LH*RS file however, the nodes that process queries are either
the clients through which the applications access the file or the
servers storing the (application) data or parity buckets. In contrast,
LH*RS

P2P uses peer nodes, see Figure 1. A peer provides both
functions. It has the client component (the client in what follows)
and the data or parity server components.

Figure 1. LHRS
P2P Architecture Overview

The latter components store, or are willing to, a data bucket or a
parity bucket, as the service to the community for the file use. The
parity data provide the k-availability to the LH*RS

P2P file. Finally,
one peer acts as the coordinator through its coordinator
component. This peer behaves like the LH*RS file coordinator
with additional capabilities we will show. The coordinator may
eventually be replicated.

A peer with a data bucket is a (data) server peer. A peer with only
a client component is a candidate peer. It serves as a hot spare,
waiting for a bucket. This happens when there is no pending
storage need for a new peer. A peer with a parity bucket is a
parity server peer.

As usual for an LH* file, a new data bucket is created from the
split of an existing one. This is done by the server component of a
peer. The coordinator assigns the new bucket to a candidate or
multicasts a request for the storage, which is picked up by the
fastest candidate. The splitting server component notifies its client
component about each split. We will show soon how. It may send
the information also to some candidate peers. We say that it acts
as the tutor of its pupils. A pupil gets a tutor from the coordinator
when it joins the file. It remains tutored as long as it does not get
its data bucket. It then informs the tutor that ceases the
notifications.

The parity management under LH*RS
P2P scheme is basically the

same as for LH*RS. There are additional capabilities we will
discuss later.

2.2 Record Addressing
2.2.1 Global Rule
The addressing scheme of LH*RS

P2P is that of LH* with
differences we will now explain. As usual, a record of an LH*RS
P2P file is identified by its primary key. The key C determines the
record location (the bucket number a = 0,1,2..) according to the
linear hashing (LH) algorithm [4]:

Algorithm (1) : LH*RS
P2P Global Addressing Rule

a ← hi (C) ;
If a < n then a ← hi+1 (C).

We recall that (i,n) are the file state. Here, i =0, 1… is the file
level. It determines the linear hash (LH) function hi applied. Basic
LH-functions are hi(C)= C mod 2i. Likewise, n = 0,1… is the split
pointer, indicating the next bucket to split.

2.2.2 Key-based Addressing
As is the case for LH*RS, only the coordinator peer in the
LH*RS

P2P file always knows the file state. Any other peer uses its
local image (i',n') of the file state for addressing. The image may
be outdated showing fewer buckets than actually in a growing file.
(Since heavily shrinking files are infrequent in practice, bucket
merges are rare or even not implemented.) The peer uses the
image to find the location of a record given the key for a key-
based query, or to scan all the records. We now review the key-
based addressing. The next section deals with scans.

The primary location of a record identified by its key C is the
bucket with the address a given by (1). However, the peer applies
Algorithm (1), to its client image only. It sends its key-based
query Q, accordingly to some bucket a'. Q may search for a
record, may insert it, update or delete. It always includes C. For
the reasons we explain soon, it also includes its image (i', n').

An outdated image could result in a' < a. The peer then sent Q to
an incorrect bucket. In every case, Q reaches the server
component at the receiving peer a'. That one server component
starts with the following algorithm. It first verifies whether its
own address is the correct one by checking its guessed bucket
level j' in the received client image against its actual level j (the

Pupil

 Tutor

Client

SERVER

parity

Client

 Coordinator

Network

Peers

Client

SERVER

D
at

Client

SERVER

D
at
a

level of LH function last used to split or create the bucket). It
calculates j' as i' for a' ≥ n' and as i' + 1 otherwise.

If needed, the server forwards Q. We will demonstrate later that Q
always reaches the correct bucket a in this step. This is not true
for LH* in general and LH*RS in particular, which may need an
additional hop. Finally, the failure of j' test for forwarding,
implies (as we will show below) that the image was outdated
because of a communication failure with the tutor or churn or
some other error. The addressee returns then the error
information.

Algorithm (2) : LH*RS
P2P Server Key-based Addressing

If a' ≥ n' then j' = i' else j' = i' + 1;
If j = j' then process Q ; exit;
Else if j' – j = 1 then a ← hj (C);
if a > a' then forward Q to bucket a ; exit;
Else send the "erroneous image" message to the sender;

If forwarding occurs, the new address a has to be the correct one.
Hence the addressee does not perform the checking (2). (This is
not the case for forwarding in LH*RS.) As usual for an SDDS, it
only sends the Image Management Message (IAM). The IAM
informs the sender that the initial address was incorrect. It
includes the level j of the correct bucket a. In LH*RS

P2P, it has to
be also j of bucket a'. The sender adjusts then its image reusing
the LH* Image Adjustment algorithm:

 Algorithm (3) : LH*RS
P2P Client Image Adjustment

i’ = j ; n' = a' + 1 ; If n’ = 2i’ then i’= i' + 1; n’=0;

As usual for LH*, the adjusted image is more accurate with
respect to the files state. It takes to the account at least one more
split that happened since the image creation or its last adjustment.
In particular, the addressing error that has triggered the IAM
cannot happen again.

Server peer a has also physical (IP) addresses of buckets that the
sender does not know about. These buckets are those beyond the
last one in the received image (i’,n’) until a, namely n' + 2i', …, a.
Server peer a attaches the IP addresses to the IAM.

2.2.3 Scan
When a peer performs a scan S, it uses unicast to S to each bucket
a in its image, namely to buckets 0,1,.., n' +2i' – 1. Every message
contains j’. Every bucket that receives S verifies whether S needs
to be forwarded because of a bucket it knows about, but the
originating peer did not. It executes the following algorithm:

Algorithm (4) : LH*RS
P2P Server Scan Processing

If j = j' + 1 then a' = a + 2j-1 ; forward S to peer a' ; exit;
If j = j' then process S; exit;
Else send the "erroneous image" message to the sender;

The client peer may finally wish to execute the termination
protocol, to ensure that all the addresses have received S. This
protocol is the same as for LH*RS.

3. FILE EVOLUTION
3.1 Appending a Peer
A peer wishing to join the file contacts the coordinator. The
coordinator adds the peer to its peer location tables and checks
whether there is a pending request for the bucket space. This is
typically not the case. If the peer wishes to be a file client, it

implicitly commits to be a data bucket. The coordinator declares
the peer a candidate and chooses its tutor. The candidate becomes
a pupil. To find the tutor, the coordinator uses the IP address of
the candidate as if it was a key. Using Algorithm (1), it hashes the
value and uses the result as the tutor's address. The coordinator
sends the message to the tutor that in turn contacts the candidate.
In particular, it sends its image, accompanied with the physical
locations of the peers in the image. We recall from LH* principles
that these are at least the locations of buckets 0… a + 2j -1 for a
bucket a. The pupil stores the addresses, initializes its image,
starts working as a client and acts as a spare, waiting for a bucket
need.

A split may necessitate finding a new parity bucket. The
coordinator finds the peer willing to host it. This can be a
candidate peer or a server peer. The candidate peer getting the
parity bucket only will remain pupil until it gets a data bucket.
Alternatively, as we have mentioned, there may be (philanthropic)
peers willing to host parity buckets only, without being clients.

A candidate upon becoming a (data) server informs the tutor that
it is no longer its pupil. The tutor ceases monitoring it.

3.2 Splitting a Peer
When a peer splits its data bucket a, it updates its local image,
using the j value before the split. If it has pupils, it sends them the
information about the split, including j. The client at the peer and
the pupils adjust the images using Algorithm (3). The image
adjusted by Algorithm (3) reflects however the file state exactly
this time.

Figure 2. LH*RS
P2P peer split: (a) before, (b) after

With the request to split, the coordinator informs peer a not only
of the physical addresses of the new bucket, but also those of the

Pupil 0

Peer

Coordinator Peer (CP)

0

j=2
i’=1
n’=1

j=1
i’=1
n’=0

j=2

i’=1
n’=1
2

i’=1
n’=0

i’=1
n’=1

 Pupil 1

i=1
n=1

1

8

Peer

Coordinator Peer (CP)

0

j=2
i’=1
n’=1

j=2
i’=2
n’=0

j=2
i’=1
n’=1
2

i’= 2
n’=0

Pupil 1

i=2
n=0

1

8

j=2
i’=2
n’=0
3

buckets that have been created since the last split of the peer. The
latter are buckets a + 2j-1… a + 2j – 1, where the j value is the one
before the split. The peer is not aware of their existence if it did
not get any IAM. The peer that is a tutor forwards the addresses to
all its pupils. If the peer or a pupil got an IAM since the last split
of the peer, it may already have some of these addresses, possibly
even all. It may happen that there are two different addresses for
the same bucket. This means that the bucket became unavailable
and was recovered since the peer got its address. The peer uses the
address sent by the coordinator.

The peer with the new data bucket initializes its image to the same
values as in the after-image at the splitting peer. The splitting peer
informs the new server of all the physical addresses of the
predecessors of the new bucket. The images may remain
unchanged until the next split of the tutor or until the first split of
the newly created bucket. Alternatively, each image may get
further adjusted by IAMs in the meantime.

When the splitting peer is a tutor, its pupil might receive the peer
of the newly split-off bucket as a new tutor. This happens for the
pupil with the address hashed to the new bucket after the split. If
this happens, then the new tutor informs all its (new) pupils of the
change of assignment. The scheme flexibly and uniformly spreads
the tutoring load as more servers become available. The file can
handle efficiently an increase in the number of pupils. As the file
grows, we can expect this increase to occur.

The peer getting the parity bucket during a split behaves like the
LH*RS parity server.

Example: Assume the file with data buckets distributed over three
peers, as in Figure 2(a). We neglect parity buckets. Peer addresses
are 0, 1, 2 and the file state is i =1 and n = 1. The images at the
peers are these created with their buckets, for peers 1,2 or adjusted
during the last split of bucket 0. The image of peer 1 is outdated.
Peer 0 and peer 1 are tutors, each with one pupil, numbered here
upon the tutors. Peer 0 reached its storage capacity. Peer 1 inserts
the record 8, i.e., with key C = 8. With its client image, it
calculates 8 mod 21 = 0 and sends record 8 to address 0. Peer 0
executes Algorithm (2) and inserts the record. This creates an
overflow and the peer contacts the coordinator. Given n = 1, the
coordinator requests peer 1 to split. The split creates data
bucket 3. Once the split completes, peer 1 adjusts its image to (2,
0). The coordinator does the same.

Assume that pupil 0 gets bucket 3. It becomes (server) peer 3. It
initializes its client image accordingly to (2,0). It informs about its
new status the tutor which takes note that this peer is no more its
pupil. that it is no more after this the coordinator update it image
(i, n). The final structure is shown in Figure 2(b).

4. ACCESS PERFORMANCE
We now prove the following basic properties of an LH*RS

P2P file.
They determine the access performance of the scheme, under the
assumption that all the manipulated data buckets are available.

Property 1. The maximal number of forwarding messages for
key-based addressing is one.

Property 2. The maximal number of rounds for the scan search is
two.

Property 3. The worst case access performance of LH*RS
P2P as

defined by Property 1 is the fastest possible for any SDDS or a
practical structured P2P addressing scheme.

Proof of Property 1
Assume that peer a has the client image (i’, n’). Assume further
that peer a did not receive any IAM since its last split using hi +1.
Hence, we have i’ = j-1, n’=a + 1. At the time of the split, this
image was the file state (i, n). Any key-based addressing issued
by peer a before next file split, i.e., of bucket a + 1, had no
forwarding as show in Figure 3. Let us suppose now that the file
grew further. The first possible case is depicted in Figure 4. Some
buckets with addresses beyond a have split, but the file level i did
not change, i..e. the split pointer n did not come back to n = 0. We
thus have n > n’ and i’ = i. The figure shows the corresponding
addressing regions. Suppose now that peer a addresses key C
using Algorithm (2). Let a’ be the address receiving C from a. If
a’ is anywhere beyond [n’, n], then the bucket level j must be the
same as when peer a created its image. There cannot be any
forwarding of C. Otherwise, a’ is the address of a bucket that split
in the meantime. The split could move C to new bucket beyond
2i’

 - 1. One forwarding is thus possible and would be generated by
Algorithm (2). But this bucket could not split since the last split of
bucket a that has created its current image. No other forwarding
can occur and none is generated by the above presented
addressing scheme.

Figure 3. Addressing the region with no forward

Figure 4. Addressing the region with possibility of forward

The second case of addressing regions is illustrated by Figure 5.
Here, the split pointer n came back to 0 and some splits occurred
using hi’ +1. However, peer a did not yet split again, i.e., n ≤ a.
Peer a searches again for c and sends the search to peer a’. There
are three situations:

a. We have n ≤ a’≤ a. A bucket in this interval did not split yet
using hi’ +1. Hence the bucket level j(a’) is as it was when the
image at peer a was created. There cannot be any forwarding,
since j(a’)= i’ + 1 while n’ = a.

2i’
a’

n+2i’a0

j =i’

j =i’+1

n a+2i’ Peer Address

Le
ve

l j

n+2i

’

2i’ a
n’

0

j =i’

j =i’+1

n a’ a+2i

’

 Peer Address

Le
ve

l j

Figure 5. Addressing regions in 2nd case.

b. We have a < a’ < 2i’ - 1. We are in case 1 above and there can
be one forwarding message. This is the situation shown at the
figure.

c. We have a’<n. Bucket a’ split using hi’ +1 hence we may have
a forwarding of c towards bucket a’ + 2i’ this split has created
(one buckets at the right side of the Figure 5. That bucket could
not split yet again. Bucket a would need to split first since
a < 2i’. Hence, there cannot be 2nd forwarding of c.

These are the only possible cases for LH*RS
P2P. Hence, there

cannot be more than one forwarding during any key-based
addressing. If peer a got any IAM in the meantime, then its image
could only become more accurate with respect to the actual file
state (see Property 4). That is n’ moves closer to n or ‘i’ becomes
new i = i’ + 1 for Figure 5. No additional forwarding is possible,
only the single forwarding becomes less likely.

Proof of Property 2
Assume that peer a now issues a scan search. It sends it to every
peer a’ it has in its image. The file situation can be as at Figure 4
or Figure 5 above. In each case, peer a’ could split once. It
recognizes this case through Algorithm (4) and forwards then the
scan to its descendant. These messages constitute the second
round. No descendant could split in turn. They have to be beyond
bucket a itself which would need to split first. Hence, two rounds
is the worst case for the LH*RS

P2P scan.

Proof of Property 3
The only better bound is zero messages for any key addressing.
The peer a that issues a key-based query can be any peer in the
file. To reach zero forwards for any peer a would require to
propagate synchronously the information on a split to every peer
in the file. This would violate the goal of scalability, basic to any
SDDS. The same restriction stands for structured P2P systems.
Hence no SDDS, or practical structured P2P scheme can improve
the worst case addressing performance than LH*RS

P2P.

5. CHURN MANAGEMENT
LH*RS

P2P copes with the churn through the LH*RS management of
unavailable data and parity buckets. In more detail, it recovers up
to k data or parity buckets found unavailable for any reason, in a
single bucket group. Globally, if K is the file availability level,
K = 1, 2… then k = K or K = k +1. In addition, LH*RS

P2P allows a
server or parity peer to quit with notice. The peer notifies the
coordinator and stops dealing with incoming record manipulation
requests. The data or parity bucket at the peer is transferred
elsewhere. Any bucket in the bucket (reliability) group gets the
new address. The quitting peer is finally notified of the success of

the operation. The whole operation should be faster than recovery,
but the quitting peer now has to wait.

A pupil may always leave without notice. When its tutor, or the
coordinator, does not receive a reply to a message, it simply drops
it from its data structures. A special case arises if a network
failure or similar happenstance disconnected the pupil from its
tutor, but the pupil did not discover this disconnection. It will
therefore no longer receive any updates. Without the benefits of
these updates, a query by this pupil is essentially an LH* query
and might therefore take two forwarding messages.

A similar situation may happen to a server peer that – not aware
of being unavailable or having left – comes back and issues a
query. Our solution for this situation does not fall back on LH*
addressing with potentially two forwarding messages, but instead
includes the value of j’ in each query (Section 2). The addressee
executing Algorithm (2) tests in fact whether j’- j ≤ 1. If not, the
peer concludes the query had to come from the peer that is not up
to date, most likely because it was unavailable. It refuses the
query and informs the sender about. This one contacts in turn the
coordinator. The coordinator processes the sender as a new peer.
The resent query will be dealt with as usual, with one forwarding
at most. The peer may learn in the process that its data or parity
bucket was recovered somewhere else as well.

It may finally happen that a peer appears to be unavailable for a
while, e.g., because of a communication failure or an unplanned
system shutdown, and that its data is recovered elsewhere. The
new address is not posted to other existing peers. When the peer
becomes again available, another peer might not be aware of the
recovery and send a search to the “former” peer. To prevent this
somewhat unlikely possibility of an erroneous response, we
consider two types of search. The usual one, as in [9] in particular,
does not prevent the occurrence of this type of error. In contrast,
the sure search, new to LH*RS

P2P, prevents this scenario. A sure
search query triggers a message to one of the parity servers of the
bucket group. These have the actual addresses of all the data
buckets in the group. The parity server getting the sure search
informs the outdated peer about its (outdated) status. It also
provides it with the correct peer address. The outdated peer avoids
the incorrect reply, resending the query to the correct peer. Again,
we have only one hop needed to complete the query. This one
replies instead, with the IAM piggybacked.

6. IMPLEMENTATION
Our current implementation consists of the existing LH*RS
prototype, [8], augmented with the capabilities of LH*RS

P2P

scheme. We add thus the capability of having the LH*RS client,
and data server on the same node, able to adjust locally the client
image during the split. We further add the tutoring capabilities to
the LH*RS servers and the coordinator, those of being pupils to the
clients, as well as the related messaging. Finally, we plan to add
the sure search to the schema.

A specific issue is the k-availability of the tutoring data at a server
peer. Our approach is to create dedicated LH*RS

P2P records within
each data and parity bucket, called the tutoring records, with a
(unique) key and the pupils' addresses in the non-key part of the
tutoring data record. These addresses may get split during the
bucket split. The keys of the tutoring records form a subset in the
key space that is forbidden to applications. For instance, for the
integer key space 0…232-1, the key for the tutoring record at data
bucket l could be 232 – l-1. A 1M node file would need about

2i’
a’ 2i’+1

a0

j =i’

j =i’+1

n
 Peer Address

Le
ve

l j

n+2i

’ 1

j =i’+2

0.5/1000 of the key space for tutoring records. All the tutoring
records have furthermore the same rank r that is r = 0 at present.
We recall that r is the key of all the k related parity records under
LH*RS scheme, with our version of Reed-Salomon based erasure
correcting encoding [9]. The tutoring records are recovered
together with any data or parity records under LH*RS.

7. VARIANTS
Up to now we have sketched the basic version of LH*RS

P2P. The
first interesting variant is where a peer joins the file only when the
coordinator creates the data bucket. Then, every peer is from the
beginning a server. Some have also the parity buckets. There are
no candidate peers and hence no need for tutoring.

Another simplified variant uses an LH*RS file extended only with
the basic capabilities of LH*RS

P2P peer nodes. A server node
becomes thus able to have also the client component, and both
become able to adjust the client image during the split. Optionally,
the server component is able to perform the sure search. No
tutoring, in contrast. The peers are rewarded with faster worst case
addressing performance. The (LH*) clients continue with the
slower, basic LH* performance. That is, to recall, of two
messages per key based addressing at most and possibly several
rounds per scan.

We can also improve the accuracy of the client image after an
IAM. The server peer then sends the image at its client
component, in lieu of the j value at its server component, as in the
basic scheme. This image may be more accurate, because of IAMs
received by the sender, than what the client may guess from j
only. The client then simply takes this image instead of its own.
The received image must be more accurate. This variant requires a
tighter integration of the client and server components at a peer
and derives more advantages from the existence of peers. We
chose not to implement this variant in order to reuse our existing
LH*RS prototype. The metadata of each peer component remains
then internal to the component and the server component does not
have access to the image of its local client when composing an
IAM.

In the basic scheme, the coordinator sends 2j-1 – 1 physical
addresses of buckets to a peer with a split request. This can be a
large number and the peer might already received most or even all
of these addresses through IAM. In the integrated variant just
mentioned, we could choose the splitting peer to request only
missing bucket addresses from the coordinator. If (i'', n'') is the
before-image at the client of the splitting peer, then the only
missing addresses are of buckets n'' + 2i''… a + 2j-1 – 1. However,
in this version, the peer will not receive any addresses of
recovered buckets. The practical implications of both variants
remain for further study.

Yet another interesting variant concerns parity management.
Ideally, each peer should uniformly provide data access, data
storage, and parity management. As described, LH*RS

P2P allots
only parity buckets to some peers. However, parity buckets have
at least as many records as the biggest data bucket in the bucket
group and an update to any data bucket in the bucket group results
in an update to the parity bucket. However, in the absence of
unavailability, parity buckets do not receive lookup requests.

In [9], we sketched a variant of LH*RS free of these shortcomings.

We allocate parity buckets for a bucket group with the data
buckets of the following group. The parity for the last bucket

group is temporarily stored with the buckets of the first bucket
group. This scheme insures that parity records of a record group
cannot be stored on the same node as some records in the group,
provided that the number of parity records is less than the
maximum number of records in a record group. Additionally,
recovery is up to almost n times faster, since performed at n nodes
in parallel. The scheme could be the basis for an interesting
variant of LH*RS

P2P as well.

8. CONCLUSION
We have intended the LH*RS

P2P scheme for the P2P files, where
every node both uses data and serves its storage for them, or is at
least willing to serve the storage when needed. Under this
assumption, it is the fastest SDDS & P2P addressing scheme
known. It should in particular protect the file efficiently against
churn. Current work consists in the implementation of the scheme
over the existing LH*RS prototype [8]. We add the capability of
having LH*RS

P2P peer nodes, of the sure search, and of the k-
available tutoring functions.

9. ACKNOWLEDGMENTS
Partial support for this work came from eGov-Bus IST project,
number FP6-IST-4-026727-STP.

10. REFERENCES
[1] Crainiceanu, A. Linga, P. Gehrke,J., & Shanmugasundaram,

J. Querying Peer-to-Peer Networks Using P-Trees. In
Proceedings of the Seventh International Workshop on the
Web and Databases (WebDB 2004). Paris, France, June
2004.

[2] Bolosky, W. J, Douceur, J. R and Howel,l J. The Farsite
Project: A Retrospective. Operating System Review, April
2007, p.17-26.

[3] Devine, R. Design and Implementation of DDH: A
Distributed Dynamic Hashing Algorithm, Proc. 4th Intl.
Found. of Data Organisation and Algorithms –FODO, 1993.

[4] Litwin, W. Linear Hashing : A new tool for file and table
addressing, In Proc. VLDB, Montreal, Canada, 1980.
Reprinted in Readings in Database Systems, M. Stonebreaker
ed., 2nd édition, Morgan Kaufmann, 1995.

[5] Litwin, W. Neimat, M-A., Schneider, D. LH*: Linear
Hashing for Distributed Files. ACM-SIGMOD Int. Conf. On
Management of Data, 93.

[6] Litwin, W., Neimat, M-A., Schneider, D. LH*: A Scalable
Distributed Data Structure. ACM-TODS, (Dec. 1996).

[7] Litwin, W., Neimat, M-A. High Availability LH* Schemes
with Mirroring, Intl. Conf on Cooperating systems, Brussels,
IEEE Press 1996.

[8] Litwin, W. Moussa R, Schwarz T. LH*rs- A Highly
Available Distributed Data Storage. Proc of 30th VLDB
Conference, Toronto, Canada, 2004.

[9] Litwin, W. Moussa R, Schwarz T. LH*rs- A Highly
Available Scalable Distributed Data Structure. ACM-TODS,
Sept 2005.

[10] Gribble, S., Brewer, E., Hellerstein, J., M. & Culler, D.
Scalable, Distributed Data Structures for Internet Service
Construction, Fourth Symp. on Operating Systems Design
and Implementation (OSDI 2000).

[11] Stoica I, Morris R, Karger D, Kaashoek F, Balakrishma. H.
CHORD : A scalable Peer to Peer Lookup Service for
Internet Application. SIGCOMM’O, 2001.

