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Abstract 

The RP* scheme generates the scalable range 
partitioning. The intervals at the data servers adjust 
dynamically so that new servers accommodate the file 
growth transparently for the application. We have 
implemented variants of RP* on a Windows 2000 
multicomputer.  We have measured the performance 
of the system. The experiments prove high efficiency 
of our implementation.  RP* should be of importance 
to future main-memory parallel DBMSs. 
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1 Introduction 
A Scalable Distributed Data Structure (SDDS) 

dynamically partitions data over a multicomputer, 
[LNS93]. The data are distributed over server nodes. 
They are stored for processing entirely in the 
distributed RAM, for much faster access than to the 
traditional disk-based structures. The applications 
access data through the client nodes. The partitioning 
adjusts to the file growth, transparently for the 
application. The overflowing servers split and send 
the records towards new servers, dynamically 
appended to the file. These capabilities should 
interest many applications. The SDDSs should 
enhance in particular the scalability of parallel 
DBMSs. These use only static partitioning schemes at 
present, and disk disk-based data structures.   

Several SDDS schemes are now known, [SDDS].  
Some are for scalable hash partitioning, e.g., the 
LH*LH schema, [BDNL00].  Some LH* schemes are 
the high-availability SDDSs that support the 
unavailability of some server nodes, e.g., the LH*RS 
schema [LS99]. Other schemes, especially the RP* 
SDDS, provide the range partitioning  [LNS94]. 
Finally, there are schemes for the k-d partitioning etc.  

For every SDDS schema,  the theoretical analysis 
has predicted its access and storage performance.  

However, we believe that nothing replaces the experimental 
validation. A prototype SDDS management system 
termed SDDS-2000 is therefore being developed at 
CERIA, in cooperation with U. Uppsala1 and U. 
Dakar2 (ceria.dauphine.fr). It runs on Windows 
multicomputer.  It supports at present the LH*LH and 
LH*RS schemes, and RP* schemes.   

                                                 
1 Research group of Prof. Tore Risch, formerly with U. 
Linkopping (Sweden) 
2 Research group headed by Dr. S. Ndiaye and Dr. T. Seck. 

Below we report on experiments with variants of 
the RP* scheme.  These experiments, first ever reported 
for this schema, show fast access times, usually in the 
range of a fraction of a millisecond. These confirm 
the theoretical predictions in [LNS94]. The times are 
also orders of magnitude faster than for more 
traditional disk files.   The measures show also good 
scalability of all the variants under the study. 

Section 2 recalls the principles of RP* schemes. It 
also presents the RAM data structures used at SDDS-
2000 servers. Section 3 describes the SDDS-2000 
system architecture. Section 4 reports on the 
experiments. Section 5 analyzes the scalability of RP* 
files as it appears through the experiments. Section 6 
contains the conclusion.  

2 RP* Schemes 
2.1 File Structure 

An RP* file consists of records identified by 
primary keys, [LNS94]. The keys and records of an 
RP* file are completely ordered. A record consists of 
the key and of a non-key field(s). The records on 
every server are stored in memory space called bucket. 
Buckets are usually in the main memory, for fast 
access. The set of the keys in the bucket corresponds 
to an ordered partition of the key space.  An interval 
called bucket range and noted (λ, Λ] is associated with 
each bucket. The value λ is the minimal key and Λ is 
called the maximum key of the bucket.  A record with 
key c is stored in the bucket with the range such that 
λ < c ≤ Λ. The union of the ranges covers the key 
space, assumed (−∞,+∞).  The file initially consists of 
single bucket 0, with λ = −∞ and Λ = +∞.  

 Each bucket contains a maximum of b (b >> 1) 
records. The value b is the bucket capacity.  When the 
number of records to store in a bucket exceeds b, the 
bucket overflows. The records with keys within the 
upper half of the range move to a new bucket at a 
new server appended to the file. Both bucket ranges 
are adjusted accordingly. No message is sent to clients 
about the split. 

The client requests (queries) to the file are as 
usual the inserts, updates, deletions and searches 
based on key values.  A key search is the search for a 
record with given key. A range query searches for all 
the records with keys in the range given by the query. 
The range query is basically multicast and buckets 
deliver the records in parallel.  Alternatively, one 
traverse the relevant buckets in ascending or 
descending order.  Finally, the general query searches 



- 2 - 

the non-key fields. It usually scans in parallel all the 
buckets.  

The client has the choice of two termination 
strategies for the range query deal with as the parallel 
query.  With the deterministic termination, every server 
that receives the query sends its range and the records 
in the query range, if any. The client terminates the 
processing successfully when the union of the received 
ranges subsums that of the query. The client also has 
a timeout, to terminate unsuccessfully if not all answers 
are received within this time.  With the probabilistic 
termination, only the servers with records in the 
query range reply. The replies must be collected 
within the timeout T. The client always terminates 
successfully after T expires.  The choice of T involves 
the probability of losing an answer. This depends on 
the performance of the network, on the processing 
speed of the servers… 

One distinguish three RP* variants in [LNS94], 
labelled: RP*N, RP*C and RP*S. An RP*N client sends 
the requests to the servers using multicast messages. 
An RP*C file is an RP*N file with a specific index on 
each client. The index contains a (perhaps partial) 
image of the partitioning. An element of the index 
may contain a bucket range and its address. There are 
also elements, symbolically noted ‘*’ whose 
correspondence to buckets is (yet) unknown.  
Initially, for any new client, there is only one element 
in its index which is ‘*’ for the whole file.  

The client uses unicast messages for key based 
requests within a range of a bucket with known 
address. It multicasts the request with the key fitting 
the range of the ‘*’ element.  A unicast request with 
key c may reach an incorrect bucket such that c ∉   (λ, 
Λ]. Such a bucket has split since the index element 
with its range on the client was created or last 
updated.  The server that receives such an out-of-range 
request and key, multicasts the request together with 
its own range to all the servers. The correct bucket with 
the range c ∈   (λ, Λ] processes the request. It then 
sends back to the client the Image Adjustment Message 
(IAM). Each IAM contains the range of the bucket 
that sends it and perhaps of the other bucket(s) that 
the record has visited.  The client adjusts its image 
accordingly.  

Finally, RP*S adds to RP*C an index distributed 
over servers, indexing all the buckets. One uses then 
the unicast messages for all types of requests, and the 
redirections among the servers, except perhaps for 
the range queries.   

Our SDDS-2000 prototype currently supports 
these three RP* variants. It also supports a variant of 
RP*C called RP*Cu. The client of RP*Cu uses only 
unicast messages for the key based requests.  The key 
that does not match an index element with known 
bucket address is unicast to the bucket with the 
highest preceding range.  Performance experiments 
reported below for RP*c concern RP*Cu. For 
convenience, we denote the latter simply RP*C.   

2.2 Bucket Structure 
The RP* buckets are supposed stored in 

distributed RAM. One may expect the processing 
time orders of magnitude faster than the traditional 
disk-based structures [LNS94]. The multicomputer 
supporting the RP* may involve very many nodes. 
Hence, one can also reasonably expect enough 
distributed RAM for even very large files.  The RP* 
schemes originally defined leave open the internal 
structure for an RP* bucket.  We now present our 
design at SDDS-2000. 

We use two Memory Mapped File (MMF) of 
Windows 2000. The bucket is basically a specific kind 
of RAM B+-tree, [D98], [DNB00]. We distributed the 
bucket storage space into three zones, Figure 1: 

1. The Header - It includes the bucket range, the 
address of the index root, the bucket size, the 
number of records in the bucket and, , the 
index size.  

2. The Index - It is a variant of B+-tree, Figure 2. 
3. The Data. This zone contains the index leaves 

with the data. 
One MMF stores the header and the B+-tree index. 
The other stores the data. 

    Header      B+-tree index          Data (Linked list of index leaves)     

Figure 1: RP* bucket storage space. 
 

The index is a hierarchical structure of nodes, as usual 
for a B+-tree, Figure 2. In addition, we have linked 
the successive index nodes at the same level. This 
makes the index split during the bucket split more 
efficient.  Each node contains at most n entries, in the  
(key, pointer) form. Each pointer refers to a next level 
node. Except for the root, each node has at least n/2 
entries. The root can contain even a single entry.  
We have limited our tree to three levels, as at the 
figure.  It suffices for very large files and our tests. 
The bottom leaf headers of our tree point to the leaves.  
The pointers between leaf headers make the 
sequential traversal faster, as in the linked B-tree. The 
records in the leaves are logically ordered linked lists 
of records.  An insert adds the record at the end of 
those already in the bucket. A deletion is only logical. 
The space is reclaimed during the split or garbage 
collection (not implemented yet).  
 
 

Index
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Records
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Figure 2:  RP* bucket structure 
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3 System Architecture 
SDDS-2000 system architecture is common to all 
schemes it supports. Below, we describe only its 
features relative to the scope of this work, i.e., the 
experimental performance analysis of RP* schemes.  
We present successively the capabilities of the 
messaging architecture, the functional architecture of 
the servers, and that of the clients. 
3.1 Messaging 

Our machines are on the Ethernet network. We 
use unicast, point-to-point, messages to addresses any 
single site. We also use the multicast, to address with  
single message the entire multicast group of sites, 
identified by a shared address.   The transport level is 
managed by the Windows Sockets Interface [S96]. 
The sockets support the TCP/IP and UDP 
protocols. TCP/IP provides the reliable service 
connection based service. UDP works with 
datagrams, without connection and guarantee of the 
delivery in order and without losses. We use UDP 
protocol for short messages (< 64K) and the TCP/IP 
otherwise.  In addition, we have a dedicated flow 
control protocol for requests using UDP messages in 
SDDS-2000, if losses are unacceptable, [D&al00].  

The protocol uses a sliding window, as in the 
algorithm proposed by Van Jacobson for the 
congestion control in TCP/IP [J88]. The server sends 
an acknowledgement with the record key to the client 
for every individual request. The client has a buffer 
where it stores the requests sent but not yet 
acknowledged.  The client stop sending when the 
buffer reaches its capacity, of 10 requests at present. 
The acknowledgement removes the request from the 
buffer. This enables a new send out. For each request 
sent, a timeout is automatically started. The client 
resends the request without the acknowledgement 
within the timeout.  
3.2 Servers 

The servers use the multithread processing, Figure 
3. Several threads take care of the processing, 
asynchronously and in parallel. They communicate 
through queues, buffers and events.   

The ListenThread receives the client request, and 
puts it into a FIFO RequestsQueue. It announces then 
the ArrivedRequest event and waits for next requests.  
The even wakes up a WorkThread from a pool of such 
threads, noted W.Thread i (i = 1,.., N) in Figure 3. 
The number of active WorkThreads depends on the 
server load.  Each ArrivedRequest  event, wakes up a 
work thread, if any is still available.  The thread reads 
the next request in Requests queue. It identifies the 
operation to perform. If the request requires the flow 
control, the thread puts the acknowledgement in the 
FIFO AckQueue (Ack queue in Figure 3). The 
SendAck thread asynchronously reads AckQueue and 
sends the acknowledgements to the clients. 
WorkThreads continues with the processing of the 
requested operation. At the end, it returns the answer 

to the client, if required. If there is no new 
ArrivedRequest event pending, it finally goes to sleep.  

For the clients, the server is identified by its IP 
address and UDP port. A site can support multiple 
servers on different ports. A server is created empty, 
and listening for a bucket creation request.  These 
requests may create several buckets from different 
SDDS files.  The buckets are allocated using the 
Bucket Allocation Table (BAT). BAT contains the 
bucket address, size and the ID of its file.  
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Figure 3: Server architecture. 
 

The bucket creation request comes from a client 
for a new file or from a server with a bucket to split. 
The latter case subsumes the former so we present 
only that one. Let SO the splitting server be, and let 
the Si be any server among M currently started ; 1 ≤ i 
≤ M. The split at SO follows the steps. First, SO sends 
the SplitRequest multicast message with the requested 
bucket size. Each Si that has enough space replies.  SO 
selects the first site Sk to reply. It opens a TCP port 
and sends the ResponseAccept unicast message to Sk 
requesting it to connect to SO. SO locates also the 
middle key cm in its bucket and splits the bucket into 
two groups. One group, let it be G, contains records 
with keys c >cm and their B+-tree sub-index.  The 
other group contains all the other records and their 
sub-index.  SO, sends G to Sk. It then updates its 
index and data zones so to remove the allocation gaps 
and sets the range to [λO, cm[.  Finally, Sk creates the 
bucket with the received records and range [cm, ΛO[. 

The client requests in RequestsQueue received 
during the split are dealt with as usual once the split is 
over.  
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3.3 Clients 
The RP* client architecture is structured into two 

modules, termed send and the receive module. They run 
in parallel, and are further structured as in Figure 4. 
The send module processes the application request 
and expedites it to the servers.  Its GetRequest thread 
waits for the application request. It puts the incoming 
request ID (Id_Req) and that of the application 
(Id_App) in the RequestJournal table. Both Ids are 
provided by the application. Next, it processes the 
request and puts it in a FIFO queue. The SendRequest 
thread reads the queue. It builds the messages to the 
servers accordingly and sends them. For RP*C, it 
consults the client image, to determine the IP address 
and the type of the message to use.  
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Figure 4: Client architecture 
 
The receive module manages the replies from the 

servers. It works into two different ways. For key 
based requests, the ReceiveResponse thread awaits the 
replies from the servers. It inserts them into a FIFO 
queue, read by the AnalyseResponse threads. Up to four 
such threads may run simultaneously at present. Each 
AnalyseResponse reformats the received data for the 
application and possibly update the RP*C client image 
from the IAMs. Then, it puts data and the request id 
into another queue for ReturnResponse thread. 
ReturnResponse searches Id_App in the request journal 
for each Id_Req  in the reply retrieved from the 
queue and returns the data to the application. 

For a range query, the ReceiveResponse thread opens 
a TPC port before the expedition of the request to 
the servers by the send module. The relevant servers 
use this port to establish simultaneous TCP 
connections on other ports with the client.   To 
receive the data, through each accepted server 
connection request, the ReceiveResponse thread creates a 
dedicated ReceptionThread. It keep the TCP connexion 
until the end of the data transfer from the server. 

4 Performance Analysis 
4.1 Experimental Environment 

Our platform consisted of six Pentium III 700 
MHz machines with four Professional Windows 2000 
and two Server Windows 2000. Each site had 128 MB 
of RAM. The machines were linked by a 100 Mb/s 
Ethernet. One or two of the machines served as 
clients.   

The message size was 180 bytes (80 bytes for the 
message header and 100 bytes for the record). The 
message for the key search had 80 bytes. The size of 
the sliding window for the flow control is set to 10.  
The keys for the experiments are random integers 
within some interval and without duplicates. The keys 
for search and insert operations are between 1 and 
100.000. Those for the file creation are between 1 and 
150.000. The capacity of the internal index node in 
the RP* bucket is set to 80 keys. That of a leaf is 100 
records.  

All times measured are in milliseconds (ms). The 
measures are collected at the clients for inserts and 
searches, and at the servers for the split time. The 
client measures the time requesting a specific 
acknowledgement for every i-the key or record sent; i 
= 1, 10000, 20000… in our case.  It records the time 
when it receives the acknowledgements.  The splitting 
server measures the split time as the difference 
between the time it starts the split and that when it 
gets the acknowledgement from the server of the new 
bucket that its creation is finished. 
4.2 File creation 
We measured the creation of the RP*C and of the 
RP*N files. The performance factors of interest were 
the total time, and the time per record inserted. The 
bucket capacity was 50.000 records. In 1st experiment, 
a single client inserted the 150.000 records. The file 
scaled up from the empty bucket to five buckets (on 
five servers). The communication was through UDP 
messaging, one per record (no bulk loading). Table 1 
shows the final numerical results. Figure 5, 6 and 7 
present the graphics. Each point (x, y) of a curve of 
the time y per insert, shows the total time to create 
the file of x records divided by x. This time measures 
the throughput, and should not be mistaken with the 
average individual insert time. The latter is measured 
by the average time per insert at a single server only.  
Losses without the flow control were negligible  
(< 0,01%). 
 

RP*C 

With flow control Without flow control 
Ttl  time Time/Ins. Ttl  time Time/Ins. 

67838 0.452 45032 0.300 
RP*N 

With flow control Without flow control 
Ttl time Time/Ins. Ttl  time Time/Ins. 

69209 0.461 47798 0.319 

Table 1: File creation by a single client   
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All the curves become flat. The time per insert is 
thus valid for further scaling of the files. As one 
could expect, RP*C appears also slightly faster than 
RP*N in all the cases. The difference is of 2% with 
the flow control and of 6% without. These results 
match the intuition.  They made us in addition 
believing that the performance of RP*C without flow 
control could be bound by the throughput of a single 
client.  The processing of an insert should be indeed 
longer at the server than at the client. But, when the 
file scales over enough servers, their collective 
throughput should become faster than that of any 
single client. This could happen also for RP*N, or not. 
The multicast sends indeed every record to every 
server. A record to be stored at the server requires 
than longer processing than that to drop. But, while 
these records are produced at the constant rate by the 
client, they scatter on more and more servers.  On the 
other hand however, each server gets relatively more 
records to drop.  The result of the match is unclear. 

To test the conjecture we have created the file by 
120.000 inserts from 2 simultaneous clients. The file 
scaled to four buckets, which is the limit of our 
configuration for two clients. Table 2 and Figure 8  
and 9 present the results. 

The conjecture appears true for RP*C.  The time 
per inserts decreases indeed by 7% for RP*C, It does 
not in contrast for RP*N.  RP*C becomes for 2 clients 
notably faster than RP*N, by 15%.  The curves of 
total time are straight and those of time per insert 
become flat. The file scales thus again linearly and the 
curves may be used to predict the creation time for 
further scale-up.  
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Figure 7: Insert time by a single client. 
 
 
 
 

RP*C RP*N 
Without flow 

control 
Without flow 

control 
Ttl 

time 
Time/Ins. Ttl 

time 
Time/Ins.

33553 0.279 38432 0.320 

Table 2: File creation by two clients.
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4.3 Split time 

These experiments determine the split time and 
its scalability as the function of bucket capacity  b. 
Table 3 and Figure 10 show the results.   

All times decrease for larger buckets. The time 
per record decreases from 0.137 ms four b = 10000, 
to 0.037 ms for b = 100000, i.e., by about 73%.  Splits 
are thus much more effective for larger buckets. The 
curves have a tendency to about flat, but we do not 
reach yet the server speed. Hence for even bigger b, 
one can expect still slightly better efficiency. 

 
 
 
 

b Time Time/Record 
10000 1372 0.137 
20000 1763 0.088 
30000 1952 0.065 
40000 2294 0.057 
50000 2594 0.052 
60000 2824 0.047 
70000 3165 0.045 
80000 3465 0.043 
90000 3595 0.040 

100000 3666 0.037 

Table 3: Split times for different bucket capacities 
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4.4 File manipulation 
We studied the time of inserts, key searches and of 
range queries issued by a single client. We measured 
the time for a series of requests and the average time 
per request for both RP*N and RP*C.  We expected 
again the processing time of a request at the server 
longer than at the client. The client should reach thus 
full load and the system best performance only when 
it faces several servers.  To determine how many, and 
all the times, we have varied the number of servers 
from 1 to 5, using one bucket per server. 

4.4.1 Inserts  
We measured the insert performance for a series 

of up to x = 100000 inserts with and without flow 
control. These were carried out to the initially empty 
k-bucket file. The key values were uniformly 
distributed.  The inserts did not lead to any splits, 
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unlike for the file creation. However, on the one hand 
we consider a new client, hence there are IAMs for 
RP*C client. On the other hand, for inserts without 
the flow control, we consider the client with the 
correct image. The idea is to evaluate the incidence of 
IAMs as discussed below.  Table 4 presents the 
numerical results. Figure 11 and Figure 12 show the 
curves with the times in function of x. 

All the times measured decrease when k grows. 
Thus, the processing time at the server is indeed again 
higher than on a client.  The values for k = 1 basically 
measure the former.  The performance is basically the 
same for RP*C and RP*N. The multicast used for 
RP*N in this case is indeed a unicast. A slight 
overhead always appears nevertheless for the 
multicast. Mostly, for the inserts with the flow 
control, when it reaches about 1%. 

The times per insert show that our RP* server is 
effective. Whether the flow control is used or not, the 
server processes an insert in about 1/3 ms. We recall 
that this is about 30 times faster than an average 
insert to a disk file. Increasing k, gradually decreases 
the average insert time. The limits are bound by the 
client’s speed. The best times that appear are about 
0.2 ms with the flow control and under 0.1 ms 
without. In the case of RP*C without the flow 
control, the client (and the whole system) reaches its 
full speed (throughput) for k = 4.  For all other cases, 
it is not yet the case even for k = 5. The curves 
become however about flat, so this should happen 
for k = 6,7 servers, reaching the time slightly under 
0.22 ms per insert.  

The ratio between the processing time for k = 1 
and for k = 5 is over 1.5 for inserts with the flow 
control for both RP*C and RP*N.  Without the flow 
control, this ratio is about 3.  The client may thus process 
at least three times more inserts than a server. This figures 
confirms more precisely the conjecture from Section 
4.2.  Furthermore, the ratio between the times with 
and without the flow control, is about 1.3 for k = 1 
and increases to about 2.4 for k = 5.  Thus the flow 
control becomes increasingly expensive when the file 

scales. It appears thus as the predominant slow-down 
factor for larger files.  

It also appears that RP*N throughput is slower for 
less servers, closing on RP*C when there are more 
servers, although remaining slightly slower. This is 
logical as every request is multicast to all the servers.  
The overhead is the greatest for k = 2 when there is 
no flow control. It reaches then 27%. It decreases 
gradually to 3% for k = 5.  This behavior seems 
contrary to the intuition. By its nature, the multicast 
messaging scales indeed less efficiently than unicast 
messaging. 

The observed behavior could be due to the IAMs. 
Before the client sending inserts without the flow 
control gets an IAM triggered by an incorrectly 
addressed insert, it has time to send several other 
such inserts.  All these inserts are multicast among 
the servers. More there buckets in the file, more IAM 
have to be generated and more records have to be 
forwarded in this way. Each forward also generates a 
useless IAM that slows down the client. In our 
experiment, there are also progressively less inserts 
per bucket from 50.000 per bucket for 2 servers, to 
20.000. The effect of the additional forwarding has 
more incidence. RP*C could becomes less effective, 
with performance closing on RP*N. 

To prove this explanation we have generated the 
correct index at the client so to avoid any IAM. As  
Table 4 shows, the times were only slightly better. 
Hence, our explanation does not hold. At present, we 
do not have any other. 
RP*N is a simpler structure than RP*C.  The fact that 
its performance is almost that of RP*C for a larger file 
is a nice features of that schema. The processing of 
the out-of-range records at each server appears 
relatively negligible. As it was expected while the 
scheme was proposed, [LNS94]. If there are more 
clients, RP*C should nevertheless again reveal notably 
faster.  For two clients, one can expect the speed-up 
similar to that for the file creation. The experimental 
confirmation remains to be done. 

 
 

RP*C RP*N 
Without flow control With flow control 

Empty image Correct image 
With flow control Without flow 

control 

k 

Ttl 
time 

Time/Ins. Ttl 
time 

Time/Ins. Ttl 
time 

Time/Ins. Ttl 
time 

Time/Ins. Ttl 
time 

Time/Ins.

1 35511 0.355 27480 0.275 27480 0.275 35872 0.359 27540 0.275
2 27767 0.258 14440 0.144 13652 0.137 28350 0.284 18357 0.184
3 23514 0.235 11176 0.112 10632 0.106 25426 0.254 15312 0.153
4 22332 0.223 9213 0.092 9048 0.090 23745 0.237 9824 0.098
5 22101 0.221 9224 0.092 8902 0.089 22911 0.229 9532 0.095

 
Table 4: Insert times.  
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Figure 11: Total insert time for initially empty image. 
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Figure 12: Insert time per record for initially empty 
image. 

4.4.2 Key search 
We measured this operation using files at k servers. 
In the experiments, there were up to k = 5 servers, 
supporting in each case the file of  100.000 records. 
In each experiment, a single client sent 100.000 
successful random search requests. The flow control 
means here that the client sends at most 10 requests 
without reply. Table 5 tabulates the results. Figure 
13and Figure 14 present them as curves depending 
on k. 

 
The results confirm the efficiency of the system and 
of the analyzed RP* schemes.  The individual key 
search time is always about 0.3 ms, i.e. 30 times better 
than for a disk file. The throughput reaches 0.2 ms 
per search with the flow control and 0.14 ms 
otherwise.  The curves become are about flat, but we 
do not reach the client speed yet.  Hence for more 
buckets one can expect still slightly better 
throughput. Probably around 0.13 ms per search.

RP*C RP*N 
With flow control Without flow control With flow control Without flow control 

. k 

Ttl time  Avg time Ttl time Avg time Ttl time Avg time Ttl time Avg time 
1 34019 0.340 32086 0.321 34620 0.346 32466 0.325
2 25767 0.258 17686 0.177 27550 0.276 20850 0.209
3 21431 0.214 16002 0.160 23594 0.236 17105 0.171
4 20389 0.204 15312 0.153 20720 0.207 15432 0.154
5 19987 0.200 14256 0.143 20542 0.205 14521 0.145

Table 5 : Search times. 
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Figure 13: Total search time. 
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Figure 14: Search time per record.
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4.4.3 Range query 
We have measured the time of the range query 

with the deterministic termination scanning in parallel 
the entire file. Its execution was the same for RP*N 
and RP*C. We had 100.000 records to bring to the 
client. The records were distributed between the k 
servers. Table 6 shows the total time and the 
throughput. The value n is the number of records per 
server.  Figure 15 and Figure 16 show the results as 
the function of k.  

 
n  k Total 

time 
Time/Record 

100000 1 3495 0.035 
50000 2 2083 0.021 
33333 3 1692 0.017 
25000 4 1373 0.014 
20000 5 1048 0.010 

Table 6: Range query times.  

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5

Number of servers

Ti
m

e 
(m

s)

 Figure 15: Range query total time. 
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Figure 16: Range query time per record 

 
The outcomes show that the range queries are 

effective whether for one or more servers. As one 
could expect, it appears nevertheless useful to 
distribute the records among multiple servers.  The 
throughput improves from 0.035 ms for the file on 
one server, to 0.010 ms for the same file in five 
buckets. This is a strong improvement, by about 
71%. As the curves are not flat yet, more servers 
should further improve this performance.   

5 Scalability analysis 
The experimental curves we have obtained for 

various times become about linear for total times or 
flat for the throughputs. One may thus infer the 
performance of files much larger than those we 
experimented with.  At first one may study in this 
way the largest file one could possibly create at our 
current configuration. The full capacity of 3-level 
index leads to b = 640.000 records per bucket. For 
100-Byte record assumed in the study this 
corresponds to 64MB buckets. These can be 
supported by our servers as they have 128MB of 
RAM.   As the average load factor of an RP* file is 
70 % under random inserts, our file may scale to 
448.000 records per bucket on the average. Its total 
capacity may then reach 2.240.000 records and 320 
MB. A single RP*N client would create this file in 
2.240.000 x 0.095 + 51.2 = 264 s. The 1st term in the 
expression reflects the total insert time, and the 2nd 
one totalizes the split times. A single RP*C client 
would be faster by almost 7 s.  For the sake of 
completeness let us mention that if one should create 
that file on a disk, it would take 22.400 s, i.e. over 6h.  

The machines used support in fact 256 MB of 
RAM. That capacity could be used at present rather 
to store large records, up to 300 B. To store more 
records, a 4-level index would be needed.  

On the other hand, one may infer the cost of the 
example file if it scaled to a much larger size, e.g., 
10.000.000 records. The average bucket load would 
be of 70 % x 50000 = 35000 records. The file would 
reach 10.000.000/35000 = 286 buckets. There are 
many more machines available at U. Paris 9, hence 
this size is feasible.  The (random) inserts would last 
950 s for RP*N or 920 s for RP*C. The splits would 
require 285 x (25000 x 0.04) = 285 s. The RP*N and 
RP*C files would be created respectively in 1235 s and 
1205 s, i.e., each one in about 20 minutes. The 
creation of the disk file would require about 28 hours. 

The operational use of that large RP* files would 
probably require nevertheless some changes to the 
client architecture with  respect to the range queries.  
At present the messaging is quite basic: a connection 
and a thread is created per each responding bucket. 
The current TCP/IP stack architecture does not 
handle efficiently a large number of simultaneous 
connections. The related study in [TS00] analyses the 
corresponding pitfalls, and propose more scalable 
messaging alternatives for an SDDS client. 
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6 Related works 
The papers on SDDS schemes present usually the 

theoretical access performance analysis measured in 
number of messages. The advantage of that measure 
is to be network and CPU speed independent. The 
evaluation of actual elapsed times are rare. Below, 
Table 7, compares our results to the theoretical 
predictions in the original RP* paper [LNS94].  It also 
compare them to the experimental results for LH*LH 
on SDDS-2000, [BDNL00].  

The theoretical performance of the RP* scheme 
in [LNS94] were predicted in only for RP*N. The 

network model was from [G88].  Site speed was 
accordingly assumed 100 MIPS, and OS time to 
process a message was 25 µs (2500 instructions).  No 
flow control was considered. A key search query was 
100 B long, and a message with a record, was 
assumed 1 KB long.   

Some theoretical measures in Table 7, e.g., tc, are 
not in  [LNS94]. They were calculated here a new, on 
the basis of the same assumptions, to complete the 
comparison. Their computation was quite obvious, so 
we omit it. 

 
  

RP*N  Imp.  RP*C  Impl.  LH* Imp. RP*N Thr.

With FC No FC With FC No FC 

tc 51000 40250 69209 47798 67838 45032 

ts 0.350 0.186 0.205 0.145 0.200 0.143 

ti,c    0.340 0,268 0.461 0.319 0.452 0.279 

ti  0.330 0.161 0.229 0.095 0.221 0.086 

tm 0.16 0.161 0.037 0.037 0.037 0.037 

tr  0.005 0.010 0.010 0.010 0.010 

Table 7: Comparative Analysis 

tc: time to create the file  
ts: time per key search (throughput) 
ti: time per random insert (throughput) 
ti,c: time per random insert (throughput) during the file creation 
tm: time per record for splitting 
tr: time per record for a range query 
 

Our experimental results basically confirm the 
theory.  The values without flow control are quite 
similar except for tm. The reason is that the theoretical 
value was calculated for an individual record transfer. 
This one is close to the 0.137 ms obtained for the 
smallest b in Table 3. In  Table 7 however, we have 
chosen to show the best performance, for the largest 
b measured, and corresponding to our most efficient 
TCP/IP stream transfer.  

The results for LH*LH in Table 7 were reported at 
the same configuration. The bucket capacity was 
however only b = 5.000 records, instead of our 
b = 50.000. The file was also of 20.000 records only 
and records were of 50 bytes, hence two times 
shorter. The time tc Table 7 is therefore inferred for 
LH*LH for our 150.000 record files.  It is comparable, 
but longer than all those for RP*. This is due to much 
smaller b used, hence relatively higher incidence of 
the splits.  

The search time ts for LH*LH is established for a 
series where next search starts when the reply to the 
previous one is received. Hence, it is naturally higher 
than that indicated for RP* and confirms incidentally 
the efficiency of the flow control algorithm used.  

Times ti,c  are similar, the differences steaming from 
the respective b values. The relatively high value of ti 
for LH*LH has no explanation at present. It is perhaps 
simply in error.  Time tm of LH*LH should rather be 
compared to that of 0.137 ms for  b = 10.000 in table. 
This performance appears then about similar for both 
schemes.  

Finally, tr was not measured for LH*LH. There is 
no concept of range query for that scheme. The scan 
of the entire LH*LH file could be measured 
nevertheless. Similar performance for both schemes 
should appear then. Both schemes use indeed SDDS-
2000 and performance of a scan is basically 
independent of the SDDS scheme used. Notice 
however that different internal bucket structures, as 
well as termination algorithms should somehow 
influence the result. 

7 Conclusion 
SDDS-2000 is a prototype system for Windows 

multicomputer supporting various SDDSs. In 
particular it supports several variants of the RP* 
schema for the scalable range partitioning. We have 
presented the design choices with respect to the 
internal bucket structure and the multithread system 
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architecture. We have shown also the experimental 
performance measures of the file manipulations.   

The behavior of the scheme and the processing 
times appear in line with the expectations. RP*C is 
generally more effective, especially when the 
performance is limited by the servers or there are 
several clients. The system is nevertheless efficient 
enough to provide times per insert or key search of a 
fraction of a millisecond for both measured variants. 
The client finds or inserts a given record in about 0.3 
ms. This value is mainly due to the server processing 
speed. Hence it should decrease as PC servers 
become faster. It is already at present about 30 times 
faster than a disk access. The throughput time per 
insert in a series of random inserts by a client may 
reach 0.09 ms. The throughput time per random 
search by a client may  reach 0.14 ms. These limits are 
due mainly to client CPU speed. Hence, they should 
not improve when the number of servers scales. But 
should decrease further for a faster client, e.g. on a  
GHz PC. The range query time reaches 0.01 ms per 
retrieved record. The curves show that if the file 
scales, it should further improve. Finally the split time 
is in the order of a second for smaller buckets to four 
seconds for the largest measured. The times per 
record show that larger buckets are relatively more 
efficient.   

Further work concerns more in depth 
performance analysis. There are also design variations 
we plan to experiment with. We will also experiment 
with actual applications. 
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