
- 1 -

Performance Measurements of RP* :
A Scalable Distributed Data Structure

For
Range Partitioning

Aly Wane Diène & Witold Litwin

CERIA
Université Paris 9 Dauphine

{Ali-Wane.Diene ; Witold.Litwin}@dauphine.fr

Abstract

The RP* scheme generates the scalable range
partitioning. The intervals at the data servers adjust
dynamically so that new servers accommodate the file
growth transparently for the application. We have
implemented variants of RP* on a Windows 2000
multicomputer. We have measured the performance
of the system. The experiments prove high efficiency
of our implementation. RP* should be of importance
to future main-memory parallel DBMSs.

Key words: Multicomputer, scalability, scalable distributed
data structures, parallel processing.

1 Introduction
A Scalable Distributed Data Structure (SDDS)

dynamically partitions data over a multicomputer,
[LNS93]. The data are distributed over server nodes.
They are stored for processing entirely in the
distributed RAM, for much faster access than to the
traditional disk-based structures. The applications
access data through the client nodes. The partitioning
adjusts to the file growth, transparently for the
application. The overflowing servers split and send
the records towards new servers, dynamically
appended to the file. These capabilities should
interest many applications. The SDDSs should
enhance in particular the scalability of parallel
DBMSs. These use only static partitioning schemes at
present, and disk disk-based data structures.

Several SDDS schemes are now known, [SDDS].
Some are for scalable hash partitioning, e.g., the
LH*LH schema, [BDNL00]. Some LH* schemes are
the high-availability SDDSs that support the
unavailability of some server nodes, e.g., the LH*RS
schema [LS99]. Other schemes, especially the RP*
SDDS, provide the range partitioning [LNS94].
Finally, there are schemes for the k-d partitioning etc.

For every SDDS schema, the theoretical analysis
has predicted its access and storage performance.

However, we believe that nothing replaces the experimental
validation. A prototype SDDS management system
termed SDDS-2000 is therefore being developed at
CERIA, in cooperation with U. Uppsala1 and U.
Dakar2 (ceria.dauphine.fr). It runs on Windows
multicomputer. It supports at present the LH*LH and
LH*RS schemes, and RP* schemes.

1 Research group of Prof. Tore Risch, formerly with U.
Linkopping (Sweden)
2 Research group headed by Dr. S. Ndiaye and Dr. T. Seck.

Below we report on experiments with variants of
the RP* scheme. These experiments, first ever reported
for this schema, show fast access times, usually in the
range of a fraction of a millisecond. These confirm
the theoretical predictions in [LNS94]. The times are
also orders of magnitude faster than for more
traditional disk files. The measures show also good
scalability of all the variants under the study.

Section 2 recalls the principles of RP* schemes. It
also presents the RAM data structures used at SDDS-
2000 servers. Section 3 describes the SDDS-2000
system architecture. Section 4 reports on the
experiments. Section 5 analyzes the scalability of RP*
files as it appears through the experiments. Section 6
contains the conclusion.

2 RP* Schemes
2.1 File Structure

An RP* file consists of records identified by
primary keys, [LNS94]. The keys and records of an
RP* file are completely ordered. A record consists of
the key and of a non-key field(s). The records on
every server are stored in memory space called bucket.
Buckets are usually in the main memory, for fast
access. The set of the keys in the bucket corresponds
to an ordered partition of the key space. An interval
called bucket range and noted (λ, Λ] is associated with
each bucket. The value λ is the minimal key and Λ is
called the maximum key of the bucket. A record with
key c is stored in the bucket with the range such that
λ < c ≤ Λ. The union of the ranges covers the key
space, assumed (−∞,+∞). The file initially consists of
single bucket 0, with λ = −∞ and Λ = +∞.

 Each bucket contains a maximum of b (b >> 1)
records. The value b is the bucket capacity. When the
number of records to store in a bucket exceeds b, the
bucket overflows. The records with keys within the
upper half of the range move to a new bucket at a
new server appended to the file. Both bucket ranges
are adjusted accordingly. No message is sent to clients
about the split.

The client requests (queries) to the file are as
usual the inserts, updates, deletions and searches
based on key values. A key search is the search for a
record with given key. A range query searches for all
the records with keys in the range given by the query.
The range query is basically multicast and buckets
deliver the records in parallel. Alternatively, one
traverse the relevant buckets in ascending or
descending order. Finally, the general query searches

- 2 -

the non-key fields. It usually scans in parallel all the
buckets.

The client has the choice of two termination
strategies for the range query deal with as the parallel
query. With the deterministic termination, every server
that receives the query sends its range and the records
in the query range, if any. The client terminates the
processing successfully when the union of the received
ranges subsums that of the query. The client also has
a timeout, to terminate unsuccessfully if not all answers
are received within this time. With the probabilistic
termination, only the servers with records in the
query range reply. The replies must be collected
within the timeout T. The client always terminates
successfully after T expires. The choice of T involves
the probability of losing an answer. This depends on
the performance of the network, on the processing
speed of the servers…

One distinguish three RP* variants in [LNS94],
labelled: RP*N, RP*C and RP*S. An RP*N client sends
the requests to the servers using multicast messages.
An RP*C file is an RP*N file with a specific index on
each client. The index contains a (perhaps partial)
image of the partitioning. An element of the index
may contain a bucket range and its address. There are
also elements, symbolically noted ‘*’ whose
correspondence to buckets is (yet) unknown.
Initially, for any new client, there is only one element
in its index which is ‘*’ for the whole file.

The client uses unicast messages for key based
requests within a range of a bucket with known
address. It multicasts the request with the key fitting
the range of the ‘*’ element. A unicast request with
key c may reach an incorrect bucket such that c ∉ (λ,
Λ]. Such a bucket has split since the index element
with its range on the client was created or last
updated. The server that receives such an out-of-range
request and key, multicasts the request together with
its own range to all the servers. The correct bucket with
the range c ∈ (λ, Λ] processes the request. It then
sends back to the client the Image Adjustment Message
(IAM). Each IAM contains the range of the bucket
that sends it and perhaps of the other bucket(s) that
the record has visited. The client adjusts its image
accordingly.

Finally, RP*S adds to RP*C an index distributed
over servers, indexing all the buckets. One uses then
the unicast messages for all types of requests, and the
redirections among the servers, except perhaps for
the range queries.

Our SDDS-2000 prototype currently supports
these three RP* variants. It also supports a variant of
RP*C called RP*Cu. The client of RP*Cu uses only
unicast messages for the key based requests. The key
that does not match an index element with known
bucket address is unicast to the bucket with the
highest preceding range. Performance experiments
reported below for RP*c concern RP*Cu. For
convenience, we denote the latter simply RP*C.

2.2 Bucket Structure
The RP* buckets are supposed stored in

distributed RAM. One may expect the processing
time orders of magnitude faster than the traditional
disk-based structures [LNS94]. The multicomputer
supporting the RP* may involve very many nodes.
Hence, one can also reasonably expect enough
distributed RAM for even very large files. The RP*
schemes originally defined leave open the internal
structure for an RP* bucket. We now present our
design at SDDS-2000.

We use two Memory Mapped File (MMF) of
Windows 2000. The bucket is basically a specific kind
of RAM B+-tree, [D98], [DNB00]. We distributed the
bucket storage space into three zones, Figure 1:

1. The Header - It includes the bucket range, the
address of the index root, the bucket size, the
number of records in the bucket and, , the
index size.

2. The Index - It is a variant of B+-tree, Figure 2.
3. The Data. This zone contains the index leaves

with the data.
One MMF stores the header and the B+-tree index.
The other stores the data.

 Header B+-tree index Data (Linked list of index leaves)

Figure 1: RP* bucket storage space.

The index is a hierarchical structure of nodes, as usual
for a B+-tree, Figure 2. In addition, we have linked
the successive index nodes at the same level. This
makes the index split during the bucket split more
efficient. Each node contains at most n entries, in the
(key, pointer) form. Each pointer refers to a next level
node. Except for the root, each node has at least n/2
entries. The root can contain even a single entry.
We have limited our tree to three levels, as at the
figure. It suffices for very large files and our tests.
The bottom leaf headers of our tree point to the leaves.
The pointers between leaf headers make the
sequential traversal faster, as in the linked B-tree. The
records in the leaves are logically ordered linked lists
of records. An insert adds the record at the end of
those already in the bucket. A deletion is only logical.
The space is reclaimed during the split or garbage
collection (not implemented yet).

Index

Root

Leaf
headers

Records

…

Figure 2: RP* bucket structure

- 3 -

3 System Architecture
SDDS-2000 system architecture is common to all
schemes it supports. Below, we describe only its
features relative to the scope of this work, i.e., the
experimental performance analysis of RP* schemes.
We present successively the capabilities of the
messaging architecture, the functional architecture of
the servers, and that of the clients.
3.1 Messaging

Our machines are on the Ethernet network. We
use unicast, point-to-point, messages to addresses any
single site. We also use the multicast, to address with
single message the entire multicast group of sites,
identified by a shared address. The transport level is
managed by the Windows Sockets Interface [S96].
The sockets support the TCP/IP and UDP
protocols. TCP/IP provides the reliable service
connection based service. UDP works with
datagrams, without connection and guarantee of the
delivery in order and without losses. We use UDP
protocol for short messages (< 64K) and the TCP/IP
otherwise. In addition, we have a dedicated flow
control protocol for requests using UDP messages in
SDDS-2000, if losses are unacceptable, [D&al00].

The protocol uses a sliding window, as in the
algorithm proposed by Van Jacobson for the
congestion control in TCP/IP [J88]. The server sends
an acknowledgement with the record key to the client
for every individual request. The client has a buffer
where it stores the requests sent but not yet
acknowledged. The client stop sending when the
buffer reaches its capacity, of 10 requests at present.
The acknowledgement removes the request from the
buffer. This enables a new send out. For each request
sent, a timeout is automatically started. The client
resends the request without the acknowledgement
within the timeout.
3.2 Servers

The servers use the multithread processing, Figure
3. Several threads take care of the processing,
asynchronously and in parallel. They communicate
through queues, buffers and events.

The ListenThread receives the client request, and
puts it into a FIFO RequestsQueue. It announces then
the ArrivedRequest event and waits for next requests.
The even wakes up a WorkThread from a pool of such
threads, noted W.Thread i (i = 1,.., N) in Figure 3.
The number of active WorkThreads depends on the
server load. Each ArrivedRequest event, wakes up a
work thread, if any is still available. The thread reads
the next request in Requests queue. It identifies the
operation to perform. If the request requires the flow
control, the thread puts the acknowledgement in the
FIFO AckQueue (Ack queue in Figure 3). The
SendAck thread asynchronously reads AckQueue and
sends the acknowledgements to the clients.
WorkThreads continues with the processing of the
requested operation. At the end, it returns the answer

to the client, if required. If there is no new
ArrivedRequest event pending, it finally goes to sleep.

For the clients, the server is identified by its IP
address and UDP port. A site can support multiple
servers on different ports. A server is created empty,
and listening for a bucket creation request. These
requests may create several buckets from different
SDDS files. The buckets are allocated using the
Bucket Allocation Table (BAT). BAT contains the
bucket address, size and the ID of its file.

. . .

Response

 Results Results

Execution

Main memory Server

RP* Buckets

Network
(TCP/IP, UDP)

Response

W.Thread 1
 ��

W.Thread N
 ��

ListenThread

Client

. . .

RP* Functions :
 Insert, Search, Update, Delete,
 Forward, Splite.

. . .

Request Analyze

BAT

SendAck

Requests
queue

Ack
queue

Client

Figure 3: Server architecture.

The bucket creation request comes from a client
for a new file or from a server with a bucket to split.
The latter case subsumes the former so we present
only that one. Let SO the splitting server be, and let
the Si be any server among M currently started ; 1 ≤ i
≤ M. The split at SO follows the steps. First, SO sends
the SplitRequest multicast message with the requested
bucket size. Each Si that has enough space replies. SO
selects the first site Sk to reply. It opens a TCP port
and sends the ResponseAccept unicast message to Sk
requesting it to connect to SO. SO locates also the
middle key cm in its bucket and splits the bucket into
two groups. One group, let it be G, contains records
with keys c >cm and their B+-tree sub-index. The
other group contains all the other records and their
sub-index. SO, sends G to Sk. It then updates its
index and data zones so to remove the allocation gaps
and sets the range to [λO, cm[. Finally, Sk creates the
bucket with the received records and range [cm, ΛO[.

The client requests in RequestsQueue received
during the split are dealt with as usual once the split is
over.

- 4 -

3.3 Clients
The RP* client architecture is structured into two

modules, termed send and the receive module. They run
in parallel, and are further structured as in Figure 4.
The send module processes the application request
and expedites it to the servers. Its GetRequest thread
waits for the application request. It puts the incoming
request ID (Id_Req) and that of the application
(Id_App) in the RequestJournal table. Both Ids are
provided by the application. Next, it processes the
request and puts it in a FIFO queue. The SendRequest
thread reads the queue. It builds the messages to the
servers accordingly and sends them. For RP*C, it
consults the client image, to determine the IP address
and the type of the message to use.

Receive Module Send Module

. . .

Requests Journal

Update

Return
Response

Get
Request

Client

Application 1

IP Add.

Request

Images

Response

Network
(TCP/IP, UDP)

Send
Request

Receive
Response

Server

Key IP Add.

… …

SDDS Applications Interface

Analyse Response

Id_Req Id_App
… …

Client
Flow control

Manager

Application N . . .

Server

1 4…

Figure 4: Client architecture

The receive module manages the replies from the

servers. It works into two different ways. For key
based requests, the ReceiveResponse thread awaits the
replies from the servers. It inserts them into a FIFO
queue, read by the AnalyseResponse threads. Up to four
such threads may run simultaneously at present. Each
AnalyseResponse reformats the received data for the
application and possibly update the RP*C client image
from the IAMs. Then, it puts data and the request id
into another queue for ReturnResponse thread.
ReturnResponse searches Id_App in the request journal
for each Id_Req in the reply retrieved from the
queue and returns the data to the application.

For a range query, the ReceiveResponse thread opens
a TPC port before the expedition of the request to
the servers by the send module. The relevant servers
use this port to establish simultaneous TCP
connections on other ports with the client. To
receive the data, through each accepted server
connection request, the ReceiveResponse thread creates a
dedicated ReceptionThread. It keep the TCP connexion
until the end of the data transfer from the server.

4 Performance Analysis
4.1 Experimental Environment

Our platform consisted of six Pentium III 700
MHz machines with four Professional Windows 2000
and two Server Windows 2000. Each site had 128 MB
of RAM. The machines were linked by a 100 Mb/s
Ethernet. One or two of the machines served as
clients.

The message size was 180 bytes (80 bytes for the
message header and 100 bytes for the record). The
message for the key search had 80 bytes. The size of
the sliding window for the flow control is set to 10.
The keys for the experiments are random integers
within some interval and without duplicates. The keys
for search and insert operations are between 1 and
100.000. Those for the file creation are between 1 and
150.000. The capacity of the internal index node in
the RP* bucket is set to 80 keys. That of a leaf is 100
records.

All times measured are in milliseconds (ms). The
measures are collected at the clients for inserts and
searches, and at the servers for the split time. The
client measures the time requesting a specific
acknowledgement for every i-the key or record sent; i
= 1, 10000, 20000… in our case. It records the time
when it receives the acknowledgements. The splitting
server measures the split time as the difference
between the time it starts the split and that when it
gets the acknowledgement from the server of the new
bucket that its creation is finished.
4.2 File creation
We measured the creation of the RP*C and of the
RP*N files. The performance factors of interest were
the total time, and the time per record inserted. The
bucket capacity was 50.000 records. In 1st experiment,
a single client inserted the 150.000 records. The file
scaled up from the empty bucket to five buckets (on
five servers). The communication was through UDP
messaging, one per record (no bulk loading). Table 1
shows the final numerical results. Figure 5, 6 and 7
present the graphics. Each point (x, y) of a curve of
the time y per insert, shows the total time to create
the file of x records divided by x. This time measures
the throughput, and should not be mistaken with the
average individual insert time. The latter is measured
by the average time per insert at a single server only.
Losses without the flow control were negligible
(< 0,01%).

RP*C

With flow control Without flow control
Ttl time Time/Ins. Ttl time Time/Ins.

67838 0.452 45032 0.300
RP*N

With flow control Without flow control
Ttl time Time/Ins. Ttl time Time/Ins.

69209 0.461 47798 0.319

Table 1: File creation by a single client

- 5 -

0

10000

20000

30000

40000

50000

60000

70000

80000

RP
*c

/
W

ith
 F

C

RP
*c

/
W

ith
ou

t
FC

RP
*n

/
W

ith
 F

C

RP
*n

/
W

ith
ou

t
FC

Ti
m

e
(m

s)

Figure 5: RP*C and RP*N file creation by one client.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50000 100000 150000
Number of records

Ti
m

e
(m

s)

Rp*c/ Without FC RP*c/ With FC
RP*n/ With FC RP*n/ Without FC

Figure 6: File creation by a single client.

All the curves become flat. The time per insert is
thus valid for further scaling of the files. As one
could expect, RP*C appears also slightly faster than
RP*N in all the cases. The difference is of 2% with
the flow control and of 6% without. These results
match the intuition. They made us in addition
believing that the performance of RP*C without flow
control could be bound by the throughput of a single
client. The processing of an insert should be indeed
longer at the server than at the client. But, when the
file scales over enough servers, their collective
throughput should become faster than that of any
single client. This could happen also for RP*N, or not.
The multicast sends indeed every record to every
server. A record to be stored at the server requires
than longer processing than that to drop. But, while
these records are produced at the constant rate by the
client, they scatter on more and more servers. On the
other hand however, each server gets relatively more
records to drop. The result of the match is unclear.

To test the conjecture we have created the file by
120.000 inserts from 2 simultaneous clients. The file
scaled to four buckets, which is the limit of our
configuration for two clients. Table 2 and Figure 8
and 9 present the results.

The conjecture appears true for RP*C. The time
per inserts decreases indeed by 7% for RP*C, It does
not in contrast for RP*N. RP*C becomes for 2 clients
notably faster than RP*N, by 15%. The curves of
total time are straight and those of time per insert
become flat. The file scales thus again linearly and the
curves may be used to predict the creation time for
further scale-up.

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0 50000 100000 150000
Number of records

Ti
m

e
(m

s)

RP*c without FC RP*c with FC

RP*n with FC RP*n without FC

Figure 7: Insert time by a single client.

RP*C RP*N
Without flow

control
Without flow

control
Ttl

time
Time/Ins. Ttl

time
Time/Ins.

33553 0.279 38432 0.320

Table 2: File creation by two clients.

- 6 -

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 50000 100000 150000

Number of records

Ti
m

e
(m

s)

0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450

RP*c to. time / 2 clients
RP*n to. time / 2 clients
RP*c / Time per record
RP*n/ Time per record

Figure 8: File creation by two clients without flow
control.

0

10000

20000

30000

40000

50000

60000

0 50000 100000 150000 200000

Number of servers

Ti
m

e
(m

s)

RP*c / 1 client
RP*n / 1 client
RP*c to. time / 2 clients
RP*n to. time / 2 clients

Figure 9: File creation times without the flow control
by one or two clients

4.3 Split time

These experiments determine the split time and
its scalability as the function of bucket capacity b.
Table 3 and Figure 10 show the results.

All times decrease for larger buckets. The time
per record decreases from 0.137 ms four b = 10000,
to 0.037 ms for b = 100000, i.e., by about 73%. Splits
are thus much more effective for larger buckets. The
curves have a tendency to about flat, but we do not
reach yet the server speed. Hence for even bigger b,
one can expect still slightly better efficiency.

b Time Time/Record
10000 1372 0.137
20000 1763 0.088
30000 1952 0.065
40000 2294 0.057
50000 2594 0.052
60000 2824 0.047
70000 3165 0.045
80000 3465 0.043
90000 3595 0.040

100000 3666 0.037

Table 3: Split times for different bucket capacities

0

500
1000

1500

2000

2500
3000

3500

4000

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

0
Bucket size

Sp
lit

 ti
m

e
(m

s)

0

0.02
0.04

0.06

0.08

0.1
0.12

0.14

0.16

Split time Time per Record

Figure 10: Split times as function of bucket size.

4.4 File manipulation
We studied the time of inserts, key searches and of
range queries issued by a single client. We measured
the time for a series of requests and the average time
per request for both RP*N and RP*C. We expected
again the processing time of a request at the server
longer than at the client. The client should reach thus
full load and the system best performance only when
it faces several servers. To determine how many, and
all the times, we have varied the number of servers
from 1 to 5, using one bucket per server.

4.4.1 Inserts
We measured the insert performance for a series

of up to x = 100000 inserts with and without flow
control. These were carried out to the initially empty
k-bucket file. The key values were uniformly
distributed. The inserts did not lead to any splits,

- 7 -

unlike for the file creation. However, on the one hand
we consider a new client, hence there are IAMs for
RP*C client. On the other hand, for inserts without
the flow control, we consider the client with the
correct image. The idea is to evaluate the incidence of
IAMs as discussed below. Table 4 presents the
numerical results. Figure 11 and Figure 12 show the
curves with the times in function of x.

All the times measured decrease when k grows.
Thus, the processing time at the server is indeed again
higher than on a client. The values for k = 1 basically
measure the former. The performance is basically the
same for RP*C and RP*N. The multicast used for
RP*N in this case is indeed a unicast. A slight
overhead always appears nevertheless for the
multicast. Mostly, for the inserts with the flow
control, when it reaches about 1%.

The times per insert show that our RP* server is
effective. Whether the flow control is used or not, the
server processes an insert in about 1/3 ms. We recall
that this is about 30 times faster than an average
insert to a disk file. Increasing k, gradually decreases
the average insert time. The limits are bound by the
client’s speed. The best times that appear are about
0.2 ms with the flow control and under 0.1 ms
without. In the case of RP*C without the flow
control, the client (and the whole system) reaches its
full speed (throughput) for k = 4. For all other cases,
it is not yet the case even for k = 5. The curves
become however about flat, so this should happen
for k = 6,7 servers, reaching the time slightly under
0.22 ms per insert.

The ratio between the processing time for k = 1
and for k = 5 is over 1.5 for inserts with the flow
control for both RP*C and RP*N. Without the flow
control, this ratio is about 3. The client may thus process
at least three times more inserts than a server. This figures
confirms more precisely the conjecture from Section
4.2. Furthermore, the ratio between the times with
and without the flow control, is about 1.3 for k = 1
and increases to about 2.4 for k = 5. Thus the flow
control becomes increasingly expensive when the file

scales. It appears thus as the predominant slow-down
factor for larger files.

It also appears that RP*N throughput is slower for
less servers, closing on RP*C when there are more
servers, although remaining slightly slower. This is
logical as every request is multicast to all the servers.
The overhead is the greatest for k = 2 when there is
no flow control. It reaches then 27%. It decreases
gradually to 3% for k = 5. This behavior seems
contrary to the intuition. By its nature, the multicast
messaging scales indeed less efficiently than unicast
messaging.

The observed behavior could be due to the IAMs.
Before the client sending inserts without the flow
control gets an IAM triggered by an incorrectly
addressed insert, it has time to send several other
such inserts. All these inserts are multicast among
the servers. More there buckets in the file, more IAM
have to be generated and more records have to be
forwarded in this way. Each forward also generates a
useless IAM that slows down the client. In our
experiment, there are also progressively less inserts
per bucket from 50.000 per bucket for 2 servers, to
20.000. The effect of the additional forwarding has
more incidence. RP*C could becomes less effective,
with performance closing on RP*N.

To prove this explanation we have generated the
correct index at the client so to avoid any IAM. As
Table 4 shows, the times were only slightly better.
Hence, our explanation does not hold. At present, we
do not have any other.
RP*N is a simpler structure than RP*C. The fact that
its performance is almost that of RP*C for a larger file
is a nice features of that schema. The processing of
the out-of-range records at each server appears
relatively negligible. As it was expected while the
scheme was proposed, [LNS94]. If there are more
clients, RP*C should nevertheless again reveal notably
faster. For two clients, one can expect the speed-up
similar to that for the file creation. The experimental
confirmation remains to be done.

RP*C RP*N
Without flow control With flow control

Empty image Correct image
With flow control Without flow

control

k

Ttl
time

Time/Ins. Ttl
time

Time/Ins. Ttl
time

Time/Ins. Ttl
time

Time/Ins. Ttl
time

Time/Ins.

1 35511 0.355 27480 0.275 27480 0.275 35872 0.359 27540 0.275
2 27767 0.258 14440 0.144 13652 0.137 28350 0.284 18357 0.184
3 23514 0.235 11176 0.112 10632 0.106 25426 0.254 15312 0.153
4 22332 0.223 9213 0.092 9048 0.090 23745 0.237 9824 0.098
5 22101 0.221 9224 0.092 8902 0.089 22911 0.229 9532 0.095

Table 4: Insert times.

- 8 -

0
5000

10000
15000
20000
25000
30000
35000
40000

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

RP*c/ With FC RP*c/ Without FC

RP*n/ With FC RP*n/ Without FC

Figure 11: Total insert time for initially empty image.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

RP*c/ With FC RP*c/ Without FC

RP*n/ With FC RP*n/ Without FC

Figure 12: Insert time per record for initially empty
image.

4.4.2 Key search
We measured this operation using files at k servers.
In the experiments, there were up to k = 5 servers,
supporting in each case the file of 100.000 records.
In each experiment, a single client sent 100.000
successful random search requests. The flow control
means here that the client sends at most 10 requests
without reply. Table 5 tabulates the results. Figure
13and Figure 14 present them as curves depending
on k.

The results confirm the efficiency of the system and
of the analyzed RP* schemes. The individual key
search time is always about 0.3 ms, i.e. 30 times better
than for a disk file. The throughput reaches 0.2 ms
per search with the flow control and 0.14 ms
otherwise. The curves become are about flat, but we
do not reach the client speed yet. Hence for more
buckets one can expect still slightly better
throughput. Probably around 0.13 ms per search.

RP*C RP*N
With flow control Without flow control With flow control Without flow control

. k

Ttl time Avg time Ttl time Avg time Ttl time Avg time Ttl time Avg time
1 34019 0.340 32086 0.321 34620 0.346 32466 0.325
2 25767 0.258 17686 0.177 27550 0.276 20850 0.209
3 21431 0.214 16002 0.160 23594 0.236 17105 0.171
4 20389 0.204 15312 0.153 20720 0.207 15432 0.154
5 19987 0.200 14256 0.143 20542 0.205 14521 0.145

Table 5 : Search times.

0
5000

10000
15000
20000
25000
30000
35000
40000

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

RP*c/ With FC RP*c/ Without FC
RP*n/ With FC RP*n/ Without FC

Figure 13: Total search time.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

RP*c/ With FC RP*c/ Without FC
RP*n/ With FC RP*n/ Without FC

Figure 14: Search time per record.

- 9 -

4.4.3 Range query
We have measured the time of the range query

with the deterministic termination scanning in parallel
the entire file. Its execution was the same for RP*N
and RP*C. We had 100.000 records to bring to the
client. The records were distributed between the k
servers. Table 6 shows the total time and the
throughput. The value n is the number of records per
server. Figure 15 and Figure 16 show the results as
the function of k.

n k Total

time
Time/Record

100000 1 3495 0.035
50000 2 2083 0.021
33333 3 1692 0.017
25000 4 1373 0.014
20000 5 1048 0.010

Table 6: Range query times.

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

 Figure 15: Range query total time.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 1 2 3 4 5

Number of servers

Ti
m

e
(m

s)

Figure 16: Range query time per record

The outcomes show that the range queries are

effective whether for one or more servers. As one
could expect, it appears nevertheless useful to
distribute the records among multiple servers. The
throughput improves from 0.035 ms for the file on
one server, to 0.010 ms for the same file in five
buckets. This is a strong improvement, by about
71%. As the curves are not flat yet, more servers
should further improve this performance.

5 Scalability analysis
The experimental curves we have obtained for

various times become about linear for total times or
flat for the throughputs. One may thus infer the
performance of files much larger than those we
experimented with. At first one may study in this
way the largest file one could possibly create at our
current configuration. The full capacity of 3-level
index leads to b = 640.000 records per bucket. For
100-Byte record assumed in the study this
corresponds to 64MB buckets. These can be
supported by our servers as they have 128MB of
RAM. As the average load factor of an RP* file is
70 % under random inserts, our file may scale to
448.000 records per bucket on the average. Its total
capacity may then reach 2.240.000 records and 320
MB. A single RP*N client would create this file in
2.240.000 x 0.095 + 51.2 = 264 s. The 1st term in the
expression reflects the total insert time, and the 2nd
one totalizes the split times. A single RP*C client
would be faster by almost 7 s. For the sake of
completeness let us mention that if one should create
that file on a disk, it would take 22.400 s, i.e. over 6h.

The machines used support in fact 256 MB of
RAM. That capacity could be used at present rather
to store large records, up to 300 B. To store more
records, a 4-level index would be needed.

On the other hand, one may infer the cost of the
example file if it scaled to a much larger size, e.g.,
10.000.000 records. The average bucket load would
be of 70 % x 50000 = 35000 records. The file would
reach 10.000.000/35000 = 286 buckets. There are
many more machines available at U. Paris 9, hence
this size is feasible. The (random) inserts would last
950 s for RP*N or 920 s for RP*C. The splits would
require 285 x (25000 x 0.04) = 285 s. The RP*N and
RP*C files would be created respectively in 1235 s and
1205 s, i.e., each one in about 20 minutes. The
creation of the disk file would require about 28 hours.

The operational use of that large RP* files would
probably require nevertheless some changes to the
client architecture with respect to the range queries.
At present the messaging is quite basic: a connection
and a thread is created per each responding bucket.
The current TCP/IP stack architecture does not
handle efficiently a large number of simultaneous
connections. The related study in [TS00] analyses the
corresponding pitfalls, and propose more scalable
messaging alternatives for an SDDS client.

- 10 -

6 Related works
The papers on SDDS schemes present usually the

theoretical access performance analysis measured in
number of messages. The advantage of that measure
is to be network and CPU speed independent. The
evaluation of actual elapsed times are rare. Below,
Table 7, compares our results to the theoretical
predictions in the original RP* paper [LNS94]. It also
compare them to the experimental results for LH*LH
on SDDS-2000, [BDNL00].

The theoretical performance of the RP* scheme
in [LNS94] were predicted in only for RP*N. The

network model was from [G88]. Site speed was
accordingly assumed 100 MIPS, and OS time to
process a message was 25 µs (2500 instructions). No
flow control was considered. A key search query was
100 B long, and a message with a record, was
assumed 1 KB long.

Some theoretical measures in Table 7, e.g., tc, are
not in [LNS94]. They were calculated here a new, on
the basis of the same assumptions, to complete the
comparison. Their computation was quite obvious, so
we omit it.

RP*N Imp. RP*C Impl. LH* Imp. RP*N Thr.

With FC No FC With FC No FC

tc 51000 40250 69209 47798 67838 45032

ts 0.350 0.186 0.205 0.145 0.200 0.143

ti,c 0.340 0,268 0.461 0.319 0.452 0.279

ti 0.330 0.161 0.229 0.095 0.221 0.086

tm 0.16 0.161 0.037 0.037 0.037 0.037

tr 0.005 0.010 0.010 0.010 0.010

Table 7: Comparative Analysis

tc: time to create the file
ts: time per key search (throughput)
ti: time per random insert (throughput)
ti,c: time per random insert (throughput) during the file creation
tm: time per record for splitting
tr: time per record for a range query

Our experimental results basically confirm the
theory. The values without flow control are quite
similar except for tm. The reason is that the theoretical
value was calculated for an individual record transfer.
This one is close to the 0.137 ms obtained for the
smallest b in Table 3. In Table 7 however, we have
chosen to show the best performance, for the largest
b measured, and corresponding to our most efficient
TCP/IP stream transfer.

The results for LH*LH in Table 7 were reported at
the same configuration. The bucket capacity was
however only b = 5.000 records, instead of our
b = 50.000. The file was also of 20.000 records only
and records were of 50 bytes, hence two times
shorter. The time tc Table 7 is therefore inferred for
LH*LH for our 150.000 record files. It is comparable,
but longer than all those for RP*. This is due to much
smaller b used, hence relatively higher incidence of
the splits.

The search time ts for LH*LH is established for a
series where next search starts when the reply to the
previous one is received. Hence, it is naturally higher
than that indicated for RP* and confirms incidentally
the efficiency of the flow control algorithm used.

Times ti,c are similar, the differences steaming from
the respective b values. The relatively high value of ti
for LH*LH has no explanation at present. It is perhaps
simply in error. Time tm of LH*LH should rather be
compared to that of 0.137 ms for b = 10.000 in table.
This performance appears then about similar for both
schemes.

Finally, tr was not measured for LH*LH. There is
no concept of range query for that scheme. The scan
of the entire LH*LH file could be measured
nevertheless. Similar performance for both schemes
should appear then. Both schemes use indeed SDDS-
2000 and performance of a scan is basically
independent of the SDDS scheme used. Notice
however that different internal bucket structures, as
well as termination algorithms should somehow
influence the result.

7 Conclusion
SDDS-2000 is a prototype system for Windows

multicomputer supporting various SDDSs. In
particular it supports several variants of the RP*
schema for the scalable range partitioning. We have
presented the design choices with respect to the
internal bucket structure and the multithread system

- 11 -

architecture. We have shown also the experimental
performance measures of the file manipulations.

The behavior of the scheme and the processing
times appear in line with the expectations. RP*C is
generally more effective, especially when the
performance is limited by the servers or there are
several clients. The system is nevertheless efficient
enough to provide times per insert or key search of a
fraction of a millisecond for both measured variants.
The client finds or inserts a given record in about 0.3
ms. This value is mainly due to the server processing
speed. Hence it should decrease as PC servers
become faster. It is already at present about 30 times
faster than a disk access. The throughput time per
insert in a series of random inserts by a client may
reach 0.09 ms. The throughput time per random
search by a client may reach 0.14 ms. These limits are
due mainly to client CPU speed. Hence, they should
not improve when the number of servers scales. But
should decrease further for a faster client, e.g. on a
GHz PC. The range query time reaches 0.01 ms per
retrieved record. The curves show that if the file
scales, it should further improve. Finally the split time
is in the order of a second for smaller buckets to four
seconds for the largest measured. The times per
record show that larger buckets are relatively more
efficient.

Further work concerns more in depth
performance analysis. There are also design variations
we plan to experiment with. We will also experiment
with actual applications.

Acknowledgements

This work was partly supported by a research grant from
Microsoft Research. We thank Jim Gray, David Lomet, and
Pierre-Yves Saintoyant for helpful discussions. Earlier work on
SDDS-2000 was partly supported by grants from HP
Laboratories, Palo Alto, CA, and from IBM Almaden Res.
Cntr., San Jose, CA.

References
[BDNL00] Bennour, F., Diène, A. W., Ndiaye, Y.

Litwin, W., Scalable and Distributed Linear
Hashing LH*LH under Windows NT. SCI-2000
Orlando, Florida, USA. July 23-26, 2000.

[D98] Diène, A. W. Internal organization of RP*
SDDS family. DEA Report (in French). U. of Dakar,
1997.
[D&al00] Diène A. W. & al. An Architecture for a

Manager of RP* SDDS under Windows NT.
CERIA Res. Rep. U. Paris 9, 2000.

[DNB00] Diene, A. W., Ndiaye, Y., Bennour, F.
Scalable ordered and distributed file under
SDDS-2000. CERIA Res. Rep., U. Paris 9,
1999.

[G88] Gray, J. The Cost of Messages. 7th ACM
Symp. on Principles of Distributed Systems,
1988.

[J88] Jacobson, V. Congestion Avoidance and
Control, Computer Communication Review,
vol. 18, no 4, pp. 314-329 (Aug.), 1988.

[L80] Litwin, W. Linear Hashing : a new tool for
file and tables addressing. Reprinted from
VLDB-80 in READINGS IN DATABASES.
2-nd ed. Morgan Kaufmann Publishers, Inc.,
1994. Stonebraker , M.(Ed.).

LMRS99] Litwin, W., Menon, J., Risch, T., Schawrz,
T. J. E., Scalable Availability LH* Shcemes with
Record Grouping. DIMACS Workshop on
Distributed Data Structures, Princeton U., (May
1999), Carleton Scientific, (publ.). 1999.

[LNS93] Neimat, M-A., Schneider, D. LH* : Linear
Hashing for Distributed Files. ACM-SIGMOD
Intl. Conf. On Management of Data, 1993.

[LNS94] Litwin, W., Neimat, M-A., Schneider, D.
RP*: A Family of Order-Preserving Scalable
Distributed Data Structures. 20th Intl. Conf on
Very Large Data Bases (VLDB), 1994.

[LN95b] W. Litwin, M-A Neimat. LH*s : a high-
availability and high-security Scalable
Distributed Data Structure. IEEE Workshop
on Research Issues in Data Engineering. IEEE
Press, 1997 (to app.)

[LN95a] Litwin, W., Neimat. k-RP* : a Family of
High Performance Multi-attribute Scalable
Distributed Data Structure. to app. in IEEE
Intl. Conf. on Par. & Distr. Systems, PDIS-96,
(Dec. 1996).

[LS99] Litwin, W., W. and Schwarz, J. E.: LH*RS: A
High-Availability Scalable Distributed Data
Structure using Reed Solomon Codes. CERIA
Res. Rep. 99-2, U. Paris 9, 1999.

[RAC96] Rodrigues, S.H., Anderson, T.E., Culler,
D.E. Hight-performance local communication
with fast socket, NOW, UC Berley, 1997.

[S96] Alok k. Sinha. Network Programming in
Windows NT. Addison-Wesley Publishing
Company.

[SDDS] Bibliographie
http://ceria.dauphine.fr/SDDS-
bibliograhie.html.

[TS00] Tsangou, M., Mesures de performances de la
scalabilité des requêtes parallèles sur les SDDS
RP*. Mémoire de DEA, Université de Dakar,
Avril 2000.

http://ceria.dauphine.fr/SDDS-

	Introduction
	RP* Schemes
	File Structure
	Bucket Structure

	System Architecture
	Messaging
	Servers
	C
	Clients

	Performance Analysis
	Experimental Environment
	File creation
	S
	Split time
	File manipulation
	Inserts
	Key search
	R
	Range query

	Figure 15: Range query total time.
	Scalability analysis
	Related works
	Conclusion

